Function reference and assert(0) in C++ - c++

I wish to understand what fetch().text and assert(0) do below. I am not familiar with a function like fetch() that can refers to a member of the return type, i.e. fetch().text. Is this somehow enabled by the use of assert(0)?
class SimpleS{
struct internal_element {
const char *text;
};
class SimpleE {
public:
SimpleE() {
}
const char* text() const {
return fetch().text;
}
void set_text(const char *text) {
fetch().text = text;
}
private:
internal_element& fetch() const {
... // some code
assert(0);
}
}

The assertion has nothing to do with it. What's happening here is that fetch() returns a reference to an internal_element. That enables you to refer to members of that struct in the returned value:
fetch().text
refers to the internal_element::text member of the internal_element object returned by fetch().
As to why there's an assert(0) in there, no idea. You didn't give us the code. Usually, when a function ends with such an assert is because the programmer wants to catch cases where he didn't cover some possibility. For example:
if (condition)
//...
else if (condition)
//...
// We should have covered all possible conditions above and already
// returned. If we actually get here, then we did something wrong.
assert(0);

The assert(0); will always fail. I suppose its purpose is to make sure that this method is never called in the first place.
(Assuming, of course, there is no condition for the assert(0); being run)

If the ... // some code in your code has a conditional return, assert(0) will never be called. assert(0) basically causes an exception and the program will die if the exception is not being caught in the calling function.

return fetch().text
calls the function fetch. This presumably returns an object of class internal_element. It then accesses the text member of this returned object and returns it. It's effectively equivalen to:
internal_element temp = fetch();
return temp.text;

In below code (which you shared), programmer got condition which make function return, thats what the // some code supposed to do...but if one of the the conditions is not true (and it return) control reaches end of function it means there is fatal error, so is the purpose of assert(0) at the end of function...
internal_element& fetch() const {
... // some code
assert(0);
}

Related

Proper non-returning control function

I have a function which shows some message, properly finishes the program and finally calls exit(-1);. Here is an example of usage:
Data SomeFunction()
{
Data data;
if (some_condition) {
// filling the data
return data;
}
ShowErrorAndExit("Some message");
//return data - I don't want it here!
}
The problem is, the compiler says:
warning: control reaches end of non-void function
However, this is not true, because the end of this function will never be reached. I don't want to add an unneeded return at the end of function; what else can I do?
ShowErrorAndExit should be labeled [[noreturn]]. This will remove the warning.
Example:
[[noreturn]] void ShowErrorAndExit(std::string message) {...}
Invert the logic:
Data SomeFunction() {
if (!some_condition)
ShowErrorAndExit("Some message");
Data data;
// filling in the data
return data;
}
You can (and should) declare your ShowErrorAndExit function with the [[noreturn]] attribute (link). This will allow the compiler (if it's reasonably sane) to understand that your function never reaches the control point for which it issues the warning.
Something like this:
[[ noreturn ]] void ShowErrorAndExit(const char* message);
You may trick the compiler to think the return is always reached:
Data SomeFunction()
{
Data data;
if (! some_condition)
ShowErrorAndExit("Some message");
// fill the data
return data;
}
You can ignore the warning or, if your compiler provides a way to do so, disable it. Another option is to put a throw at the end of the function with a comment indicating that it's never supposed to execute.
You can use std::optional, it lets you return your type Data or nothing at all a.k.a.std::nullopt.
Look here: https://en.cppreference.com/w/cpp/utility/optional

Compiler: how to check a user function returns properly?

I am writing a very simple compiler where users are allowed to define functions that return either void, int or char. However, users' function may be malformed. They may not return a value for a function that does not return void, or return a value for a function that returns void as declared. Currently my compiler is unable to detect this kind of errors and fails to generate proper code for function that returns void as this class of functions can return without a return; (they return implicitly). These two problems have cost me quite some time to phrase them out clearly. See the example code below:
// Problem A: detect implicit return.
void Foo(int Arg) {
if (Arg)
return;
else {
Arg = 1;
// Foo returns here! How can I know!
}
}
// Problem B: detect "forgotten return".
int Bar(int Arg) {
if (Arg > 1) {
return 1;
}
// this is an error: control flow reaches end at non-void function!
// How can I know!
}
I think the more general question may be: how can I tell the control flow reaches end at some point in a function? By saying reach end I mean the it reaches a point after which the function has no code to execute. If I can detect the end of control flow, I can look for a return at this point and either report an error if the function ought to return something or generate an explicit return for a void function. If I enumerate all such points of a function, I can ensure that the function is fully checked or complemented.
I see this problem as a well-solved one in compiler engineering since modern C/C++ can do that pretty well. Is LLVM can offer any API to do this? Or is there simple algorithm to achieve this? Thanks very much.
Edit: I am currently using LLVM and have BasicBlock emitted already. I hope a guide in doing this in LLVM specifically.
Edit: In this question we assume that the return type declared in the function prototype always matches that of its return stmt. I primarily focus on the absence of a required return.
The answer is simple. After all BB's of a function are emitted, loop over them and pick up those ends without a Terminator (see the llvm document for what is a Terminator Instruction). Assuming the emission of all kinds of control flow statements (While, For, etc.) follows the rule (One BB is ended by one and only one Terminator), the only possible explanation of these rule-breakers is that they miss a Return IR in the end. If the current function return void, append a ReturnVoid to them. Otherwise, this is an error, report it.
The reasoning is largely correct as it rely on the well-formed property of LLVM's BB and it is easy to implement, cheap to run. Here is the code:
/// Generate body for a Function.
void visitFuncDef(FuncDef *FD) {
// Unrelated code omitted...
/// Generate the body
for (Stmt *S : FD->stmts) {
visitStmt(S);
}
/// Check for well-formness of all BBs. In particular, look for
/// any unterminated BB and try to add a Return to it.
for (BasicBlock &BB : *Fn) {
Instruction *Terminator = BB.getTerminator();
if (Terminator != nullptr) continue; /// Well-formed
if (Fn->getReturnType()->isVoidTy()) {
/// Make implicit return of void Function explicit.
Builder.SetInsertPoint(&BB);
Builder.CreateRetVoid();
} else {
// How to attach source location?
EM.Error("control flow reaches end of non-void function");
// No source location, make errors short
return;
}
}
/// Verify the function body
String ErrorMsg;
llvm::raw_string_ostream OS(ErrorMsg);
if (llvm::verifyFunction(*Fn, &OS)) {
EM.Error(ErrorMsg);
}
}

How to check for invalid/uninitialized object in c++

Currently, I've created a simple error handling system to check whether a pointer is valid by checking for nullptr like so:
inline void ErrReport(const char8* fileOfError, int32 lineNumberOfError, const Blz::string c_errMessage)
{
ErrorContext::LogContext();
LOG(" ERROR: %s\n", c_errMessage.c_str());
LOG(" In %s: %i\n\n", fileOfError, lineNumberOfError);
exit(0);
}
#if(_DEBUG)
#define ERRASSERT(test, msg) do {if (!(test)) Blz::Err::ErrReport(__FILE__, __LINE__, msg);} while (0)
#endif
I can then call ERRASSERT in my code like so:
unsgined char* imageData = LoadImage("PathToImage");
ERRASSERT(imageData, "Image did not load properly");
Right now, in order to do something similar with non-pointer objects I have a Check() function to see if an object has been initialized or not:
template<typename T> inline bool Check(boost::outcome::expected<T>& obj)
{
if (obj)
return true;
else
return false;
}
With this code, if I understand how to use outcome::expected correctly, I would then just call the above function within my ERRASSERT and everything should work similiarly
boost::outcome::expected<ObjectType> obj = functionReturnsObj();
ERRASSERT(Check(obj), "Object not initialized!);
My question:
Is there a better way to check if an object is initialized without having to wrap everything in boost::outcome::expected? Are there even many scenarios where an object wouldn't be initialized given C++ automatically initializes objects upon creation? Should I even be worried about this?
Is there a better way to check if an object is initialized
Don't.
Are there even many scenarios where an object wouldn't be initialized given C++ automatically initializes objects upon creation?
Yes, and it doesn't (always).
But that's the programmer's responsibility (and you can usually rely on compiler warnings to catch silly mistakes).
Should I even be worried about this?
No.
I just want to elaborate a bit on Should I even be worried about this? in addition to #BoundaryImposition's answer.
An uninitialized C++ object may cause you issues in certain cases. If you have Foo and create an instance f as below, then f.a and f.b are not initialized and you should not assume they are 0.
struct Foo { int a; int b; };
Foo f;

Can I tell the compiler to consider a control path closed with regards to return value?

Say I have the following function:
Thingy& getThingy(int id)
{
for ( int i = 0; i < something(); ++i )
{
// normal execution guarantees that the Thingy we're looking for exists
if ( thingyArray[i].id == id )
return thingyArray[i];
}
// If we got this far, then something went horribly wrong and we can't recover.
// This function terminates the program.
fatalError("The sky is falling!");
// Execution will never reach this point.
}
Compilers will typically complain at this, saying that "not all control paths return a value". Which is technically true, but the control paths that don't return a value abort the program before the function ends, and are therefore semantically correct. Is there a way to tell the compiler (VS2010 in my case, but I'm curious about others as well) that a certain control path is to be ignored for the purposes of this check, without suppressing the warning completely or returning a nonsensical dummy value at the end of the function?
You can annotate the function fatalError (its declaration) to let the compiler know it will never return.
In C++11, this would be something like:
[[noreturn]] void fatalError(std::string const&);
Pre C++11, you have compiler specific attributes, such as GCC's:
void fatalError(std::string const&) __attribute__((noreturn));
or Visual Studio's:
__declspec(noreturn) void fatalError(std::string const&);
Why don't you throw an exception? That would solve the problem and it would force the calling method to deal with the exception.
If you did manage to haggle the warning out some way or other, you are still left with having to do something with the function that calls getThingy(). What happens when getThingy() fails? How will the caller know? What you have here is an exception (conceptually) and your design should reflect that.
You can use a run time assertion in lieu of your fatalError routine. This would just look like:
Thingy& getThingy(int id)
{
for ( int i = 0; i < something(); ++i )
{
if ( thingyArray[i].id == id )
return thingyArray[i];
}
// Clean up and error condition reporting go here.
assert(false);
}

How to make sure a function is only called once

Suppose I have a function named caller, which will call a function named callee:
void caller()
{
callee();
}
Now caller might be called many times in the application, and you want to make sure callee is only called once. (kind of lazy initialization), you could implement it use a flag:
void caller()
{
static bool bFirst = true;
if(bFirst)
{
callee();
bFirst = false;
}
}
My opinion for this is it needs more code, and it needs one more check in every call of function caller.
A better solution to me is as follow: (suppose callee returns int)
void caller()
{
static int ret = callee();
}
But this can't handle the case if callee returns void, my solution is using the comma expression:
void caller()
{
static int ret = (callee(), 1);
}
But the problem with this is that comma expression is not popular used and people may get confused when see this line of code, thus cause problems for maintainance.
Do you have any good idea to make sure a function is only called once?
You could use this:
void caller()
{
static class Once { public: Once(){callee();}} Once_;
}
Thread-safe:
static boost::once_flag flag = BOOST_ONCE_INIT;
boost::call_once([]{callee();}, flag);
You could hide the function through a function pointer.
static void real_function()
{
//do stuff
function = noop_function;
}
static void noop_function()
{
}
int (*function)(void) = real_function;
Callers just call the function which will do the work the first time, and do nothing on any subsequent calls.
Your first variant with a boolean flag bFirst is nothing else that an explict manual implementatuion of what the compiler will do for you implictly in your other variants.
In other words, in a typical implementation in all of the variants you pesented so far there will be an additional check for a boolean flag in the generated machine code. The perfromance of all these variants will be the same (if that's your concern). The extra code in the first variant might look less elegant, but that doesn't seem to be a big deal to me. (Wrap it.)
Anyway, what you have as your first variant is basically how it is normally done (until you start dealing with such issues as multithreading etc.)
Inspired by some people, I think just use a macro to wrap comma expression would also make the intention clear:
#define CALL_ONCE(func) do {static bool dummy = (func, true);} while(0)