select() does not give timeout inside a Bash script - c++

I have a problem that the select() does not give timeout when I run the program inside a Bash script file. This is my implementation:
#include <sys/select.h>
bool checkKeyPressed()
{
struct timeval tv;
tv.tv_sec = 1;
tv.tv_usec = 0;
fd_set descriptor;
const int input = 0;
FD_ZERO(&descriptor);
FD_SET(input, &descriptor);
return select(1, &descriptor, NULL, NULL, &tv) > 0;
}
// strace result after running the program directly (correct that there is a timeout)
select(1, [0], NULL, NULL, {1, 0}) = 0 (Timeout)
// strace result to run the application inside a bash script file (no timeout)
select(1, [0], NULL, NULL, {1, 0}) = 1 (in [0], left {0, 999996})
read(0, "", 1) = 0
How can I change the function to get it working with also running under the Bash script?

If you look closer at the read call in the trace, you will notice it returns zero meaning end-of-file.
When a file descriptor is at EOF (or remote socket closed, etc), the descriptor is readable with read returning zero.
If you would have pressed CTRL+d in the interactive shell, you would have gotten the same result.

If you just need a 1-second timeout don't pass any file descriptors to select(). In this case select() works as a portable sleep() function.

Related

Check if stdin is empty

I searched but did not get a relevant answer to this question, i am working on a linux machine, i wanted to check if the standard input stream contains any character, without removing the characters from the stream.
You might want to try select() function, and wait for having data into the input stream.
Description:
select() and pselect() allow a program to monitor multiple file
descriptors, waiting until one or more of the file descriptors become
"ready" for some class of I/O operation (e.g., input possible). A file
descriptor is considered ready if it is possible to perform the
corresponding I/O operation (e.g., read(2)) without blocking.
In your case, the file descriptor will be stdin
void yourFunction(){
fd_set fds;
struct timeval timeout;
int selectRetVal;
/* Set time limit you want to WAIT for the fdescriptor to have data,
or not( you can set it to ZERO if you want) */
timeout.tv_sec = 0;
timeout.tv_usec = 1;
/* Create a descriptor set containing our remote socket
(the one that connects with the remote troll at the client side). */
FD_ZERO(&fds);
FD_SET(stdin, &fds);
selectRetVal = select(sizeof(fds)*8, &fds, NULL, NULL, &timeout);
if (selectRetVal == -1) {
/* error occurred in select(), */
printf("select failed()\n");
} else if (selectRetVal == 0) {
printf("Timeout occurred!!! No data to fetch().\n");
//do some other stuff
} else {
/* The descriptor has data, fetch it. */
if (FD_ISSET(stdin, &fds)) {
//do whatever you want with the data
}
}
}
Hope it helps.
cacho was on the right path, however select is only necessary if you're dealing with more than one file descriptor, and stdin is not a POSIX file descriptor (int); It's a FILE *. You'd want to use STDIN_FILENO, if you go that route.
It's not a very clean route to take, either. I'd prefer to use poll. By specifying 0 as the timeout, poll will return immediately.
If none of the defined events have occurred on any selected file
descriptor, poll() shall wait at least timeout milliseconds for an
event to occur on any of the selected file descriptors. If the value
of timeout is 0, poll() shall return immediately. If the value of
timeout is -1, poll() shall block until a requested event occurs or
until the call is interrupted.
struct pollfd stdin_poll = { .fd = STDIN_FILENO
, .events = POLLIN | POLLRDBAND | POLLRDNORM | POLLPRI };
if (poll(&stdin_poll, 1, 0) == 1) {
/* Data waiting on stdin. Process it. */
}
/* Do other processing. */

Why does select only show file descriptors as ready if data is already being sent?

I'm using select() in a thread to monitor a datagram socket, but unless data is being sent to the socket before the thread starts, select() will continue to return 0.
I'm mixing a little C and C++; here's the method that starts the thread:
bool RelayStart() {
sock_recv = socket(AF_INET, SOCK_DGRAM, 0);
memset(&addr_recv, 0, sizeof(addr_recv));
addr_recv.sin_family = AF_INET;
addr_recv.sin_port = htons(18902);
addr_recv.sin_addr.s_addr = htonl(INADDR_ANY);
bind(sock_recv, (struct sockaddr*) &addr_recv, sizeof(addr_recv));
isRelayingPackets = true;
NSS::Thread::start(VIDEO_SEND_THREAD_ID);
return true;
}
The method that stops the thread:
bool RelayStop() {
isSendingVideo = false;
NSS::Thread::stop();
close(sock_recv);
return true;
}
And the method run in the thread:
void Run() {
fd_set read_fds;
int select_return;
struct timeval select_timeout;
FD_ZERO(&read_fds);
FD_SET(sock_recv, &read_fds);
while (isRelayingPackets) {
select_timeout.tv_sec = 1;
select_timeout.tv_usec = 0;
select_return = select(sock_recv + 1, &read_fds, NULL, NULL, &select_timeout);
if (select_return > 0 && FD_ISSET(sock_recv, &read_fds)) {
// ...
}
}
}
The problem is that if there isn't a process already sending UDP packets to port 18902 before RelayStart() is called, select() will always return 0. So, for example, I can't restart the sender without restarting the thread (in the correct order.)
Everything seems to work fine as long as the sender is started first.
The Run thread only constructs read_fds once.
The select call updates read_fds to have all its bits cleared for all descriptors that did not have data ready, and all its bits set for those that were set before and do have data ready.
Hence, if no descriptor has any data ready and the select call times out (and returns 0), all the bits in read_fds are now cleared. Further calls passing the same all-zero bit-mask will scan no file descriptors.
You can either re-construct the read-set on each trip inside the loop:
while (isRelayingPackets) {
FD_ZERO(&read_fds);
FD_SET(sock_recv, &read_fds);
...
}
or use an auxiliary variable with a copy of the bit-set:
while (isRelayingPackets) {
fd_set select_arg = read_fds;
... same as before but use &select_arg ...
}
(Or, of course, there are non-select interfaces that are easier to use in some ways.)
How were you expecting it to behave? The point of select() is to sleep to a timeout until data are available to be read; in this case, it will time out after 1 second and return 0. Perhaps you don't actually want a timeout before the start of a stream?

select() blocks instead of returning a timeout

As a background, I'm writing a multithreaded linux server application. Each child process has a connection associated with it and uses select() to see if there is data waiting to be read on the socket.
I've done some searching and for once I couldn't find any help to this problem.
First time actually posting to Stack Overflow, so I apologize if my formatting is crap.
//this first line switches my connection to non-blocking.
//select() still fails whether or not this line is in.
fcntl(ChildConnection -> newsockfd, F_SETFL, 0);
struct timeval tv;
fd_set readfds;
FD_ZERO(&readfds);
FD_SET(ChildConnection -> newsockfd, &readfds);
tv.tv_sec = 3; //3 seconds of waiting maximum. Changing this does nothing.
tv.tv_usec = 0;
printf("-DEBUG: Child, About to select() the newsockfd, which is %i. readfds is %i.\n", ChildConnection -> newsockfd, readfds);
//if I feed this a bad descriptor (-1 or something) on purpose, it DOES return -1 though.
int result = select(ChildConnection -> newsockfd + 1, &readfds, NULL, NULL, &tv);
//this commented out line below doesn't even time out.
//int result = select(0, NULL, NULL, NULL, &tv);
printf("-DEBUG: Child, Just select()ed. result is %i. Hopefully that was >= 0.", result);
if (result < 0)
{
DisplayError("ERROR using select() on read connection in MotherShip::HandleMessagesChild: ");
}
else if (result > 0) // > 0 means there is data waiting to be read
{
/* <--- Snipped Reading Stuff here ---> */
}
//so if the code gets here without a result that means it timed out.
Unfortunately, the second print line (saying it has selected) is never printed. Does anyone know what's going on or have advice for me to try and debug this?
You have a blocking condition somewhere else. Get your select() code working in a small test rig first and then transplant it. Your comment in the code that "this commented out line below doesn't even time out" is verifiably incorrect:
$ cat test.c
#include <stdio.h>
#include <sys/select.h>
int main()
{
struct timeval tv;
tv.tv_sec = 3;
tv.tv_usec = 0;
select(0, NULL, NULL, NULL, &tv);
return 0;
}
$ gcc -o test test.c
$ time ./test
real 0m3.004s
user 0m0.000s
sys 0m0.000s
Alternatively, try attaching a debugger to your hanging process and see where it is blocked. Or watch it in strace(), etc...

Asyncronous Bidirectional IO Redirection for a child process

I am trying to figure out a generalized way for Asynchronous Bidirectional IO Redirection of a child process. Basically, I would like to spawn an interactive child process that waits for input and any output should be read back. I tried to experiment with python.subprocess by spawning a new python process. A base simplistic example tried to achieve is as follows
process = subprocess.Popen(['/usr/bin/python'],shell=False,stdin=subprocess.PIPE, stdout=subprocess.PIPE)
while True:
output = process.stdout.readline()
print output
input = sys.stdin.readline()
process.stdin.write(input)
and executing the above code snippet simply hangs without any output. I tried running with /usr/bash and /usr/bin/irb but the result is all the same. My guess is, buffered IO is simply not gelling well with IO redirection.
So my question is, is it feasible to read the output of a child process without flushing the buffer or quitting the subprocess?
The following post mentions IPC sockets but for that I would have to change the child process which may not be feasible. Is there any other way to achieve it?
Note*** My ultimate goal is to create a server REPL process which can interact with a remote web client. Though the example given is of Python, my ultimate goal is to wrap all available REPL by a generalized wrapper.
With the help of some of the suggestion in the answers I came up with the following
#!/usr/bin/python
import subprocess, os, select
proc = subprocess.Popen(['/usr/bin/python'],shell=False,stdin=subprocess.PIPE, stdout=subprocess.PIPE,stderr=subprocess.PIPE)
for i in xrange(0,5):
inputready, outputready, exceptready = select.select([proc.stdout, proc.stderr],[proc.stdout, proc.stderr],[proc.stdout, proc.stderr],0)
if not inputready: print "No Data",
print inputready, outputready, exceptready
for s in inputready: print s.fileno(),s.readline()
proc.terminate()
print "After Terminating"
for i in xrange(0,5):
inputready, outputready, exceptready = select.select([proc.stdout, proc.stderr],[proc.stdout, proc.stderr],[proc.stdout, proc.stderr],0)
if not inputready: print "No Data",
print inputready, outputready, exceptready
for s in inputready: print s.fileno(),s.readline()
now, though the programs is not in deadlock but unfortunately there is no output. Running the above code I get
No Data [] [] []
No Data [] [] []
No Data [] [] []
No Data [] [] []
No Data [] [] []
After Terminating
No Data [] [] []
No Data [] [] []
No Data [] [] []
No Data [] [] []
No Data [] [] []
Just FYI,
running python as
/usr/bin/python 2>&1|tee test.out
seems to be working just fine.
I also came up with a 'C' code. But the result is not different.
int kbhit() {
struct timeval tv;
fd_set fds;
tv.tv_sec = tv.tv_usec = 0;
FD_ZERO(&fds);
FD_SET(STDIN_FILENO, &fds);
select(STDIN_FILENO+1, &fds, NULL, NULL, &tv);
return FD_ISSET(STDIN_FILENO, &fds);
}
void receive(char *str) {
char ch;
fprintf(stderr,"IN1\n");
if(!kbhit()) return;
fprintf(stderr,"IN2\n");
fprintf(stderr,"%d\n",kbhit());
for(;kbhit() && (ch=fgetc(stdin))!=EOF;) {
fprintf(stderr,"%c,%d",ch,kbhit());
}
fprintf(stderr,"Done\n");
}
int main(){
pid_t pid;
int rv, pipeP2C[2],pipeC2P[2];
pipe(pipeP2C);
pipe(pipeC2P);
pid=fork();
if(pid){
dup2(pipeP2C[1],1); /* Replace stdout with out side of the pipe */
close(pipeP2C[0]); /* Close unused side of pipe (in side) */
dup2(pipeC2P[0],0); /* Replace stdin with in side of the pipe */
close(pipeC2P[1]); /* Close unused side of pipe (out side) */
setvbuf(stdout,(char*)NULL,_IONBF,0); /* Set non-buffered output on stdout */
sleep(2);
receive("quit()\n");
wait(&rv); /* Wait for child process to end */
fprintf(stderr,"Child exited with a %d value\n",rv);
}
else{
dup2(pipeP2C[0],0); /* Replace stdin with the in side of the pipe */
close(pipeP2C[1]); /* Close unused side of pipe (out side) */
dup2(pipeC2P[1],1); /* Replace stdout with the out side of the pipe */
close(pipeC2P[0]); /* Close unused side of pipe (out side) */
setvbuf(stdout,(char*)NULL,_IONBF,0); /* Set non-buffered output on stdout */
close(2), dup2(1,2); /*Redirect stderr to stdout */
if(execl("/usr/bin/python","/usr/bin/python",NULL) == -1){
fprintf(stderr,"execl Error!");
exit(1);
}
}
return 0;
}
In the Python code you posted, you're not using the right streams:
inputready, outputready, exceptready = select.select(
[proc.stdout, proc.stderr], # read list
[proc.stdout, proc.stderr], # write list
[proc.stdout, proc.stderr], # error list.
0) # time out.
I haven't tried fixing it, but I bet reading and writing to the same set of streams is incorrect.
There are multiple things going wrong in your sample. The first is that the python executable that you launch as as a child process produces no output. The second is that there is a race condition since you can invoke select() 5 times in a row before the child process produces output, in which case you will kill the process before reading anything.
I fixed the three problems mentioned above (write list, starting a process that produces output and race condition). Try out this sample and see if it works for you:
#!/usr/bin/python
import subprocess, os, select, time
path = "/usr/bin/python"
proc = subprocess.Popen([path, "foo.py"], shell=False,
stdin=subprocess.PIPE,
stdout=subprocess.PIPE,
stderr=subprocess.PIPE)
for i in xrange(0,5):
time.sleep(1)
inputready, outputready, exceptready = select.select(
[proc.stdout, proc.stderr], [proc.stdin,],
[proc.stdout, proc.stderr, proc.stdin], 0)
if not inputready:
print "No Data",
print inputready, outputready, exceptready
for s in inputready:
print s.fileno(),s.readline()
proc.terminate()
print "After Terminating"
for i in xrange(0,5):
inputready, outputready, exceptready = select.select(
[proc.stdout, proc.stderr], [proc.stdin,],
[proc.stdout, proc.stderr, proc.stdin], 0)
if not inputready:
print "No Data",
print inputready, outputready, exceptready
for s in inputready:
print s.fileno(),s.readline()
The foo.py file I used contained this:
#!/usr/bin/python
print "Hello, world!"
The following version (mostly removed redundant output to make results easier to read):
#!/usr/bin/python
import subprocess, os, select, time
path = "/usr/bin/python"
proc = subprocess.Popen([path, "foo.py"], shell=False,
stdin=subprocess.PIPE,
stdout=subprocess.PIPE,
stderr=subprocess.PIPE)
for i in xrange(0,5):
time.sleep(1)
inputready, outputready, exceptready = select.select(
[proc.stdout, proc.stderr], [proc.stdin,],
[proc.stdout, proc.stderr, proc.stdin], 0)
for s in inputready:
line = s.readline()
if line:
print s.fileno(), line
proc.terminate()
print "After Terminating"
for i in xrange(0,5):
time.sleep(1)
inputready, outputready, exceptready = select.select(
[proc.stdout, proc.stderr], [proc.stdin,],
[proc.stdout, proc.stderr, proc.stdin], 0)
for s in inputready:
line = s.readline()
if line:
print s.fileno(), line
Gives the following output:
5 Hello, world!
After Terminating
Note that for some reason, using the timeout parameter in select.select() did not produce the expected results on my system, and I resorted to using time.sleep() instead.
Just FYI, running python as
/usr/bin/python 2>&1|tee test.out
seems to be working just fine.
You cannot get this effect because this example still gives the python interpreter a controlling tty. Without the controlling tty, the python interpreter does not print the Python version and does not display the >>> prompt.
A close example would be something like the following. You can replace the /dev/null with a file containing commands to send to the interpreter.
/usr/bin/python </dev/null 2>&1|tee test.out
If you redirect anything other than the controlling tty (keyboard) as the standard input to the process, you will get no output from the python interpreter. This is why your code appears not to work.
There are different way to do this.
You can, for example:
use SysV message queues and poll with timeout on the queue for message to arrive
create a pipe() for the child and a pipe() for the father both using the O_NONBLOCK flag and then select() on the file descriptors for data to arrive (to can even handle timeouts if no data arrives)
use socket() AF_UNIX or AF_INET, set it non blocking and select() or epoll() for data to arrive
mmap() MAP_SHARED memory segments and signal the other process when data is arrived, pay attention to the shared segment with a locking mechanism.
I wrote a sample in C with double pipes:
#include <stdio.h>
#include <stdlib.h>
#include <errno.h>
#include <string.h>
#include <unistd.h>
#include <sys/time.h>
#include <sys/types.h>
#include <sys/wait.h>
#include <sys/stat.h>
#include <sys/select.h>
#include <fcntl.h>
#include <signal.h>
#define BUFLEN (6*1024)
#define EXECFILE "/usr/bin/python"
char *itoa(int n, char *s, int b) {
static char digits[] = "0123456789abcdefghijklmnopqrstuvwxyz";
int i=0, sign;
if ((sign = n) < 0)
n = -n;
do {
s[i++] = digits[n % b];
} while ((n /= b) > 0);
if (sign < 0)
s[i++] = '-';
s[i] = '\0';
return s;
}
/*
int set_nonblock(int sockfd) { // set socket to non blocking
int arg,i;
if ((arg=fcntl(sockfd, F_GETFL, NULL)) < 0) {
printf("error getting socket flag for fd %i: fcntl(..., F_GETFL): %i\n", sockfd, errno);
return -1;
}
// set O_NONBLOCK flag
arg |= O_NONBLOCK;
if ((i=fcntl(sockfd, F_SETFL, arg)) < 0) {
printf("error setting socket flag for fd %i: fcntl(..., F_SETFL): %i\n", sockfd, errno);
return -1;
}
return i;
}
int set_block(int sockfd) { // set socket to blocking
int arg,i;
if ((arg=fcntl(sockfd, F_GETFL, NULL)) < 0) {
printf("error getting socket flag for fd %i: fcntl(..., F_GETFL): %i\n", sockfd, errno);
return -1;
}
// clean O_NONBLOCK flag
arg &= (~O_NONBLOCK);
if ((i=fcntl(sockfd, F_SETFL, arg)) < 0) {
printf("error setting socket flag for fd %i: fcntl(..., F_SETFL): %i\n", sockfd, errno);
return -1;
}
return i;
}
*/
int main() {
FILE *input;
char slice[BUFLEN];
int status = 0;
pid_t pid;
int err;
int newfd;
// if you want you can pass arguments to the program to execute
// char *const arguments[] = {EXECFILE, "-v", NULL};
char *const arguments[] = {EXECFILE, NULL};
int father2child_pipefd[2];
int child2father_pipefd[2];
char *read_data = NULL;
FILE *retclam;
fd_set myset;
int x=1;
signal(SIGPIPE, SIG_IGN);
newfd = dup(0);
input = fdopen(newfd, "r");
pipe(father2child_pipefd); // Father speaking to child
pipe(child2father_pipefd); // Child speaking to father
pid = fork();
if (pid > 0) { // Father
close(father2child_pipefd[0]);
close(child2father_pipefd[1]);
// Write to the pipe reading from stdin
retclam = fdopen(child2father_pipefd[0], "r");
// set the two fd non blocking
//set_nonblock(0);
//set_nonblock(child2father_pipefd[0]);
//set_nonblock(fileno(retclam));
while(x==1) {
// clear the file descriptor set
FD_ZERO(&myset);
// add the stdin to the set
FD_SET(fileno(input), &myset);
// add the child pipe to the set
FD_SET(fileno(retclam), &myset);
// here we wait for data to arrive from stdin or from the child pipe. The last argument is a timeout, if you like
err = select(fileno(retclam)+1, &myset, NULL, NULL, NULL);
switch(err) {
case -1:
// Problem with select(). The errno variable knows why
//exit(1);
x=0;
break;
case 0:
// timeout on select(). Data did not arrived in time, only valid if the last attribute of select() was specified
break;
default:
// data is ready to be read
bzero(slice, BUFLEN);
if (FD_ISSET(fileno(retclam), &myset)) { // data ready on the child
//set_block(fileno(retclam));
read_data = fgets(slice, BUFLEN, retclam); // read a line from the child (max BUFLEN bytes)
//set_nonblock(fileno(retclam));
if (read_data == NULL) {
//exit(0);
x=0;
break;
}
// write data back to stdout
write (1, slice, strlen(slice));
if(feof(retclam)) {
//exit(0);
x=0;
break;
}
break;
}
bzero(slice, BUFLEN);
if (FD_ISSET(fileno(input), &myset)) { // data ready on stdin
//printf("father\n");
//set_block(fileno(input));
read_data = fgets(slice, BUFLEN, input); // read a line from stdin (max BUFLEN bytes)
//set_nonblock(fileno(input));
if (read_data == NULL) {
//exit (0);
close(father2child_pipefd[1]);
waitpid(pid, &status, 0);
//fclose(input);
break;
}
// write data to the child
write (father2child_pipefd[1], slice, strlen(slice));
/*
if(feof(input)) {
exit(0);
}*/
break;
}
}
}
close(father2child_pipefd[1]);
fclose(input);
fsync(1);
waitpid(pid, &status, 0);
// child process terminated
fclose (retclam);
// Parse output data from child
// write (1, "you can append somethind else on stdout if you like");
if (WEXITSTATUS(status) == 0) {
exit (0); // child process exited successfully
}
}
if (pid == 0) { // Child
close (0); // stdin is not needed
close (1); // stdout is not needed
// Close the write side of this pipe
close(father2child_pipefd[1]);
// Close the read side of this pipe
close(child2father_pipefd[0]);
// Let's read on stdin, but this stdin is associated to the read pipe
dup2(father2child_pipefd[0], 0);
// Let's speak on stdout, but this stdout is associated to the write pipe
dup2(child2father_pipefd[1], 1);
// if you like you can put something back to the father before execve
//write (child2father_pipefd[1], "something", 9);
//fsync(child2father_pipefd[1]);
err = execve(EXECFILE, arguments, NULL);
// we'll never be here again after execve succeeded!! So we get here only if the execve() failed
//fprintf(stderr, "Problem executing file %s: %i: %s\n", EXECFILE, err, strerror(errno));
exit (1);
}
if (pid < 0) { // Error
exit (1);
}
fclose(input);
return 0;
}
I use 2-way io in bash like this:
mkfifo hotleg
mkfifo coldleg
program <coldleg |tee hotleg &
while read LINE; do
case $LINE in
*)call_a_function $LINE;;
esac
done <hotleg |tee coldleg &
(note that you can just ">" instead of tee, but you may want to see the output at first)
Your guess that buffered I/O is to blame is most likely correct. The way you wrote your loop, the read will block until it fills the required buffer, and you won't be able to process any input until it returns. This can easily cause a deadlock.
Popen.communicate deals with this by making a thread to work with each pipe, and by making sure it has all the data to be written to stdin, so that the actual write cannot be delayed while the file object waits for a buffer to fill or for the file object to be flushed/closed. I think you could make a solution involving threads work if you needed to, but that's not really asynchronous and probably not the easiest solution.
You can get around python's buffering by not using the file objects provided by Popen to access the pipes, and instead grabbing their fd's using the fileno() method. You can then use the fd's with os.read, os.write, and select.select. The os.read and os.write functions will do no buffering, but they will block until at least one byte can be read/written. You need to make sure the pipe is readable/writeable before calling them. The simplest way to do this is to use select.select() to wait for all the pipes you want to read/write, and make a single read or write call to every pipe that's ready when select() returns. You should be able to find examples of select loops if you search (they'll probably be using sockets instead of pipes, but the principle is the same). (Also, never do a read or write without checking first that it won't block, or you can end up with cases where you cause a deadlock with the child process. You have to be ready to read data even when you haven't yet written everything you want.)
If you need to control a Python interpreter session, you're probably better off with
embedding Python into your program (plain evals if it's in Python itself), or
using RPC facilities like rpyc like PyScripter does.
Btw in the latter case, the server can be run anywhere and PyScripter already has a working server module (client module is in Pascal, will need to translate).

Using select() and fgets() to access information from a serial port

This is a followup to this question: How to wait for input from the serial port in the middle of a program
I am writing a program to control an Iridium modem that needs to wait for a response from the serial port in the middle of the program in order to verify that the correct response was given. In order to accomplish this, a user recommended I use the select() command to wait for this input.
However, I have run into some difficulty with this approach. Initially, select() would return the value indicated a timeout on the response every time (even though the modem was sending back the correct responses, which I verified with another program running at the same time). Now, the program stops after one iteration, even with the correct response sent back from the modem.
//setting the file descriptor to the port
int fd = open(portName.c_str(), O_RDWR | O_NOCTTY | O_NDELAY);
if (fd == -1)
{
/*
* Could not open the port.
*/
perror("open_port: Unable to open /dev/ttyS0 - ");
}
else
fcntl(fd, F_SETFL, 0);
FILE *out = fopen(portName.c_str(), "w");//sets the serial port
FILE *in = fopen(portName.c_str(), "r");
fd_set fds;
FD_ZERO(&fds);
FD_SET(fd, &fds);
struct timeval timeout = { 10, 0 }; /* 10 seconds */
//int ret = select(fd+1, &fds, NULL, NULL, &timeout);
/* ret == 0 means timeout, ret == 1 means descriptor is ready for reading,
ret == -1 means error (check errno) */
char buf[100];
int i =0;
while(i<(sizeof(messageArray)/sizeof(messageArray[0])))
{
//creates a string with the AT command that writes to the module
std::string line1("AT+SBDWT=");
line1+=convertInt( messageArray[i].numChar);
line1+=" ";
line1+=convertInt(messageArray[i].packetNumber);
line1+=" ";
line1+=messageArray[i].data;
line1+=std::string("\r\n");
//creates a string with the AT command that initiates the SBD session
std::string line2("AT+SBDI");
line2+=std::string("\r\n");
fputs(line1.c_str(), out); //sends to serial port
//usleep(7000000);
int ret =select(fd+1, &fds, NULL, NULL, &timeout);
/* ret == 0 means timeout, ret == 1 means descriptor is ready for reading,
ret == -1 means error (check errno) */
if (ret ==1){
fgets (buf ,sizeof(buf), in);
//add code to check if response is correct
}
else if(ret == 0) {
perror("timeout error ");
}
else if (ret ==-1) {
perror("some other error");
}
fputs(line2.c_str(), out); //sends to serial port
//usleep(7000000); //Pauses between the addition of each packet.
int ret2 = select(fd+1, &fds, NULL, NULL, &timeout);
/* ret == 0 means timeout, ret == 1 means descriptor is ready for reading,
ret == -1 means error (check errno) */
if(ret2 == 0) {
perror("timeout error ");
}
else if (ret2 ==-1) {
perror("some other error");
}
i++;
}
You aren't using the same file handle for read/write/select, which is somewhat strange.
You are not resetting your fd_sets, which are modified by select and would have all of your fds unset in the case of a timeout, making the next call timeout by default (as you are asking for no fds).
you are also using buffered IO, which is bound to create headaches in this case. eg. fgets waits for either EOF (which won't occur), or a newline, reading all the while. It will block until it gets its newline, so may keep you hanging indefinitely if that never occurs.
It may also read more than it needs into the buffer, messing up your select read signal (you have data in the buffer, but select will time out, since there's nothing to read on the filehandle).
Bottom line is this:
use FD_SET in the loop to set/reset your fd sets, also reset your timeout, as select may modify it.
use a single handle for read/write/select, instead of multiple handles, eg. open file with fopen(..., "w+") or open(..., O_RDWR)
if still using fopen, try disabling buffering using setvbuf with the _IONBF buffering option.
otherwise, use open/read/write instead of fopen etc.
I will note that part of this was mentioned in this answer to your previous question.
You should perhaps use fflush() on your output file stream.