I want to give the user the option to specify one file (here it is ground_truth_filename). If he does not specify the option, I want to make assumptions on the default filename.
However, I am not able to check if the ground_truth_filename is NULL or zero even though I initialized it as 0 in the main program. If the argument is passed by user I assign ground_truth_filename to that argument. But the check ground_truth_filename == 0 gives me an assert error.
Any help will be appreciated.
int processFile(const char *filename,
YAML::Emitter &out_yaml,
char *ground_truth_filename)
{
std::cout << "Here" << std::endl;
if (ground_truth_filename == 0)
sprintf(ground_truth_filename,"%s.yaml",filename);
std::ifstream imgstrm(filename, std::ios::binary | std::ios::in);
if (imgstrm.bad() || !imgstrm.is_open())
{
fprintf(stderr, "Failed to open file: %s\n", filename);
return FILE_ERROR;
}
// get ground truth
std::ifstream ground_truth_stream(ground_truth_filename);
if (!ground_truth_stream.is_open())
{
fprintf(stderr, "Failed to open file: %s\n", ground_truth_filename);
return FILE_ERROR;
}
}
Here is how the function is called. Perhaps I should initialize ground_truth_filename = '\0'?
char *ground_truth_filename = 0;
for (int i = 1; i + 1 < argc; i += 2) {
if (!strcmp(argv[i], "--snapshot-markup")) {
ground_truth_filename = argv[i + 1];
markupFlag = true;
}
}
processFile(filename, out_yaml, ground_truth_filename)
The first argument of sprintf must be a pointer to a buffer large enough to hold the output. A NULL pointer or a pointer to a smaller char buffer (e.g. the string literal "") will cause a crash.
Code that would work is:
char buf[256];
if (ground_truth_filename == NULL) {
int charsneeded = snprintf(buf,sizeof(buf),"%s.yaml",filename);
if (charsneeded >= sizeof(buf)) {
return FILE_ERROR; // filename too long
}
ground_truth_filename = buf;
}
The point is that buf gives the new filename a place in memory to live. Strings need that.
Edit: added the charsneeded thing to protect you from too-long filenames as a safety measure. If you actually expect to need it, dynamically allocate buf instead.
You need to allocate ground_truth_filename before you can copy characters into it.
if (ground_truth_filename == 0)
{
int length = strlen(filename) + strlen(".yaml") + 1;
ground_truth_filename = new char[length];
sprintf(ground_truth_filename,"%s.yaml",filename);
}
Related
I have a server that sends raw binary data to print a "map" that a user must traverse through, however, I am having trouble clearing out my buffer after each line read and thus keep getting residual data printed at the end of the shorter lines. In the screenshot below you can see my output on the left, and what the output should be on the right. What is the best way to solve this? I feel like I am missing something but cant seem to find a solution.
And the code that is reading/printing this is below:
char* mapData = NULL;
string command = "command> ";
size_t dataSize = 0;
while(mapData != command.c_str()) {
unsigned char* buffer = (unsigned char*) &dataSize;
connection = read(mySocket, buffer, 8);
if(connection == -1 || connection < 0) {
cerr << "**Error: could not read text size" << endl;
return 1;
}
mapData = (char*)malloc(dataSize);
buffer = (unsigned char*) mapData;
while((connection = read(mySocket, buffer, dataSize)) != -1) {
if(connection == -1 || connection < 0) {
cerr << "**Error: could not read text size" << endl;
return 1;
}
if(dataSize != 1) {
cout << buffer;
}
free(buffer);
buffer = NULL;
}
}
You are ignoring the return value of read() to know how many bytes are in the buffer.
read() returns the actual number of bytes that were read, which may be fewer than you requested. So you need to call read() in a loop until you have read all of the bytes you are expecting, eg:
int readAll(int sock, void *buffer, size_t buflen)
{
unsigned char* pbuf = reinterpret_cast<unsigned char*>(buffer);
while (buflen > 0) {
int numRead = read(sock, pbuf, buflen);
if (numRead < 0) return -1;
if (numRead == 0) return 0;
pbuf += numRead;
buflen -= numRead;
}
return 1;
}
Also, after reading the buffer, you are treating it as if it were null-terminated, but it is not, which is why you get extra garbage in your output.
More importantly, mapData != command.c_str() will ALWAYS be true, so your while loop iterates indefinitely (until a socket error occurs), which is not what you want. You want the loop to end when you receive a "command> " string instead.
mapData is initially NULL, and c_str() NEVER returns NULL, so the loop ALWAYS iterates at least once.
Then you allocate and free mapData but don't reset it to NULL, so it is left pointing at invalid memory. Which doesn't really matter, since your while loop is just comparing pointers. c_str() will NEVER return a pointer to memory that mapData ever points to.
To end your loop correctly, you need to compare the contents of mapData after reading, not compare its memory address.
Try this instead:
char *mapData = NULL;
uint64_t dataSize = 0;
const string command = "command> ";
bool keepLooping = true;
do {
if (readAll(mySocket, &dataSize, sizeof(dataSize)) <= 0) {
cerr << "**Error: could not read text size" << endl;
return 1;
}
if (dataSize == 0)
continue;
mapData = new char[dataSize];
if (readAll(mySocket, mapData, dataSize) <= 0) {
cerr << "**Error: could not read text" << endl;
delete[] mapData;
return 1;
}
cout.write(mapData, dataSize);
keepLooping = (dataSize != command.size()) || (strncmp(mapData, command.c_str(), command.size()) != 0);
delete[] mapData;
}
while (keepLooping);
Alternatively:
string mapData;
uint64_t dataSize = 0;
const string command = "command> ";
do {
if (readAll(mySocket, &dataSize, sizeof(dataSize)) <= 0) {
cerr << "**Error: could not read text size" << endl;
return 1;
}
mapData.resize(dataSize);
if (dataSize > 0) {
if (readAll(mySocket, &mapData[0], dataSize) <= 0) {
cerr << "**Error: could not read text" << endl;
return 1;
}
cout << mapData;
}
}
while (mapData != command);
like #eozd pointed out, calling malloc and free in your loop is a bad idea since you use return statements. Your code may leak memory. You should ensure you call free before returns. Even better, you could declare your buffer outside of while loop, and use break instead of return, and call free if there was en error
Looking at your solution, it seems that the communication protocol involves sending data size first, followed by the actual data. How is data size written to the wire? You may need to convert it from network byte order.
To debug, you could print out the value of dataSize before every read to make sure that it is what you expect
You should clear the buffer too. Add:
memset(mapData, 0, dataSize);
after the malloc.
I am trying to read a binary file's data sadly opening in C++ is a lot different than in python for these things as they have byte mode. It seems C++ does not have that.
for (auto p = directory_iterator(path); p != directory_iterator(); p++) {
if (!is_directory(p->path()))
byte tmpdata;
std::ifstream tmpreader;
tmpreader.open(desfile, std::ios_base::binary);
int currentByte = tmpreader.get();
while (currentByte >= 0)
{
//std::cout << "Does this get Called?" << std::endl;
int currentByte = tmpreader.get();
tmpdata = currentByte;
}
tmpreader.close()
}
else
{
continue;
}
I want basically a clone of Python's methods of opening a file in 'rb' mode. To have to actual byte data of all of the contents (which is not readable as it has nonprintable chars even for C++. Most of which probably cant be converted to signed chars just because it contains zlib compressed data that I need to feed in my DLL to decompress it all.
I do know that in Python I can do something like this:
file_object = open('[file here]', 'rb')
turns out that replacing the C++ Code above with this helps. However fopen is depreciated but I dont care.
What the Code above did not do was work because I was not reading from the buffer data. I did realize later that fopen, fseek, fread, and fclose was the functions I needed for read bytes mode ('rb').
for (auto p = directory_iterator(path); p != directory_iterator(); p++) {
if (!is_directory(p->path()))
{
std::string desfile = p->path().filename().string();
byte tmpdata;
unsigned char* data2;
FILE *fp = fopen("data.d", "rb");
fseek(fp, 0, SEEK_END); // GO TO END OF FILE
size_t size = ftell(fp);
fseek(fp, 0, SEEK_SET); // GO BACK TO START
data2 = new unsigned char[size];
tmpdata = fread(data2, 1, size, fp);
fclose(fp);
}
else
{
continue;
}
int currentByte = tmpreader.get();
while (currentByte >= 0)
{
//std::cout << "Does this get Called?" << std::endl;
int currentByte = tmpreader.get();
//^ here!
You are declaring a second variable hiding the outer one. However, this inner one is only valid within the while loop's body, so the while condition checks the outer variable which is not modified any more. Rather do it this way:
int currentByte;
while ((currentByte = tmpreader.get()) >= 0)
{
The following code works, but is about twice as inefficient compared to when I use a (linux) pipe that gives unzipped data to the (modified) program. I need a steady stream within the program which I can keep splitting by \n. Is there a way to do this using a (string?) stream or any other trick?
int main(int argc, char *argv[]) {
static const int unzipBufferSize = 8192;
long long int counter = 0;
int i = 0, p = 0, n = 0;
int offset = 0;
char *end = NULL;
char *begin = NULL;
unsigned char unzipBuffer[unzipBufferSize];
unsigned int unzippedBytes;
char * inFileName = argv[1];
char buffer[200];
buffer[0] = '\0';
bool breaker = false;
char pch[4][200];
Read *aRead = new Read;
gzFile inFileZ;
inFileZ = gzopen(inFileName, "rb");
while (true) {
unzippedBytes = gzread(inFileZ, unzipBuffer, unzipBufferSize);
if (unzippedBytes > 0) {
unzipBuffer[unzippedBytes] = '\0'; //put a 0-char after the total buffer
begin = (char*) &unzipBuffer[0]; // point to the address of the first char
do {
end = strchr(begin,(int)'\n'); //find the end of line
if (end != NULL) *(end) = '\0'; // put 0-char to use it as a c-string
pch[p][0] = '\0'; \\ put a 0-char to be able to strcat
if (strlen(buffer) > 0) { // if buffer from previous iteration contains something
strcat(pch[p], buffer); // cat it to the p-th pch
buffer[0] = '\0'; \\ set buffer to null-string or ""
}
strcat(pch[p], begin); // put begin (or rest of line in case there was a buffer into p-th pch
if (end != NULL) { // see if it already points to something
begin = end+1; // if so, advance begin to old end+1
p++;
}
if(p>3) { // a 'read' contains 4 lines, so if p>3
strcat(aRead->bases,pch[1]); // we use line 2 and 4 as
strcat(aRead->scores,pch[3]); // bases and scores
//do things with the reads
aRead->bases[0] = '\0'; //put them back to 0-char
aRead->scores[0] = '\0';
p = 0; // start counting next 4 lines
}
}
while (end != NULL );
strcat(buffer,pch[p]); //move the left-over of unzipBuffer to buffer
}
else {
break; // when no unzippedBytes, exit the loop
}
}
Your main problem is probably the standard C string library.
With using strxxx() funcions, you are iterating through the complete buffer multiple times each call, first for strchr(), then for strlen(), then for each of the strcat() calls.
Using the standard library is a nice thing, but here, it's just plain inefficient.
Try if you could come up with something simpler that touches each character only once like (code just to show the principle, do not expect it working):
do
{
do
{
*tp++ = *sp++;
} while (sp < buffer_end && *sp != '\n');
/* new line, do whatever it requires */
...
/* reset tp to beginning of buffer */
} while (sp < buffer_end);
I am trying to get this to work, but all it does is giving a Segmentation Fault at runtime:
do {
unzippedBytes = gzread(inFileZ, unzipBuffer, unzipBufferSize);
if (unzippedBytes > 0) {
while (*unzipBuffer < unzippedBytes) {
*pch = *unzipBuffer++;
cout << pch;
i++;
}
i=0;
}
else break;
} while (true);
What am I doing wrong here?
Using the readlink function used as a solution to How do I find the location of the executable in C?, how would I get the path into a char array? Also, what do the variables buf and bufsize represent and how do I initialize them?
EDIT: I am trying to get the path of the currently running program, just like the question linked above. The answer to that question said to use readlink("proc/self/exe"). I do not know how to implement that into my program. I tried:
char buf[1024];
string var = readlink("/proc/self/exe", buf, bufsize);
This is obviously incorrect.
This Use the readlink() function properly for the correct uses of the readlink function.
If you have your path in a std::string, you could do something like this:
#include <unistd.h>
#include <limits.h>
std::string do_readlink(std::string const& path) {
char buff[PATH_MAX];
ssize_t len = ::readlink(path.c_str(), buff, sizeof(buff)-1);
if (len != -1) {
buff[len] = '\0';
return std::string(buff);
}
/* handle error condition */
}
If you're only after a fixed path:
std::string get_selfpath() {
char buff[PATH_MAX];
ssize_t len = ::readlink("/proc/self/exe", buff, sizeof(buff)-1);
if (len != -1) {
buff[len] = '\0';
return std::string(buff);
}
/* handle error condition */
}
To use it:
int main()
{
std::string selfpath = get_selfpath();
std::cout << selfpath << std::endl;
return 0;
}
Accepted answer is almost correct, except you can't rely on PATH_MAX because it is
not guaranteed to be defined per POSIX if the system does not have such
limit.
(From readlink(2) manpage)
Also, when it's defined it doesn't always represent the "true" limit. (See http://insanecoding.blogspot.fr/2007/11/pathmax-simply-isnt.html )
The readlink's manpage also give a way to do that on symlink :
Using a statically sized buffer might not provide enough room for the
symbolic link contents. The required size for the buffer can be
obtained from the stat.st_size value returned by a call to lstat(2) on
the link. However, the number of bytes written by readlink() and read‐
linkat() should be checked to make sure that the size of the symbolic
link did not increase between the calls.
However in the case of /proc/self/exe/ as for most of /proc files, stat.st_size would be 0. The only remaining solution I see is to resize buffer while it doesn't fit.
I suggest the use of vector<char> as follow for this purpose:
std::string get_selfpath()
{
std::vector<char> buf(400);
ssize_t len;
do
{
buf.resize(buf.size() + 100);
len = ::readlink("/proc/self/exe", &(buf[0]), buf.size());
} while (buf.size() == len);
if (len > 0)
{
buf[len] = '\0';
return (std::string(&(buf[0])));
}
/* handle error */
return "";
}
Let's look at what the manpage says:
readlink() places the contents of the symbolic link path in the buffer
buf, which has size bufsiz. readlink does not append a NUL character to
buf.
OK. Should be simple enough. Given your buffer of 1024 chars:
char buf[1024];
/* The manpage says it won't null terminate. Let's zero the buffer. */
memset(buf, 0, sizeof(buf));
/* Note we use sizeof(buf)-1 since we may need an extra char for NUL. */
if (readlink("/proc/self/exe", buf, sizeof(buf)-1) < 0)
{
/* There was an error... Perhaps the path does not exist
* or the buffer is not big enough. errno has the details. */
perror("readlink");
return -1;
}
char *
readlink_malloc (const char *filename)
{
int size = 100;
char *buffer = NULL;
while (1)
{
buffer = (char *) xrealloc (buffer, size);
int nchars = readlink (filename, buffer, size);
if (nchars < 0)
{
free (buffer);
return NULL;
}
if (nchars < size)
return buffer;
size *= 2;
}
}
Taken from: http://www.delorie.com/gnu/docs/glibc/libc_279.html
#include <stdlib.h>
#include <unistd.h>
static char *exename(void)
{
char *buf;
char *newbuf;
size_t cap;
ssize_t len;
buf = NULL;
for (cap = 64; cap <= 16384; cap *= 2) {
newbuf = realloc(buf, cap);
if (newbuf == NULL) {
break;
}
buf = newbuf;
len = readlink("/proc/self/exe", buf, cap);
if (len < 0) {
break;
}
if ((size_t)len < cap) {
buf[len] = 0;
return buf;
}
}
free(buf);
return NULL;
}
#include <stdio.h>
int main(void)
{
char *e = exename();
printf("%s\n", e ? e : "unknown");
free(e);
return 0;
}
This uses the traditional "when you don't know the right buffer size, reallocate increasing powers of two" trick. We assume that allocating less than 64 bytes for a pathname is not worth the effort. We also assume that an executable pathname as long as 16384 (2**14) bytes has to indicate some kind of anomaly in how the program was installed, and it's not useful to know the pathname as we'll soon encounter bigger problems to worry about.
There is no need to bother with constants like PATH_MAX. Reserving so much memory is overkill for almost all pathnames, and as noted in another answer, it's not guaranteed to be the actual upper limit anyway. For this application, we can pick a common-sense upper limit such as 16384. Even for applications with no common-sense upper limit, reallocating increasing powers of two is a good approach. You only need log n calls for a n-byte result, and the amount of memory capacity you waste is proportional to the length of the result. It also avoids race conditions where the length of the string changes between the realloc() and the readlink().
I have written a read function which reads values from serial port(LINUX) . It returns values as pointer to char . I am calling this function in another function and storing it again in a variable as pointer to char . I occasionally got stack over flow problem and not sure if this function is creating problem.
The sample is provided below. Please give some suggestions or criticism .
char *ReadToSerialPort( )
{
const int buffer_size = 1024;
char *buffer = (char *)malloc(buffer_size);
char *bufptr = buffer;
size_t iIn;
int iMax = buffer+buffer_size-bufptr;
if ( fd < 1 )
{
printf( "port is not open\n" );
// return -1;
}
iIn = read( fd, bufptr, iMax-1 );
if ( iIn < 0 )
{
if ( errno == EAGAIN )
{
printf( "The errror in READ" );
return 0; // assume that command generated no response
}
else
printf( "read error %d %s\n", errno, strerror(errno) );
}
else
{
// *bufptr = '\0';
bufptr[(int)iIn<iMax?iIn:iMax] = '\0';
if(bufptr != buffer)
return bufptr;
}
free(buffer);
return 0;
} // end ReadAdrPort
int ParseFunction(void)
{
// some other code
char *sResult;
if( ( sResult = ReadToSerialPort()) >= 0)
{
printf("Response is %s\n", sResult);
// code to store char in string and put into db .
}
}
Thanks and regards,
SamPrat
You do not deallocate the buffer. You need to make free after you finished working with it.
char * getData()
{
char *buf = (char *)malloc(255);
// Fill buffer
return buf;
}
void anotherFunc()
{
char *data = getData();
// Process data
free(data);
}
In your case I think you should free the buffer after printf:
if( ( sResult = ReadToSerialPort()) >= 0)
{
printf("Response is %s\n", sResult);
// code to store char in string and put into db .
free(sResult);
}
UPDATE Static buffer
Another option to use static buffers. It could increase performance a little bit, but getData method will be not a thread-safe.
char buff[1024];
char *getData()
{
// Write data to buff
return buff;
}
int main()
{
char *data = getData();
printf("%s", data);
}
UPDATE Some notes about your code
int iMax = buffer+buffer_size-bufptr; - iMax will always be 1024;
I do not see any idea of using bufptr since its value is the same as buffer and you do not change it anywhere in your function;
iIn = read( fd, bufptr, buffer_size-1 );
You can replace bufptr[(int)iIn<iMax?iIn:iMax] = '\0'; with bufptr[iIn] = '\0';
if(bufptr != buffer) is always false and this is why your pointer is incorrect and you always return 0;
Do not forget to free the buffer if errno == EAGAIN is true. Currently you just return 0 without free(buffer).
Good luck ;)
Elalfer is partially correct. You do free() your buffer, but not in every case.
For example, when you reach if ( errno == EAGAIN ) and it evaluates to true, you return without doing free on your buffer.
The best would be to pass the buffer as a parameter and make it obvious that the user must free the buffer, outside the function. (this is what basically Elalfer sais in his edited answer).
Just realized this is a C question, I blame SO filtering for this :D sorry! Disregard the following, I'm leaving it so that comments still make sense.
The correct solution should use std::vector<char>, that way the destructor handles memory deallocation for you at the end of scope.
what is the purpose of the second pointer?
char *buffer = (char *)malloc(buffer_size);
char *bufptr = buffer;
what is the purpose of this?
int iMax = buffer+buffer_size-bufptr; // eh?
What is the purpose of this?
bufptr[(int)iIn<iMax?iIn:iMax] = '\0'; // so you pass in 1023 (iMax - 1), it reads 1023, you've effectively corrupted the last byte.
I would start over, consider using std::vector<char>, something like:
std::vector<char> buffer(1500); // default constructs 1500 chars
int iRead = read(fd, &buffer[0], 1500);
// resize the buffer if valid
if (iRead > 0)
buffer.resize(iRead); // this logically trims the buffer so that the iterators begin/end are correct.
return buffer;
Then in your calling function, use the vector<char> and if you need a string, construct one from this: std::string foo(vect.begin(), vect.end()); etc.
When you are setting the null terminator "bufptr[(int)iIn
bufptr[iMax]=>bufptr[1024]=>one byte beyond your allocation since arrays start at 0.
Also int this case "int iMax = buffer+buffer_size-bufptr;" can be re-written as iMax = buffer_size. It makes the code less readable.