SFML TCP packet receive - c++

I send a packet as client to server and I want to the server sends that packet forward to all client, here is the code:
#include <iostream>
#include <SFML/Network.hpp>
using namespace std;
int main()
{
int fromID; // receive data from 'fromID'
int Message; // fromID's message
sf::SocketTCP Listener;
if (!Listener.Listen(4567))
return 1;
// Create a selector for handling several sockets (the listener + the socket associated to each client)
sf::SelectorTCP Selector;
Selector.Add(Listener);
while (true)
{
unsigned int NbSockets = Selector.Wait();
for (unsigned int i = 0; i < NbSockets; ++i)
{
// Get the current socket
sf::SocketTCP Socket = Selector.GetSocketReady(i);
if (Socket == Listener)
{
// If the listening socket is ready, it means that we can accept a new connection
sf::IPAddress Address;
sf::SocketTCP Client;
Listener.Accept(Client, &Address);
cout << "Client connected ! (" << Address << ")" << endl;
// Add it to the selector
Selector.Add(Client);
}
else
{
// Else, it is a client socket so we can read the data he sent
sf::Packet Packet;
if (Socket.Receive(Packet) == sf::Socket::Done)
{
// Extract the message and display it
Packet >> Message;
Packet >> fromID;
cout << Message << " From: " << fromID << endl;
//send the message to all clients
for(unsigned int j = 0; j < NbSockets; ++j)
{
sf::SocketTCP Socket2 = Selector.GetSocketReady(j);
sf::Packet SendPacket;
SendPacket << Message;
if(Socket2.Send(SendPacket) != sf::Socket::Done)
cout << "Error sending message to all clients" << endl;
}
}
else
{
// Error : we'd better remove the socket from the selector
Selector.Remove(Socket);
}
}
}
}
return 0;
}
Client code:
in Player class I have this function :
void Player::ReceiveData()
{
int mess;
sf::Packet Packet;
if(Client.Receive(Packet) == sf::Socket::Done)
{
Client.Receive(Packet);
Packet >> mess;
cout << mess << endl;
}
}
main.cpp:
Player player;
player.Initialize();
player.LoadContent();
player.Connect();
..
..
//GAME LOOP
while(running==true)
{
sf::Event Event;
while(..) // EVENT LOOP
{
...
}
player.Update(Window);
player.ReceiveData();
player.Draw(Window);
}
When I run this client code, the program not responding, freezes.
The problem is with that ReceiveDate() function.

All sockets, even the one created by SFML, are by default blocking. This means that when you try to receive when there is nothing to receive, the call will block, making your application seem "freezed".
You can toggle the blocking status of a SFML socket with the sf::SocketTCP::SetBlocking function.
The problem with sending to all clients failing is because you use GetSocketReady to get the clients to send to. That function only returns a socket for clients that are ready (i.e. the previous call to Wait marked the socket as having input).
You need to refactor the server to keep track of the connected clients in another way. The common way is to reset and recreate the selector every time in the outer loop, and have a separate collection of the connected clients (e.g. a std::vector).

Related

Why is my TcpSocket receiving exactly the same data?

I am trying to send one value to multiple TcpSockets but every client gets an own value.
I have a variable called clientCounter, the clientCounter has the number of clients which are connected. The server sends to all clients the number of clients which are connected. When one is connected 1 is sent to all clients.
Now the results: For example when 4 clients are connected, Client1 receives the number 1, Client2 the number 2, etc...
But the results should be: Every client should get the number 4 when for example four clients are connected.
Main thread:
int main(){
Server server;
while (true) {
server.Send(server.GetPlayerCount());
}
return 0;
}
The number of clients are stored in there:
std::atomic<unsigned int> clientCounter;
int Server::GetPlayerCount()
{
return clientCounter;
}
This shows the function which is sending the data to all clients:
void Server::Send(int m)
{
for (int i = 0; i < clientCounter; i++) {
sf::Packet packet;
packet << m;
if (clients[i].send(packet) != sf::Socket::Status::Done) {
std::cout << "Cant send Packet" << std::endl;
}
packet.clear();
}
}
This is what the client is doing:
sf::Packet packet;
int count = 0;
while (true) {
socket.receive(packet);
packet >> count;
std::cout << count << std::endl;
}
When client is connected, clientCounter add one:
if (listener.accept(clients[clientCounter]) != sf::Socket::Status::Done) {
std::cout << "Error cant get Socket..." << std::endl;
}
else {
std::cout << "New client connected: " << clients[clientCounter].getRemoteAddress() << std::endl;
clientCounter++;
}
And I want that all clients get all the same number.

C++ thread-per-request chat on linux with sockets and multiple clients

we are learning how to work with sockets and threads and are trying to make a simple chat program. Multiple clients can successfully connect and all of them can receive messages, but only the first connecting client can send messages.
So client nr 1 completely works, and all others can only receive but not send to the server.
All threads are running like we think they should, but only the first receiving thread is able to read from the receive queue.
with netstat we can see that the message queue of the second client is full
screenshot from netstat
#include <iostream>
#include "socket.hpp"
#include <string>
#include <queue>
#include <unistd.h>
using namespace std;
int clients[100];//All Clientnumbers
int i=0;//Number of connected Clients
Socket* sockArray[100];
Socket* sockArray2[100];
queue<string> nachrichten;//message queue
void *empfangen(void* x);
void *tpr(void* servsockp);
int main()
{
cout << "Hello, World! Server startet" << endl;
ServerSocket servSock(6200, 1000);//start Serversocket
ServerSocket *servsockp = &servSock;
pthread_t tpr_starter;//new thread that creates tpr
pthread_create(&tpr_starter, NULL, tpr,(void*)servsockp);
while(true) //if there are messages in the queue send them to all clients
{
if(nachrichten.size()!=0)
{
for (int y = 0; y < i; y++)
{
try
{
cout<< "Gesendet: " << nachrichten.front() <<clients[0]<<clients[1]<<i<< endl;
(*sockArray[y]).send(nachrichten.front());
} catch (SocketException e) {
cout << e.getError() << endl;
}
}
nachrichten.pop();
}
}
pthread_join(tpr_starter, NULL);
}
void*tpr(void* servsockp)//open socket for every request, start new receiving thread
{
while(true)
{
clients[i]= (*(ServerSocket*)(servsockp)).accept();
int*x =new int(i);
Socket *sock = new Socket(clients[i]);
sockArray[i]=sock;
sockArray2[i]=sock;
i++;
sleep(2);
pthread_t rec;
pthread_create (&rec, NULL, empfangen, (void*)x);
}
}
void *empfangen(void* x)//listening on new socket, put received messages in queue
{
int number=*(int*)x;
cout <<"Receiving/thread started on Socket Nr: "<< number<<endl;
while(true){
try {
string nachricht = (*sockArray2)[number].recv();
if(nachricht=="")
{
break;
}
cout <<"Received: "<< nachricht << endl;
nachrichten.push(nachricht);
}catch(SocketException e){
cout << e.getError()<<endl;
}
}
}
Can anyone tell if we are on the right way or if we are doing something completely wrong?
Thank you!
Today my professor found the solution:
(*sockArray2)[number].recv();
this line is absolutely wrong, it has to be
sockArray2[number]->recv();

Timeout for dropped packets (UDP)

I'm trying to create a timeout using select() for UDP socket transfer. I want to send an int from client to server, wait 300ms, and if I don't get an ACK, resend the packet. I'm not sure how to set this up properly with the timeout. From what I've gathered online and on the notes I have from class, select should be used on the receiving end.
the client at the server send back and forth the numbers 1-100. I have a separate router simulated code that randomly drops packets
Here is the code i have for the client side
int sent = 1;
int received = 1;
for (int i = 0; i < 100; i++)
{
string sent1 = to_string(sent);
char const *pchar = sent1.c_str();
if(!sendto(s, pchar, sizeof(pchar), 0, (struct sockaddr*) &sa_in, sizeof(sa_in)))
cout << "send NOT successful\n";
else
{
cout << "Client sent " << sent << endl;
sent++;
}
// receive
fd_set readfds; //fd_set is a type
FD_ZERO(&readfds); //initialize
FD_SET(s, &readfds); //put the socket in the set
if(!(outfds = select (1 , &readfds, NULL, NULL, & timeouts)))
break;
if (outfds == 1) //receive frame
{
if (!recvfrom(s, buffer2, sizeof(buffer2), 0, (struct sockaddr*) &client, &client_length))
cout << "receive NOT successful\n";
else
{
received = atoi(buffer2);
cout << "Client received " << received << endl;
received++;
}
}
}
The code is identical for the receiving side except it is in reverse: receive first, then send
My code doesn't utilize the timeout at all. This is basically what I want to do:
send packet(N)
if (timeout)
resend packet(N)
else
send packet(N+1)
If the receiver gets a timeout it needs to tell the sender, or else not tell the sender. In other words you have to implement either a NACK-based protocol or an ACK-based protocol.

"Connection was broken" error with UDT (UDP-based data transfer protocol)

I am programming a real-time game in which I need reliable UDP, so I've chosen to work with UDT (UDP-based data transfer protocol - http://sourceforge.net/projects/udt/).
The clients (on browsers) send real-time messages to my server via CGI scripts. The problem is that there are some messages that are being lost, and I don't know why because the server says that it sent all the messages successfully to the corresponding clients, but sometimes the client doesn't receive the message.
In my debug file, I've found that when a message is not received by the client, its script says:
error in recv();
recv: Connection was broken.
I would like to get some help on how the server shall know if the client got its message; should I send a NACK or something from the client side? I thought that UDT should do that for me. Can someone clarify this situation?
The relevant sections of the communication parts of my code are bellow, with some comments:
server's relevant code:
//...
void send_msg_in(player cur, char* xml){
/*this function stores the current message, xml, in a queue if xml!=NULL, and sends the 1st message of the queue to the client*/
/*this function is called when the player connects with the entering xml=NULL to get the 1st message of the queue,
or with xml!=NULL when a new message arrives: in this case the message is stored in the queue, and then the message will be sent in the appropriate time, i.e. the messages are ordered.*/
char* msg_ptr=NULL;
if (xml!=NULL){ //add the message to a queue (FIFO), the cur.xml_msgs
msg_ptr=(char*) calloc(strlen(xml)+1, sizeof(char));
strcpy(msg_ptr, xml);
(*(cur.xml_msgs)).push(msg_ptr);
} //get the 1st message of the queue
if (!(*(cur.xml_msgs)).empty()){
xml=(*(cur.xml_msgs)).front();
}
if (cur.get_udt_socket_in()!=NULL){
UDTSOCKET cur_udt = *(cur.get_udt_socket_in());
// cout << "send_msg_in(), cur_udt: " << cur_udt << endl;
//send the "xml", i.e. the 1st message of the queue...
if (UDT::ERROR == UDT::send(cur_udt, xml, strlen(xml)+1, 0)){
UDT::close(cur_udt);
cur.set_udt_socket_in(NULL);
}
else{ //if no error this else is reached
cout << "TO client:\n" << xml << "\n"; /*if there is no error,
i.e. on success, the server prints the message that was sent.*/
// / \
// /_!_\
/*the problem is that
the messages that are lost don't appear on the client side,
but they appear here on the server! */
if (((string) xml).find("<ack.>")==string::npos){
UDT::close(cur_udt);
cur.set_udt_socket_in(NULL); //close the socket
}
(*(cur.xml_msgs)).pop();
}
}
}
//...
client's relevant code:
//...
#define MSGBUFSIZE 1024
char msgbuf[MSGBUFSIZE];
UDTSOCKET client;
ofstream myfile;
//...
main(int argc, char *argv[]){
//...
// connect to the server, implict bind
if (UDT::ERROR == UDT::connect(client, (sockaddr*)&serv_addr, sizeof(serv_addr))){
cout << "error in connect();" << endl;
return 0;
}
myfile.open("./log.txt", ios::app);
send(xml);
char* cur_xml;
do{
cur_xml = receive(); //wait for an ACK or a new message...
myfile << cur_xml << endl << endl; // / \
/* /_!_\ the lost messages don't appear on the website
neither on this log file.*/
} while (((string) cur_xml).find("<ack.>")!=string::npos);
cout << cur_xml << endl;
myfile.close();
UDT::close(client);
return 0;
}
char* receive(){
if (UDT::ERROR == UDT::recv(client, msgbuf, MSGBUFSIZE, 0)){
// / \
/* /_!_\ when a message is not well received
this code is usually reached, and an error is printed.*/
cout << "error in recv();" << endl;
myfile << "error in recv();" << endl;
myfile << "recv: " << UDT::getlasterror().getErrorMessage() << endl << endl;
return 0;
}
return msgbuf;
}
void* send(string xml){
if (UDT::ERROR == UDT::send(client, xml.c_str(), strlen(xml.c_str())+1, 0)){
cout << "error in send();" << endl;
myfile << "error in send();" << endl;
myfile << "send: " << UDT::getlasterror().getErrorMessage() << endl << endl;
return 0;
}
}
Thank you for any help!
PS. I tried to increase the linger time on close(), after finding the link http://udt.sourceforge.net/udt4/doc/opt.htm, adding the following to the server's code:
struct linger l;
l.l_onoff = 1;
l.l_linger = ...; //a huge value in seconds...
UDT::setsockopt(*udt_socket_ptr, 0, UDT_LINGER, &l, sizeof(l));
but the problem is still the same...
PPS. the other parts of the communication in the server side are: (note: it seams for me that they are not so relevant)
main(int argc, char *argv[]){
char msgbuf[MSGBUFSIZE];
UDTSOCKET serv = UDT::socket(AF_INET, SOCK_STREAM, 0);
sockaddr_in my_addr;
my_addr.sin_family = AF_INET;
my_addr.sin_port = htons(PORT);
my_addr.sin_addr.s_addr = INADDR_ANY;
memset(&(my_addr.sin_zero), '\0', sizeof(my_addr.sin_zero));
if (UDT::ERROR == UDT::bind(serv, (sockaddr*)&my_addr, sizeof(my_addr))){
cout << "error in bind();";
return 0;
}
UDT::listen(serv, 1);
int namelen;
sockaddr_in their_addr;
while (true){
UDTSOCKET recver = UDT::accept(serv, (sockaddr*)&their_addr, &namelen);
if (UDT::ERROR == UDT::recv(recver, msgbuf, MSGBUFSIZE, 0)){
//this recv() function is called only once for each aqccept(), because the clients call CGI scripts via a browser, they need to call a new CGI script with a new UDT socket for each request (this in in agreement to the clients' code presented before).
cout << "error in recv();" << endl;
}
char* player_xml = (char*) &msgbuf;
cur_result = process_request((char*) &msgbuf, &recver, verbose); //ACK
}
}
struct result process_request(char* xml, UDTSOCKET* udt_socket_ptr, bool verbose){
//parse the XML...
//...
player* cur_ptr = get_player(me); //searches in a vector of player, according to the string "me" of the XML parsing.
UDTSOCKET* udt_ptr = (UDTSOCKET*) calloc(1, sizeof(UDTSOCKET));
memcpy(udt_ptr, udt_socket_ptr, sizeof(UDTSOCKET));
if (cur_ptr==NULL){
//register the player:
player* this_player = (player*) calloc(1, sizeof(player));
//...
}
}
else if (strcmp(request_type.c_str(), "info_waitformsg")==0){
if (udt_ptr!=NULL){
cur_ptr->set_udt_socket_in(udt_ptr);
if (!(*(cur_ptr->xml_msgs)).empty()){
send_msg_in(*cur_ptr, NULL, true);
}
}
}
else{ //messages that get instant response from the server.
if (udt_ptr!=NULL){
cur_ptr->set_udt_socket_out(udt_ptr);
}
if (strcmp(request_type.c_str(), "info_chat")==0){
info_chat cur_info;
to_object(&cur_info, me, request_type, msg_ptr); //convert the XML string values to a struct
process_chat_msg(cur_info, xml);
}
/* else if (...){ //other types of messages...
}*/
}
}
void process_chat_msg(info_chat cur_info, char* xml_in){
player* player_ptr=get_player(cur_info.me);
if (player_ptr){
int i=search_in_matches(matches, cur_info.match_ID);
if (i>=0){
match* cur_match=matches[i];
vector<player*> players_in = cur_match->followers;
int n=players_in.size();
for (int i=0; i<n; i++){
if (players_in[i]!=msg_owner){
send_msg_in(*(players_in[i]), xml, flag);
}
}
}
}
}
Looking at the UDT source code at http://sourceforge.net/p/udt/git/ci/master/tree/udt4/src/core.cpp, the error message "Connection was broken" is produced when either of the Boolean flags m_bBroken or m_bClosing is true and there is no data in the receive buffer.
Those flags are set in just a few cases:
In sections of code marked "should not happen; attack or bug" (unlikely)
In deliberate close or shutdown actions (don't see this happening in your code)
In expiration of a timer that checks for peer activity (the likely culprit)
In that source file at line 2593 it says:
// Connection is broken.
// UDT does not signal any information about this instead of to stop quietly.
// Application will detect this when it calls any UDT methods next time.
//
m_bClosing = true;
m_bBroken = true;
// ...[code omitted]...
// app can call any UDT API to learn the connection_broken error
Looking at the send() call, I don't see anywhere that it waits for an ACK or NAK from the peer before returning, so I don't think a successful return from send() on the server side is indicative of successful receipt of the message by the client.
You didn't show the code on the server side that binds to the socket and listens for responses from the client; if the problem is there then the server might be happily sending messages and never listening to the client that is trying to respond.
UDP is not a guaranteed-transmission protocol. A host will send a message, but if the recipient does not receive it, or if it is not received properly, no error will be raised. Therefore, it is commonly used in applications that require speed over perfect delivery, such as games. TCP does guarantee delivery, because it requires that a connection be set up first, and each message is acknowledged by the client.
I would encourage you to think about whether you actually need guaranteed receipt of that data, and, if you do, consider using TCP.

Make socket server accept multiple clients

I'd like to change the socket class I am using to accept an infinite amount of clients. At the moment it allows one client, and once that client disconnect the server exits.
#include "stdafx.h"
#include "mySocket.h"
#include "myException.h"
#include "myHostInfo.h"
void main()
{
#ifdef WINDOWS_XP
// Initialize the winsock library
WSADATA wsaData;
try
{
if (WSAStartup(0x101, &wsaData))
{
myException* initializationException = new myException(0,"Error: calling WSAStartup()");
throw initializationException;
}
}
catch(myException* excp)
{
excp->response();
delete excp;
exit(1);
}
#endif
// get local server information
myHostInfo uHostAddress;
string localHostName = uHostAddress.getHostName();
string localHostAddr = uHostAddress.getHostIPAddress();
cout << "------------------------------------------------------" << endl;
cout << " My local host information:" << endl;
cout << " Name: " << localHostName << endl;
cout << " Address: " << localHostAddr << endl;
cout << "------------------------------------------------------" << endl;
// open socket on the local host
myTcpSocket myServer(PORTNUM);
cout << myServer;
myServer.bindSocket();
cout << endl << "server finishes binding process... " << endl;
myServer.listenToClient();
cout << "server is listening to the port ... " << endl;
// wait to accept a client connection.
// processing is suspended until the client connects
cout << "server is waiting for client connecction ... " << endl;
myTcpSocket* client; // connection dedicated for client communication
string clientHost; // client name etc.
client = myServer.acceptClient(clientHost);
cout << endl << "==> A client from [" << clientHost << "] is connected!" << endl << endl;
while(1)
{
//Send message to the client
client->sendMessage(std::string("Test"));
// receive from the client
string clientMessageIn = "";
int numBytes = client->recieveMessage(clientMessageIn); //Get message from client, non-blocking using select()
if ( numBytes == -99 ) break;
if(clientMessageIn != "")
{
std::cout << "received: " << clientMessageIn << std::endl; //What did we receive?
/* Do somethign with message received here */
}
}
#ifdef WINDOWS_XP
// Close the winsock library
try
{
if (WSACleanup())
{
myException* cleanupException = new myException(0,"Error: calling WSACleanup()");
throw cleanupException;
}
}
catch(myException* excp)
{
excp->response();
delete excp;
exit(1);
}
#endif
}
How do I change the main() function so that it is constantly waiting for new clients to connect, and once they do, create a new thread for him (the client), or a new handler socket (whatever that may be).
I did find this thread to be informative, but I lack the required knowledge of sockets to actually implement it in the above code.
The answer states When doing socket communication, you basically have a single listener socket for all incoming connections, and multiple handler sockets for each connected client.
So I am guessing in my code;
myTcpSocket myServer(PORTNUM);
myServer.bindSocket();
myServer.listenToClient();
Would be the listener socket
But where/how would I fork the client who is connecting off to a handler socket ?
I am sorry for not being able to show more effort on my part, I don't like coming across as lazy. But for all the hours I have searched and the trial and error resulting from that, I don't have much to show for it.
The idea is simple, you just wait for incoming connections, and once accepted, pass the socket to a thread.
You need to pass the new socket returned from accept to the new thread; you could either spawn a new thread everytime and pass the socket via argument or add the socket to a shared queue used by a bunch of worker threads.
Here's some code for a simple proxy I wrote, it uses boost for the threads and a simple OOP wrapper around the socket functions.
The main thread - it creates 4 worker threads which idle and wait for
the semaphore to be signalled. It pushes all accepted connections to a global queue:
// Global variables
const size_t MAX_THREADS = 4;
queue<Socket> socketBuffer; // Holds new accepted sockets
boost::mutex queueGuard; // Guards the socketBuffer queue
semaphore queueIndicator; // Signals a new connection to the worker threads
bool ctrlc_pressed = false;
// Inside the main function...
boost::thread_group threads;
for(int i = 0; i < MAX_THREADS; i++)
{
threads.create_thread(boost::bind(&threadHandleRequest, i+1));
}
while(!ctrlc_pressed)
{
// wait for incoming connections and pass them to the worker threads
Socket s_connection = s_server.accept();
if(s_connection.valid())
{
boost::unique_lock<boost::mutex> lock(queueGuard);
socketBuffer.push(s_connection);
queueIndicator.signal();
}
}
threads.interrupt_all(); // interrupt the threads (at queueGuard.wait())
threads.join_all(); // wait for all threads to finish
s_server.close();
And the thread code:
bool threadHandleRequest(int tid)
{
while(true)
{
// wait for a semaphore counter > 0 and automatically decrease the counter
try
{
queueIndicator.wait();
}
catch (boost::thread_interrupted)
{
return false;
}
boost::unique_lock<boost::mutex> lock(queueGuard);
assert(!socketBuffer.empty());
Socket s_client = socketBuffer.front();
socketBuffer.pop();
lock.unlock();
// Do whatever you need to do with the socket here
}
}
Hope that helps :)
When doing socket communication, you basically have a single listener
socket for all incoming connections, and multiple handler sockets for
each connected client.
That's the point. You need a separate thread for the listener socket. When it receives an incoming request, it starts another thread for a handler socket (which will create and send the response), and starts listening again (you need a loop).
I would definitely use threads instead of forking. AFAIK on Windows only cygwin is able to fork, but I would not use cygwin for such a program.