Large factorial series - c++

I have to print series :-
n*(n-1),n*(n-1)*(n-2),n*(n-1)*(n-2)*(n-3),n*(n-1)*(n-2)*(n-3)*(n-4)...,n!.
Problem is large value of n , it can go upto 37 and n! will obviously go out of bounds ?
I just cant get started , please help , how would you have tackled situation if you were in my place ?

It depends on the language you are using. Some languages automatically switch to a large integer package when numbers get too large for the machine's native integer representation. In other languages, just use a large integer library, which should handle 37! easily.
Wikipedia has a list of arbitrary-precision arithmetic libraries for some languages. There are also lots of other resources on the web.

3 year old problem looked fun.
Simple create a routine to "multiply" a string by a factor. Not highly efficient, yet gets the job done.
#include <stdlib.h>
#include <string.h>
void mult_array(char *x, unsigned factor) {
unsigned accumulator = 0;
size_t n = strlen(x);
size_t i = n;
while (i > 0) {
i--;
accumulator += (unsigned)(x[i]-'0')*factor;
x[i] = (char) (accumulator%10 + '0');
accumulator /= 10;
}
while (accumulator > 0) {
memmove(x+1, x, ++n);
x[i] = (char) (accumulator%10 + '0');
accumulator /= 10;
}
}
#include <stdio.h>
void AS_Factorial(unsigned n) {
char buf[1000]; // Right-size buffer (problem for another day)
sprintf(buf, "%u", n);
fputs(buf, stdout);
while (n>1) {
n--;
mult_array(buf, n);
printf(",%s", buf);
}
puts("");
}
Sample usage and output
int main(void) {
AS_Factorial(5);
AS_Factorial(37);
return 0;
}
5,20,60,120,120
37,1332,46620,1585080,52307640,1673844480,...,13763753091226345046315979581580902400000000

I have just tried BigInteger in Java and it works.
Working code for demonstration purpose:
import java.math.BigInteger;
public class Factorial {
public static int[] primes = {2,3,5,7,11,13,17,19,23,29,31,37};
public static BigInteger computeFactorial(int n) {
if (n==0) {
return new BigInteger(String.valueOf(1));
} else {
return new BigInteger(String.valueOf(n)).multiply(computeFactorial(n-1));
}
}
public static String getPowers(int n){
BigInteger input = computeFactorial(n);
StringBuilder sb = new StringBuilder();
int count = 0;
for (int i = 0; i < primes.length && input.intValue() != 1;) {
BigInteger[] result = input.divideAndRemainder(new BigInteger(String.valueOf(primes[i])));
if (result[1].intValue() == 0) {
input = input.divide(new BigInteger(String.valueOf(primes[i])));
count++;
if (input.intValue() == 1) {sb.append(primes[i] + "(" + count + ") ");}
} else {
if (count!=0)
sb.append(primes[i] + "(" + count + ") ");
count = 0;
i++;
}
}
return sb.toString();
}
public static void main(String[] args) {
System.out.println(getPowers(37));
}
}
Feel free to use it without worrying about copyright if you want.
Update: I didn't realize you were using C++ until now. In that case, you can give boost BigInteger a try.

You may use big integer, but however this still has some limitations, but even though, this datatype can handle a very large value. The value that the big integer can hold, ranges from
-9223372036854775808 to 9223372036854775807 for the signed big integer, and
0 to 18446744073709551615 for the unsigned big integer.
If you really plan to do some bigger value computation which is bigger than the big integer data type, why not try the GMP library?
As from what the site says, "GMP is a free library for arbitrary precision arithmetic, operating on signed integers, rational numbers, and floating point numbers. There is no practical limit to the precision except the ones implied by the available memory in the machine GMP runs on. GMP has a rich set of functions, and the functions have a regular interface." - gmplib.org

You could implement your own big-integer type if it's not permitted to use any thirdparty libraries. You can do something like that:
#include <iostream>
#include <iomanip>
#include <vector>
using namespace std;
const int base = 1000 * 1000 * 1000; // base value, should be the power of 10
const int lbase = 9; // lg(base)
void output_biginteger(vector<int>& a) {
cout << a.back();
for (int i = (int)a.size() - 2; i >= 0; --i)
cout << setw(lbase) << setfill('0') << a[i];
cout << endl;
}
void multiply_biginteger_by_integer(vector<int>& a, int b) {
int carry = 0;
for (int i = 0; i < (int)a.size(); ++i) {
long long cur = (long long)a[i] * b + carry;
carry = cur / base;
a[i] = cur % base;
}
if (carry > 0) {
a.push_back(carry);
}
}
int main() {
int n = 37; // input your n here
vector<int> current(1, n);
for (int i = n - 1; n >= 1; --n) {
multiply_biginteger_by_integer(current, i);
output_biginteger(current);
}
return 0;
}

Related

Formatting Commas into a long long integer

this is my first time posting a question. I was hoping to get some help on a very old computer science assignment that I never got around to finishing. I'm no longer taking the class, just want to see how to solve this.
Read in an integer (any valid 64-bit
integer = long long type) and output the same number but with commas inserted.
If the user entered -1234567890, your program should output -1,234,567,890. Commas
should appear after every three significant digits (provided more digits remain) starting
from the decimal point and working left toward more significant digits. If the number
entered does not require commas, do not add any. For example, if the input is 234 you
should output 234. The input 0 should produce output 0. Note in the example above
that the number can be positive or negative. Your output must maintain the case of the
input.
I'm relatively new to programming, and this was all I could come up with:
#include <iostream>
#include <cmath>
using namespace std;
int main()
{
long long n;
cout << "Enter an integer:" << endl;
cin >> n;
int ones = n % 10;
int tens = n / 10 % 10;
int hund = n / 100 % 10;
int thous = n / 1000 % 10;
int tthous = n / 10000 % 10;
cout << tthous << thous << "," << hund << tens << ones << endl;
return 0;
}
The original assignment prohibited the use of strings, arrays, and vectors, so please refrain from giving suggestions/solutions that involve these.
I'm aware that some sort of for-loop would probably be required to properly insert the commas in the necessary places, but I just do not know how to go about implementing this.
Thank you in advance to anyone who offers their help!
Just to give you an idea how to solve this, I've maiden a simple implementation. Just keep in mind that is just a simple example:
#include <iostream>
#include <cmath>
using namespace std;
int main()
{
long long n = -1234567890;
if ( n < 0 )
cout << '-';
n = abs(n);
for (long long i = 1000000000000; i > 0; i /= 1000) {
if ( n / i <= 0 ) continue;
cout << n / i ;
n = n - ( n / i) * i;
if ( n > 0 )
cout << ',';
}
return 0;
}
http://coliru.stacked-crooked.com/a/150f75db89c46e99
The easy solution would be to use ios::imbue to set a locale that would do all the work for you:
std::cout.imbue(std::locale(""));
std::cout << n << std::endl;
However, if the restraints don't allow for strings or vectors I doubt that this would be a valid solution. Instead you could use recursion:
void print(long long n, int counter) {
if (n > 0) {
print(n / 10, ++counter);
if (counter % 3 == 0) {
std::cout << ",";
}
std::cout << n%10;
}
}
void print(long long n) {
if (n < 0) {
std::cout << "-";
n *= -1;
}
print(n, 0);
}
And then in the main simply call print(n);
A small template class comma_sep may be a solution, the usage may be as simple as:
cout << comma_sep<long long>(7497592752850).sep() << endl;
Which outputs:
7,497,592,752,850
Picked from here:
https://github.com/arloan/libimsux/blob/main/comma_sep.hxx
template <class I = int, int maxdigits = 32>
class comma_sep
char buff[maxdigits + maxdigits / 3 + 2];
char * p;
I i;
char sc;
public:
comma_sep(I i, char c = ',') : p(buff), i(i), sc(c) {
if (i < 0) {
buff[0] = '-';
*++p = '\0';
}
}
const char * sep() {
return _sep(std::abs(i));
}
private:
const char * _sep(I i) {
I r = i % 1000;
I n = i / 1000;
if (n > 0) {
_sep(n);
p += sprintf(p, "%c%03d", sc, (int)r);
*p = '\0';
} else {
p += sprintf(p, "%d", (int)r);
*p = '\0';
}
return buff;
}
};
The above class handles only integeral numbers, float/double numbers need to use a partial specialized version:
template<int maxd>
class comma_sep<double, maxd> {
comma_sep<int64_t, maxd> _cs;
char fs[64];
double f;
public:
const int max_frac = 12;
comma_sep(double d, char c = ',') : _cs((int64_t)d, c) {
double np;
f = std::abs(modf(d, &np));
}
const char * sep(int frac = 3) {
if (frac < 1 || frac > max_frac) {
throw std::invalid_argument("factional part too too long or invalid");
}
auto p = _cs.sep();
strcpy(fs, p);
char fmt[8], tmp[max_frac+3];
sprintf(fmt, "%%.%dlf", frac);
sprintf(tmp, fmt, f);
return strcat(fs, tmp + 1);
}
};
The two above classes can be improved by adding type-traits like std::is_integral and/or std::is_floating_point, though.

print fibo big numbers in c++ or c language

I write this code for show fibonacci series using recursion.But It not show correctly for n>43 (ex: for n=100 show:-980107325).
#include<stdio.h>
#include<conio.h>
void fibonacciSeries(int);
void fibonacciSeries(int n)
{
static long d = 0, e = 1;
long c;
if (n>1)
{
c = d + e;
d = e;
e = c;
printf("%d \n", c);
fibonacciSeries(n - 1);
}
}
int main()
{
long a, n;
long long i = 0, j = 1, f;
printf("How many number you want to print in the fibonnaci series :\n");
scanf("%d", &n);
printf("\nFibonacci Series: ");
printf("%d", 0);
fibonacciSeries(n);
_getch();
return 0;
}
The value of fib(100) is so large that it will overflow even a 64 bit number. To operate on such large values, you need to do arbitrary-precision arithmetic. Arbitrary-precision arithmetic is not provided by C nor C++ standard libraries, so you'll need to either implement it yourself or use a library written by someone else.
For smaller values that do fit your long long, your problem is that you use the wrong printf format specifier. To print a long long, you need to use %lld.
Code overflows the range of the integer used long.
Could use long long, but even that may not handle Fib(100) which needs at least 69 bits.
Code could use long double if 1.0/LDBL_EPSILON > 3.6e20
Various libraries exist to handle very large integers.
For this task, all that is needed is a way to add two large integers. Consider using a string. An inefficient but simply string addition follows. No contingencies for buffer overflow.
#include <stdio.h>
#include <string.h>
#include <assert.h>
char *str_revese_inplace(char *s) {
char *left = s;
char *right = s + strlen(s);
while (right > left) {
right--;
char t = *right;
*right = *left;
*left = t;
left++;
}
return s;
}
char *str_add(char *ssum, const char *sa, const char *sb) {
const char *pa = sa + strlen(sa);
const char *pb = sb + strlen(sb);
char *psum = ssum;
int carry = 0;
while (pa > sa || pb > sb || carry) {
int sum = carry;
if (pa > sa) sum += *(--pa) - '0';
if (pb > sb) sum += *(--pb) - '0';
*psum++ = sum % 10 + '0';
carry = sum / 10;
}
*psum = '\0';
return str_revese_inplace(ssum);
}
int main(void) {
char fib[3][300];
strcpy(fib[0], "0");
strcpy(fib[1], "1");
int i;
for (i = 2; i <= 1000; i++) {
printf("Fib(%3d) %s.\n", i, str_add(fib[2], fib[1], fib[0]));
strcpy(fib[0], fib[1]);
strcpy(fib[1], fib[2]);
}
return 0;
}
Output
Fib( 2) 1.
Fib( 3) 2.
Fib( 4) 3.
Fib( 5) 5.
Fib( 6) 8.
...
Fib(100) 3542248xxxxxxxxxx5075. // Some xx left in for a bit of mystery.
Fib(1000) --> 43466...about 200 more digits...8875
You can print some large Fibonacci numbers using only char, int and <stdio.h> in C.
There is some headers :
#include <stdio.h>
#define B_SIZE 10000 // max number of digits
typedef int positive_number;
struct buffer {
size_t index;
char data[B_SIZE];
};
Also some functions :
void init_buffer(struct buffer *buffer, positive_number n) {
for (buffer->index = B_SIZE; n; buffer->data[--buffer->index] = (char) (n % 10), n /= 10);
}
void print_buffer(const struct buffer *buffer) {
for (size_t i = buffer->index; i < B_SIZE; ++i) putchar('0' + buffer->data[i]);
}
void fly_add_buffer(struct buffer *buffer, const struct buffer *client) {
positive_number a = 0;
size_t i = (B_SIZE - 1);
for (; i >= client->index; --i) {
buffer->data[i] = (char) (buffer->data[i] + client->data[i] + a);
buffer->data[i] = (char) (buffer->data[i] - (a = buffer->data[i] > 9) * 10);
}
for (; a; buffer->data[i] = (char) (buffer->data[i] + a), a = buffer->data[i] > 9, buffer->data[i] = (char) (buffer->data[i] - a * 10), --i);
if (++i < buffer->index) buffer->index = i;
}
Example usage :
int main() {
struct buffer number_1, number_2, number_3;
init_buffer(&number_1, 0);
init_buffer(&number_2, 1);
for (int i = 0; i < 2500; ++i) {
number_3 = number_1;
fly_add_buffer(&number_1, &number_2);
number_2 = number_3;
}
print_buffer(&number_1);
}
// print 131709051675194962952276308712 ... 935714056959634778700594751875
Best C type is still char ? The given code is printing f(2500), a 523 digits number.
Info : f(2e5) has 41,798 digits, see also Factorial(10000) and Fibonacci(1000000).
Well, you could want to try implementing BigInt in C++ or C.
Useful Material:
How to implement big int in C++
For this purporse you need implement BigInteger. There is no such build-in support in current c++. You can view few advises on stack overflow
Or you also can use some libs like GMP
Also here is some implementation:
E-maxx - on Russian language description.
Or find some open implementation on GitHub
Try to use a different format and printf, use unsigned to get wider range of digits.
If you use unsigned long long you should get until 18 446 744 073 709 551 615 so until the 93th number for fibonacci serie 12200160415121876738 but after this one you will get incorrect result because the 94th number 19740274219868223167 is too big for unsigned long long.
Keep in mind that the n-th fibonacci number is (approximately) ((1 + sqrt(5))/2)^n.
This allows you to get the value for n that allows the result to fit in 32 /64 unsigned integers. For signed remember that you lose one bit.

Converting an array of 2 digit numbers into an integer (C++)

Is it possible to take an array filled with 2 digit numbers e.g.
[10,11,12,13,...]
and multiply each element in the list by 100^(position in the array) and sum the result so that:
mysteryFunction[10,11,12] //The function performs 10*100^0 + 11*100^1 + 12*100^3
= 121110
and also
mysteryFunction[10,11,12,13]
= 13121110
when I do not know the number of elements in the array?
(yes, the reverse of order is intended but not 100% necessary, and just in case you missed it the first time the numbers will always be 2 digits)
Just for a bit of background to the problem: this is to try to improve my attempt at an RSA encryption program, at the moment I am multiplying each member of the array by 100^(the position of the number) written out each time which means that each word which I use to encrypt must be a certain length.
For example to encrypt "ab" I have converted it to an array [10,11] but need to convert it to 1110 before I can put it through the RSA algorithm. I would need to adjust my code for if I then wanted to use a three letter word, again for a four letter word etc. which I'm sure you will agree is not ideal. My code is nothing like industry standard but I am happy to upload it should anyone want to see it (I have also already managed this in Haskell if anyone would like to see that). I thought that the background information was necessary just so that I don't get hundreds of downvotes from people thinking that I'm trying to trick them into doing homework for me. Thank you very much for any help, I really do appreciate it!
EDIT: Thank you for all of the answers! They perfectly answer the question that I asked but I am having problems incorporating them into my current program, if I post my code so far would you be able to help? When I tried to include the answer provided I got an error message (I can't vote up because I don't have enough reputation, sorry that I haven't accepted any answers yet).
#include <iostream>
#include <string>
#include <math.h>
int returnVal (char x)
{
return (int) x;
}
unsigned long long modExp(unsigned long long b, unsigned long long e, unsigned long long m)
{
unsigned long long remainder;
int x = 1;
while (e != 0)
{
remainder = e % 2;
e= e/2;
if (remainder == 1)
x = (x * b) % m;
b= (b * b) % m;
}
return x;
}
int main()
{
unsigned long long p = 80001;
unsigned long long q = 70021;
int e = 7;
unsigned long long n = p * q;
std::string foo = "ab";
for (int i = 0; i < foo.length(); i++);
{
std::cout << modExp (returnVal((foo[0]) - 87) + returnVal (foo[1] -87) * 100, e, n);
}
}
If you want to use plain C-style arrays, you will have to separately know the number of entries. With this approach, your mysterious function might be defined like this:
unsigned mysteryFunction(unsigned numbers[], size_t n)
{
unsigned result = 0;
unsigned factor = 1;
for (size_t i = 0; i < n; ++i)
{
result += factor * numbers[i];
factor *= 100;
}
return result;
}
You can test this code with the following:
#include <iostream>
int main()
{
unsigned ar[] = {10, 11, 12, 13};
std::cout << mysteryFunction(ar, 4) << "\n";
return 0;
}
On the other hand, if you want to utilize the STL's vector class, you won't separately need the size. The code itself won't need too many changes.
Also note that the built-in integer types cannot handle very large numbers, so you might want to look into an arbitrary precision number library, like GMP.
EDIT: Here's a version of the function which accepts a std::string and uses the characters' ASCII values minus 87 as the numbers:
unsigned mysteryFunction(const std::string& input)
{
unsigned result = 0;
unsigned factor = 1;
for (size_t i = 0; i < input.size(); ++i)
{
result += factor * (input[i] - 87);
factor *= 100;
}
return result;
}
The test code becomes:
#include <iostream>
#include <string>
int main()
{
std::string myString = "abcde";
std::cout << mysteryFunction(myString) << "\n";
return 0;
}
The program prints: 1413121110
As benedek mentioned, here's an implementation using dynamic arrays via std::vector.
unsigned mystery(std::vector<unsigned> vect)
{
unsigned result = 0;
unsigned factor = 1;
for (auto& item : vect)
{
result += factor * item;
factor *= 100;
}
return result;
}
void main(void)
{
std::vector<unsigned> ar;
ar.push_back(10);
ar.push_back(11);
ar.push_back(12);
ar.push_back(13);
std::cout << mystery(ar);
}
I would like to suggest the following solutions.
You could use standard algorithm std::accumulate declared in header <numeric>
For example
#include <iostream>
#include <numeric>
int main()
{
unsigned int a[] = { 10, 11, 12, 13 };
unsigned long long i = 1;
unsigned long long s =
std::accumulate( std::begin( a ), std::end( a ), 0ull,
[&]( unsigned long long acc, unsigned int x )
{
return ( acc += x * i, i *= 100, acc );
} );
std::cout << "s = " << s << std::endl;
return 0;
}
The output is
s = 13121110
The same can be done with using the range based for statement
#include <iostream>
#include <numeric>
int main()
{
unsigned int a[] = { 10, 11, 12, 13 };
unsigned long long i = 1;
unsigned long long s = 0;
for ( unsigned int x : a )
{
s += x * i; i *= 100;
}
std::cout << "s = " << s << std::endl;
return 0;
}
You could also write a separate function
unsigned long long mysteryFunction( const unsigned int a[], size_t n )
{
unsigned long long s = 0;
unsigned long long i = 1;
for ( size_t k = 0; k < n; k++ )
{
s += a[k] * i; i *= 100;
}
return s;
}
Also think about using std::string instead of integral numbers to keep an encrypted result.

factorial of big numbers with strings in c++

I am doing a factorial program with strings because i need the factorial of Numbers greater than 250
I intent with:
string factorial(int n){
string fact="1";
for(int i=2; i<=n; i++){
b=atoi(fact)*n;
}
}
But the problem is that atoi not works. How can i convert my string in a integer.
And The most important Do I want to know if the program of this way will work with the factorial of 400 for example?
Not sure why you are trying to use string. Probably to save some space by not using integer vector? This is my solution by using integer vector to store factorial and print.Works well with 400 or any large number for that matter!
//Factorial of a big number
#include<iostream>
#include<vector>
using namespace std;
int main(){
int num;
cout<<"Enter the number :";
cin>>num;
vector<int> res;
res.push_back(1);
int carry=0;
for(int i=2;i<=num;i++){
for(int j=0;j<res.size();j++){
int tmp=res[j]*i;
res[j]=(tmp+carry)%10 ;
carry=(tmp+carry)/10;
}
while(carry!=0){
res.push_back(carry%10);
carry=carry/10;
}
}
for(int i=res.size()-1;i>=0;i--) cout<<res[i];
cout<<endl;
return 0;
}
Enter the number :400
Factorial of 400 :64034522846623895262347970319503005850702583026002959458684445942802397169186831436278478647463264676294350575035856810848298162883517435228961988646802997937341654150838162426461942352307046244325015114448670890662773914918117331955996440709549671345290477020322434911210797593280795101545372667251627877890009349763765710326350331533965349868386831339352024373788157786791506311858702618270169819740062983025308591298346162272304558339520759611505302236086810433297255194852674432232438669948422404232599805551610635942376961399231917134063858996537970147827206606320217379472010321356624613809077942304597360699567595836096158715129913822286578579549361617654480453222007825818400848436415591229454275384803558374518022675900061399560145595206127211192918105032491008000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
There's a web site that will calculate factorials for you: http://www.nitrxgen.net/factorialcalc.php. It reports:
The resulting factorial of 250! is 493 digits long.
The result also contains 62 trailing zeroes (which constitutes to 12.58% of the whole number)
3232856260909107732320814552024368470994843717673780666747942427112823747555111209488817915371028199450928507353189432926730931712808990822791030279071281921676527240189264733218041186261006832925365133678939089569935713530175040513178760077247933065402339006164825552248819436572586057399222641254832982204849137721776650641276858807153128978777672951913990844377478702589172973255150283241787320658188482062478582659808848825548800000000000000000000000000000000000000000000000000000000000000
Many systems using C++ double only work up to 1E+308 or thereabouts; the value of 250! is too large to store in such numbers.
Consequently, you'll need to use some sort of multi-precision arithmetic library, either of your own devising using C++ string values, or using some other widely-used multi-precision library (GNU GMP for example).
The code below uses unsigned double long to calculate very large digits.
#include<iostream.h>
int main()
{
long k=1;
while(k!=0)
{
cout<<"\nLarge Factorial Calculator\n\n";
cout<<"Enter a number be calculated:";
cin>>k;
if (k<=33)
{
unsigned double long fact=1;
fact=1;
for(int b=k;b>=1;b--)
{
fact=fact*b;
}
cout<<"\nThe factorial of "<<k<<" is "<<fact<<"\n";
}
else
{
int numArr[10000];
int total,rem=0,count;
register int i;
//int i;
for(i=0;i<10000;i++)
numArr[i]=0;
numArr[10000]=1;
for(count=2;count<=k;count++)
{
while(i>0)
{
total=numArr[i]*count+rem;
rem=0;
if(total>9)
{
numArr[i]=total%10;
rem=total/10;
}
else
{
numArr[i]=total;
}
i--;
}
rem=0;
total=0;
i=10000;
}
cout<<"The factorial of "<<k<<" is \n\n";
for(i=0;i<10000;i++)
{
if(numArr[i]!=0 || count==1)
{
cout<<numArr[i];
count=1;
}
}
cout<<endl;
}
cout<<"\n\n";
}//while
return 0;
}
Output:
![Large Factorial Calculator
Enter a number be calculated:250
The factorial of 250 is
32328562609091077323208145520243684709948437176737806667479424271128237475551112
09488817915371028199450928507353189432926730931712808990822791030279071281921676
52724018926473321804118626100683292536513367893908956993571353017504051317876007
72479330654023390061648255522488194365725860573992226412548329822048491377217766
50641276858807153128978777672951913990844377478702589172973255150283241787320658
18848206247858265980884882554880000000000000000000000000000000000000000000000000
000000000000][1]
You can make atoi compile by adding c_str(), but it will be a long way to go till getting factorial. Currently you have no b around. And if you had, you still multiply int by int. So even if you eventually convert that to string before return, your range is still limited. Until you start to actually do multiplication with ASCII or use a bignum library there's no point to have string around.
Your factorial depends on conversion to int, which will overflow pretty fast, so you want be able to compute large factorials that way. To properly implement computation on big numbers you need to implement logic as for computation on paper, rules that you were tought in primary school, but treat long long ints as "atoms", not individual digits. And don't do it on strings, it would be painfully slow and full of nasty conversions
If you are going to solve factorial for numbers larger than around 12, you need a different approach than using atoi, since that just gives you a 32-bit integer, and no matter what you do, you are not going to get more than 2 billion (give or take) out of that. Even if you double the size of the number, you'll only get to about 20 or 21.
It's not that hard (relatively speaking) to write a string multiplication routine that takes a small(ish) number and multiplies each digit and ripples the results through to the the number (start from the back of the number, and fill it up).
Here's my obfuscated code - it is intentionally written such that you can't just take it and hand in as school homework, but it appears to work (matches the number in Jonathan Leffler's answer), and works up to (at least) 20000! [subject to enough memory].
std::string operator*(const std::string &s, int x)
{
int l = (int)s.length();
std::string r;
r.resize(l);
std::fill(r.begin(), r.end(), '0');
int b = 0;
int e = ~b;
const int c = 10;
for(int i = l+e; i != e;)
{
int d = (s[i]-0x30) * x, p = i + b;
while (d && p > e)
{
int t = r[p] - 0x30 + (d % c);
r[p] = (t % c) + 0x30;
d = t / c + d / c;
p--;
}
while (d)
{
r = static_cast<char>((d % c) +0x30)+r;
d /= c;
b++;
}
i--;
}
return r;
}
In C++, the largest integer type is 'long long', and it hold 64 bits of memory, so obviously you can't store 250! in an integer type. It is a clever idea to use strings, but what you are basically doing with your code is (I have never used the atoi() function, so I don't know if it even works with strings larger than 1 character, but it doesn't matter):
covert the string to integer (a string that if this code worked well, in one moment contains the value of 249!)
multiply the value of the string
So, after you are done multiplying, you don't even convert the integer back to string. And even if you did that, at one moment when you convert the string back to an integer, your program will crash, because the integer won't be able to hold the value of the string.
My suggestion is, to use some class for big integers. Unfortunately, there isn't one available in C++, so you'll have to code it by yourself or find one on the internet. But, don't worry, even if you code it by yourself, if you think a little, you'll see it's not that hard. You can even use your idea with the strings, which, even tough is not the best approach, for this problem, will still yield the results in the desired time not using too much memory.
This is a typical high precision problem.
You can use an array of unsigned long long instead of string.
like this:
struct node
{
unsigned long long digit[100000];
}
It should be faster than string.
But You still can use string unless you are urgent.
It may take you a few days to calculate 10000!.
I like use string because it is easy to write.
#include <bits/stdc++.h>
#pragma GCC optimize (2)
using namespace std;
const int MAXN = 90;
int n, m;
int a[MAXN];
string base[MAXN], f[MAXN][MAXN];
string sum, ans;
template <typename _T>
void Swap(_T &a, _T &b)
{
_T temp;
temp = a;
a = b;
b = temp;
}
string operator + (string s1, string s2)
{
string ret;
int digit, up = 0;
int len1 = s1.length(), len2 = s2.length();
if (len1 < len2) Swap(s1, s2), Swap(len1, len2);
while(len2 < len1) s2 = '0' + s2, len2++;
for (int i = len1 - 1; i >= 0; i--)
{
digit = s1[i] + s2[i] - '0' - '0' + up; up = 0;
if (digit >= 10) up = digit / 10, digit %= 10;
ret = char(digit + '0') + ret;
}
if (up) ret = char(up + '0') + ret;
return ret;
}
string operator * (string str, int p)
{
string ret = "0", f; int digit, mul;
int len = str.length();
for (int i = len - 1; i >= 0; i--)
{
f = "";
digit = str[i] - '0';
mul = p * digit;
while(mul)
{
digit = mul % 10 , mul /= 10;
f = char(digit + '0') + f;
}
for (int j = 1; j < len - i; j++) f = f + '0';
ret = ret + f;
}
return ret;
}
int main()
{
freopen("factorial.out", "w", stdout);
string ans = "1";
for (int i = 1; i <= 5000; i++)
{
ans = ans * i;
cout << i << "! = " << ans << endl;
}
return 0;
}
Actually, I know where the problem raised At the point where we multiply , there is the actual problem ,when numbers get multiplied and get bigger and bigger.
this code is tested and is giving the correct result.
#include <bits/stdc++.h>
using namespace std;
#define mod 72057594037927936 // 2^56 (17 digits)
// #define mod 18446744073709551616 // 2^64 (20 digits) Not supported
long long int prod_uint64(long long int x, long long int y)
{
return x * y % mod;
}
int main()
{
long long int n=14, s = 1;
while (n != 1)
{
s = prod_uint64(s , n) ;
n--;
}
}
Expexted output for 14! = 87178291200
The logic should be:
unsigned int factorial(int n)
{
unsigned int b=1;
for(int i=2; i<=n; i++){
b=b*n;
}
return b;
}
However b may get overflowed. So you may use a bigger integral type.
Or you can use float type which is inaccurate but can hold much bigger numbers.
But it seems none of the built-in types are big enough.

Using pow() for large number

I am trying to solve a problem, a part of which requires me to calculate (2^n)%1000000007 , where n<=10^9. But my following code gives me output "0" even for input like n=99.
Is there anyway other than having a loop which multilplies the output by 2 every time and finding the modulo every time (this is not I am looking for as this will be very slow for large numbers).
#include<stdio.h>
#include<math.h>
#include<iostream>
using namespace std;
int main()
{
unsigned long long gaps,total;
while(1)
{
cin>>gaps;
total=(unsigned long long)powf(2,gaps)%1000000007;
cout<<total<<endl;
}
}
You need a "big num" library, it is not clear what platform you are on, but start here:
http://gmplib.org/
this is not I am looking for as this will be very slow for large numbers
Using a bigint library will be considerably slower pretty much any other solution.
Don't take the modulo every pass through the loop: rather, only take it when the output grows bigger than the modulus, as follows:
#include <iostream>
int main() {
int modulus = 1000000007;
int n = 88888888;
long res = 1;
for(long i=0; i < n; ++i) {
res *= 2;
if(res > modulus)
res %= modulus;
}
std::cout << res << std::endl;
}
This is actually pretty quick:
$ time ./t
./t 1.19s user 0.00s system 99% cpu 1.197 total
I should mention that the reason this works is that if a and b are equivalent mod m (that is, a % m = b % m), then this equality holds multiple k of a and b (that is, the foregoing equality implies (a*k)%m = (b*k)%m).
Chris proposed GMP, but if you need just that and want to do things The C++ Way, not The C Way, and without unnecessary complexity, you may just want to check this out - it generates few warnings when compiling, but is quite simple and Just Works™.
You can split your 2^n into chunks of 2^m. You need to find: `
2^m * 2^m * ... 2^(less than m)
Number m should be 31 is for 32-bit CPU. Then your answer is:
chunk1 % k * chunk2 * k ... where k=1000000007
You are still O(N). But then you can utilize the fact that all chunk % k are equal except last one and you can make it O(1)
I wrote this function. It is very inefficient but it works with very large numbers. It uses my self-made algorithm to store big numbers in arrays using a decimal like system.
mpfr2.cpp
#include "mpfr2.h"
void mpfr2::mpfr::setNumber(std::string a) {
for (int i = a.length() - 1, j = 0; i >= 0; ++j, --i) {
_a[j] = a[i] - '0';
}
res_size = a.length();
}
int mpfr2::mpfr::multiply(mpfr& a, mpfr b)
{
mpfr ans = mpfr();
// One by one multiply n with individual digits of res[]
int i = 0;
for (i = 0; i < b.res_size; ++i)
{
for (int j = 0; j < a.res_size; ++j) {
ans._a[i + j] += b._a[i] * a._a[j];
}
}
for (i = 0; i < a.res_size + b.res_size; i++)
{
int tmp = ans._a[i] / 10;
ans._a[i] = ans._a[i] % 10;
ans._a[i + 1] = ans._a[i + 1] + tmp;
}
for (i = a.res_size + b.res_size; i >= 0; i--)
{
if (ans._a[i] > 0) break;
}
ans.res_size = i+1;
a = ans;
return a.res_size;
}
mpfr2::mpfr mpfr2::mpfr::pow(mpfr a, mpfr b) {
mpfr t = a;
std::string bStr = "";
for (int i = b.res_size - 1; i >= 0; --i) {
bStr += std::to_string(b._a[i]);
}
int i = 1;
while (!0) {
if (bStr == std::to_string(i)) break;
a.res_size = multiply(a, t);
// Debugging
std::cout << "\npow() iteration " << i << std::endl;
++i;
}
return a;
}
mpfr2.h
#pragma once
//#infdef MPFR2_H
//#define MPFR2_H
// C standard includes
#include <iostream>
#include <string>
#define MAX 0x7fffffff/32/4 // 2147483647
namespace mpfr2 {
class mpfr
{
public:
int _a[MAX];
int res_size;
void setNumber(std::string);
static int multiply(mpfr&, mpfr);
static mpfr pow(mpfr, mpfr);
};
}
//#endif
main.cpp
#include <iostream>
#include <fstream>
// Local headers
#include "mpfr2.h" // Defines local mpfr algorithm library
// Namespaces
namespace m = mpfr2; // Reduce the typing a bit later...
m::mpfr tetration(m::mpfr, int);
int main() {
// Hardcoded tests
int x = 7;
std::ofstream f("out.txt");
m::mpfr t;
for(int b=1; b<x;b++) {
std::cout << "2^^" << b << std::endl; // Hardcoded message
t.setNumber("2");
m::mpfr res = tetration(t, b);
for (int i = res.res_size - 1; i >= 0; i--) {
std::cout << res._a[i];
f << res._a[i];
}
f << std::endl << std::endl;
std::cout << std::endl << std::endl;
}
char c; std::cin.ignore(); std::cin >> c;
return 0;
}
m::mpfr tetration(m::mpfr a, int b)
{
m::mpfr tmp = a;
if (b <= 0) return m::mpfr();
for (; b > 1; b--) tmp = m::mpfr::pow(a, tmp);
return tmp;
}
I created this for tetration and eventually hyperoperations. When the numbers get really big it can take ages to calculate and a lot of memory. The #define MAX 0x7fffffff/32/4 is the number of decimals one number can have. I might make another algorithm later to combine multiple of these arrays into one number. On my system the max array length is 0x7fffffff aka 2147486347 aka 2^31-1 aka int32_max (which is usually the standard int size) so I had to divide int32_max by 32 to make the creation of this array possible. I also divided it by 4 to reduce memory usage in the multiply() function.
- Jubiman