Copy static class member to local variable for optimization - c++

While browsing open source code (from OpenCV), I came across the following type of code inside a method:
// copy class member to local variable for optimization
int foo = _foo; //where _foo is a class member
for (...) //a heavy loop that makes use of foo
From another question on SO I've concluded that the answer to whether or not this actually needs to be done or is done automatically by the compiler may be compiler/setting dependent.
My question is if it would make any difference if _foo were a static class member? Would there still be a point in this manual optimization, or is accessing a static class member no more 'expensive' than accessing a local variable?
P.S. - I'm asking out of curiosity, not to solve a specific problem.

Accessing a property means de-referencing the object, in order to access it.
As the property may change during the execution (read threads), the compiler will read the value from memory each time the value is accessed.
Using a local variable will allow the compiler to use a register for the value, as it can safely assume the value won't change from the outside. This way, the value is read only once from memory.
About your question concerning the static member, it's the same, as it can also be changed by another thread, for instance. The compiler will also need to read the value each time from memory.

I think a local variable is more likely to participate in some optimization, precisely because it is local to the function: this fact can be used by the compiler, for example if it sees that nobody modifies the local variable, then the compiler may load it once, and use it in every iteration.
In case of member data, the compiler may have to work more to conclude that nobody modifies the member. Think about multi-threaded application, and note that the memory model in C++11 is multi-threaded, which means some other thread might modify the member, so the compiler may not conclude that nobody modifies it, in consequence it has to emit code for load member for every expression which uses it, possibly multiple times in a single iteration, in order to work with the updated value of the member.

In this example the the _foo will be copied into new local variable. so both cases the same.
Statis values are like any other variable. its just stored in different memory segment dedicated for static memory.

Reading a static class member is effectively like reading a global variable. They both have a fixed address. Reading a non-static one means first reading the this-pointer, adding an offset to the result and then reading that address. In other words, reading a non-static one requires more steps and memory accesses.

Related

What's better to use and why?

class MyClass {
private:
unsigned int currentTimeMS;
public:
void update() {
currentTimeMS = getTimeMS();
// ...
}
};
class MyClass {
public:
void update() {
unsigned int currentTimeMS = getTimeMS();
// ...
}
};
update() calls in main game loop so in the second case we get a lot of allocation operations (unsigned int currentTimeMS). In the first case we get only one allocate and use that allocated variable before.
Which of this code better to use and why?
I recommend the second variant because it is stateless and the scope of the variable is smaller. Use the first one only if you really experience a performance issue, which I consider unlikely.
If you do not modify the variable value later, you should also consider to make it const in order to express this intent in your code and to give the compiler additional optimization options.
It depends upon your needs. If currentTimeMS is needed only temporarily in the update(), then surely declare it there. (in your case, #option2)
But if it's value is needed for the instance of the class (i.e. being used in some other method), then you should declare it as a field (in your case, #option1).
In the first example, you are saving the state of this class object. In the second one, you're not, so the currentTime will be lost the instant update() is called.
It is really up to you to decide which one you need.
The first case is defining a member variable the second a local variable. Basic class stuff. A private member variable is available to any function (method) in that class. a local variable is only available in the function in which it is declared.
Which of this code better to use and why?
First and foremost, the cited code is at best a tiny micro-optimization. Don't worry about such things unless you have to.
In fact, this is most likely a disoptimization. Sometimes automatic variables are allocated on the stack. Stack allocation is extremely fast (and even free sometimes). There is no need to worry. Other times, the compiler may place a small automatic variable such the unsigned int used here in a register. There's no allocation whatsoever.
Compare that to making the variable a data member of the class, and solely for the purpose of avoiding that allocation. Accessing that variable involves going through the this pointer. Pointer dereference has a cost, potentially well beyond that of adding an offset to a pointer. The dereference might result in a cache miss. Even worse, this dereferencing may well be performed every time the variable is referenced.
That said, sometimes it is better to create data members solely for the purpose of avoiding automatic variables in various member functions. Large arrays declared as local automatic variables might well result in stack overflow. Note, however, that making double big_array[2000][2000] a data member of MyClass will most likely make it impossible to have a variable of type MyClass be declared as a local automatic variable in some function.
The standard solution to the problems created by placing large arrays on the stack is to instead allocate them on the heap. This leads to another place where creating a data member to avoid a local variable can be beneficial. While stack allocation is extremely fast, heap allocation (e.g., new) is quite slow. A member function that is called repeatedly may benefit by making the automatic variable std::unique_ptr<double> big_array = std::make_unique<double>(2000*2000) a data member of MyClass.
Note that neither of the above applies to the sample code in the question. Note also that the last concern (making an heap-allocated variable a data member so as to avoid repeated allocations and deallocations) means that the code has to go through the this pointer to access that memory. In tight code, I've sometimes been forced to create a local automatic pointer variable such as double* local_pointer = this->some_pointer_member to avoid repeated traversals through this.

Embedded C++11 code — do I need volatile?

Embedded device with Cortex M3 MCU(STM32F1). It has embedded flash(64K).
MCU firmware can reprogram flash sectors at runtime; this is done by Flash Memory Controller(FMC) registers (so it's not as easy as a=b). FMC gets buffer pointer and burns data to some flash sector.
I want to use the last flash sector for device configuration parameters.
Parameters are stored in a packed struct with arrays and contain some custom classes.
Parameters can be changed at runtime (copy to RAM, change and burn back to flash using FMC).
So there are some questions about that:
State (bitwise) of parameters struct is changed by FMC hardware.
C++ compiler does not know if it was changed or not.
Does this mean I should declare all struct members as volatile?
I think YES.
Struct should be statically initialized (default parameters) at compile time. Struct should be POD (TriviallyCopyable and has standard layout). Remember, there are some custom classes in there, so I keep in mind these classes should be POD too.
BUT there are some problems:
cppreference.com
The only trivially copyable types are scalar types, trivially copyable
classes, and arrays of such types/classes (possibly const-qualified,
but not volatile-qualified).
That means I can't keep my class both POD and volatile?
So how would I solve the problem?
It is possible to use only scalar types in parameters struct but it may result in much less clean code around config processing...
P.S.
It works even without volatile, but I am afraid someday, some smart LTO compiler will see static initialized, not changing (by C++) struct and optimize out some access to underlying memory adresses. That means fresh programmed parameters will not be applied because they were inlined by the compiler.
EDIT: It is possible to solve problem without using volatile. And it seems to be more correct.
You need define config struct variable in separate translation unit(.cpp file) and do not initialize variable to avoid values substitution during LTO. If not using LTO - all be OK because optimizations are done in one translation unit at a time, so variables with static storage duration and external linkage defined in dedicated translation unit should not be optimized out. Only LTO can throw it away or make values substitution without issuing memory fetches. Especially when defining variable as a const. I think it is OK to initialize variable if not using LTO.
You have some choices depending on your compiler:
You can declare a pointer to the structure and initialize the pointer
to the region.
Tell the compiler where the variable should reside
Pointer to Flash
Declare a pointer, of the structure.
Assign the pointer to the proper address in Flash.
Access the variables by dereferencing the pointer.
The pointer should be declared, and assigned, as a constant pointer to constant data.
Telling compiler address of variable.
Some compilers allow you to place a variable in a specific memory region. The first step is to create a region in the linker command file. Next step is to tell the compiler that the variable is in that region.
Again, the variable should be declared as "static const". The "static" because there is only 1 instance. The "const" because Flash memory is read-only for most of the time.
Flash Memory: Volatile vs. Const
In most cases, the Flash memory, however programmed, is read-only. In fact, the only way you can read the data in Flash is to lock it, a.k.a. make it read-only. In general, it won't be changed without concensus of the program.
Most Flash memories are programmed by the software. Normally, this is your program. If your program is going to reprogram the Flash, it knows the values have been changed. This is akin to writing to RAM. The program changed the value, not the hardware. Thus the Flash is not volatile.
My experience is that Flash can be programmed by another means, usually when your program is not running. In that case, it is still not volatile because your program is not running. The Flash is still read-only.
The Flash will be volatile, if and only if, another task or thread of execution programs the flash while your thread of execution is active. I still would not consider this case as volatile. This would be a case in syncronicity -- if the flash is modified, then some listeners should be notified.
Summary
The Flash memory is best treated as read-only memory. Variables residing in Flash are accessed via pointer for best portability, although some compilers and linkers allow you to declare variables at specific, hard-coded addresses. The variables should be declared as const static so that the compiler can emit code to access the variables directly, vs. copying on the stack. If the Flash is programmed by another task or thread of execution, this is a synchronicity issue, not one of volatile. In rare cases, the Flash is programmed by an external source while your program is executed.
Your program should provide checksums or other methods to determine if the content has changed, since the last time it was checked.
DO NOT HAVE COMPILER INITIALIZE VARIABLES FROM FLASH.
This is not really portable. A better method is to have your initialization code load the variable(s) from flash. Making the compiler load your variable from a different segment requires a lot of work with the internals of the compiler and linker; a lot more than initializing a pointer to the address in the Flash.
By reprogramming the flash, you are changing the underlying object's representation. The volatile qualifier is the appropriate solution for the
situation to ensure the changes in data are not optimized away.
You would like a declaration to be: const volatile Settings settings;
The drawback is that volatile prevents static initialization of your object. This stops you from using the linker to put the initialized object in its appropriate memory address.
You would like the definition to be: const Settings settings = { ... };
Luckily, you can initialize a const object and access it as a const volatile.
// Header file
struct Settings { ... };
extern const volatile Settings& settings;
// Source file
static const Settings init_settings = { ... };
const volatile Settings& settings = init_settings;
The init_settings object is statically initialized, but all accesses through the settings reference are treated as volatile.
Please note, though, modifying an object defined as const is undefined behavior.

How does getInstance() work?

Recent I read some C++ code using extensively following getInstance() method:
class S
{
private:
int some_int = 0;
public:
static S& getInstance()
{
static S instance; / (*) /
return instance;
}
};
From how this code fragment being used, I learned the getInstance() works like return this, returning the address(or ref) of the instance of class S. But I got confused.
1) where does the static variable S defined in line(*) allocated in memory? And why it can work like return this?
2) what if there exist more than one instance of class S, whose reference will be returned?
This is the so-called Singleton design pattern. Its distinguishing feature is that there can only ever be exactly one instance of that class and the pattern ensures that. The class has a private constructor and a statically-created instance that is returned with the getInstance method. You cannot create an instance from the outside and thus get the object only through said method.
Since instance is static in the getInstance method it will retain its value between multiple invocations. It is allocated and constructed somewhen before it's first used. E.g. in this answer it seems like GCC initializes the static variable at the time the function is first used. This answer has some excerpts from the C++ standard related to that.
Static variable with a function scope is allocated first time the function is called. The compiler keeps track of the fact that is is initialized the first time and avoids further creation during the next visit to the function. This property would be ideal to implement a singleton pattern since this ensures we just maintain a single copy of object. In addition newer compilers makes sure this allocation is also thread safe giving a bonus thread safe singleton implementation without using any dynamic memory allocation. [As pointed out in comments, it is c++11 standard which guarantees the thread safety so do your check about thread safety if you are using a different compiler]
1) where does the static variable S defined in line(*) allocated in
memory? And why it can work like return this?
There is specific regions in memory where static variables are stored, like heap for dynamically allocated variables and stack for the typical compile time defined variables. It could vary with compilers but for GCC there are specific sections called DATA and BSS segments with in the executable generated by the compiler where initialized and uninitialized static variables are stored.
2) what if there exist more than one instance of class S, whose
reference will be returned?
As mentioned on the top, since it is a static variable the compiler ensures there can only be one instance created the first time function is visited. Also since it has the scope with in the function it cannot clash with any other instances existing else where and getInstance ensures you see the same single instance.

I want to return address of local variable

I have a method that stores global pointers in a data structure and at some point tries to get them out of the data structure and return them.I want to be able to return them because I know they are ok but the compiler does not allow me.It thinks they are only local because they have just been taken from the data structure ,but in reality I have taken them from outside.
Thanks in advance
No; the compiler knows better than you. You can't safely return the address of a local variable that is not also static. You can return the address of a global variable as a pointer from a function, but that isn't what you seem to be trying to do. And if you do this, be aware of the consequences for threading (if the value in the variable changes, the consequences for threaded code are dire; if it is accessing a readonly — immutable, unchanging — value, it is not a problem).
Listen to your compiler; it is trying to protect you from yourself. It knows more about C++ than you do.
To persuade us that the compiler is wrong, you'll have to show your code — but it is very unlikely that what you show will be valid.

const variable in c++

these are the some silly question ..i want to ask..please help me to comprehend it
const int i=100; //1
///some code
long add=(long)&i; //2
Doubt:for the above code..will compiler first go through the whole code
for deciding whether memory should be allocated or not..or first it ll store the
variable in read only memory place and then..allocate stroage as well at 2
doubt:why taking address of variable enforce compiler to store variable on memory..even
though rom or register too have address
In your code example, add contains the address, not the value, of i. I believe you may have thought that i was not stored in normal memory unless/until you take its address. This is not the case.
const does not mean the value is stored in ROM. It is stored in normal memory (often the stack) just like any other variable. const means the compiler will go to some lengths to prevent you from modifying the value.
const is not, and was never intended, to be some sort of security mechanism. If you obtain the address of the memory and want to modify it, you can do so. Of course this is almost always a bad idea, but if you really need to do it, it is possible.
I never wrote a compiler implementing this, but I think that it would be simple to just handle the variable as a normal variable but using the constant value where the variable value is used and using the address of the variable if the address is used.
If at the end of the scope of the variable no one took the address then I can just drop it instead of doing a real allocation because for all other uses the constant value has been used instead of compiling a variable loading operation.
constant values (not the only use for const, but the one used here) are not 'stored in normal memory' (nor in ROM, of course). the compiler simply uses the value (100 in this case) whenever the code uses the variable.
Of course, if the value isn't stored anywhere, there's no meaning of an address for the constant.
Other uses of const are stored in 'normal memory', and you can take their address, but the result is a 'pointer to const value', so it's (in principle) unusable for modification of the value. A hard cast would of course change that, so they trigger a nasty compiler warning.
also, remember that the C/C++ compiler operates totally at compile time (by definition!), it's nothing unusual that some use at a later part affects the code generation of an early part.
A very obvious example is the declaration of stack variables: the compiler has to take into account all the variables declared at any given level to be able to generate the stack allocation at the block entry.
I am a little confused about what you are asking but looking at your code:
i = 100 with a address of 0x?????????????
add = whatever the address is stored as a long int
There is no (dynamic) memory allocation in this code. The two local variables are created on stack. The address of i is taken and brutally cast into long, which is then assigned to the second variable.