Is friend resolved entirely during the typechecking phase, or does it affect the way the output code is generated? In other words, is that possible that adding a friend to my class can result in a different binary file?
If it might be up to the compiler, then I am asking about GCC and Clang.
It's easy enough to test using GCC:
Let's create a simple program
#include <iostream>
class A {
private:
void print()
{
std::cout << "Hello" << std::endl;
}
};
class B {
public:
// friend class A; //Uncomment to make a friend!
void print()
{
std::cout << "World!" << std::endl;
}
};
int main()
{
B b;
b.print();
return 0;
}
Then we just have to run these commands:
g++ -S main.cpp #create the listing for the friendless main.cpp
mv main.s main_no.s #rename it so we don't lose it
sed -ie 's/\/\/ friend class A;/ friend class A;/g' main.cpp
g++ -S main.cpp #replace the line so we now have a friend
diff main.s main_no.s
And as we can see by the empty output of diff , both files are exactly the same. As said in the comments of the question, compilers are free to encode any information the way they want so even though this test passes today, GCC could decide to include friend relationships in the .s files in the future, making this simplistic test fail.
In that case, you'd need to remove any information put by gcc in the .s file that's not actually instructions (they usually start with a dot in the file)
I have a class for which I have overloaded the operator bool explicitly like this :-
class Foo {
explicit operator bool() {
// return_something_here
}
};
However, when I run the following two in gdb I get :-
gdb) p fooobj.operator bool()
$7 = true
gdb) p (bool)(fooobj)
$8 = false
What's the difference between the two invocations and why do they return different things?
Edit :- I'm using the clang compiler.
Note :- The second value (false) is the correct value that I want to be returned using the first syntax. I'm using a codegen so I don't have complete control over what c++ gets generated in case anyone is curious why I don't just use the second syntax.
Even in that case, the difference between the two would still be an unanswered question.
I just ran a few quick tests, and it appears to be that gdb doesn't handle code compiled with clang well. Here is a test program:
#include <iostream>
using namespace std;
class Foo {
public:
Foo() : m_Int(0) {}
operator bool() {
return true; // also tried false here
}
private:
int m_Int;
};
int main()
{
Foo f;
if (f.operator bool()) cout << "operator bool is true.\n";
if ((bool)f) cout << "(bool)f is true.\n";
return 0;
}
When the binary is run, the output is as expected, i.e. (bool)f is the same as f.operator bool(), regardless of the compiler. However, if gdb is used with code build using g++, then the p command behaves correctly. Yet when gdb is run on code built using clang++, I get:
(gdb) print f.operator bool()
Couldn't find method Foo::operatorbool
(gdb)
I'm running clang v. 3.4, gcc v. 4.8.4 on Ubuntu 14.04.
In fact, a quick search revealed this: Is it possible to debug a gcc-compiled program using lldb, or debug a clang-compiled program using gdb?. So, I tried lldb, and it worked as expected. This is consistent with the comment that was added as I was investigating.
I want to replace the calls to system() function made by my program using LD_PRELOAD.
So I created the following wrapper functions in a shared library for testing.
// syshook.c
int system(const char * command)
{
printf("system() called for %s ************************************\n", command);
return 55;
}
char * getenv (const char* name)
{
printf("my getenv() *********************");
return 0;
}
And compiled and linked to a shared object libsyshook.so with gcc.
gcc -Wall -fPIC -c *.c
gcc -shared -Wl,-soname,libsyshook.so -o libsyshook.so.1.0
ln -s libsyshook.so libsyshook.so.1.0
However, when I run the program with with LD_PRELOAD as shown below, my wrapper function for system() is not called, but the wrapper for getenv() called.
LD_PRELOAD="libsyshook.so" myprog
When I attach the debugger, I can see that system() call, calls the implementation in libpthread.so. So why is redirecting system() not working. I don't think there is any limitation on that ??
Edit:
My test program compiled to myprog above looks like this. Comments indicate my observations.
void TestClass::testMethod()
{
string cmdLine = "date";
if (!mainWin) cmdLine = "time";
int retFromSys = system(cmdLine.c_str()); // goes into libpthread when stepped in.
cout << "return from system " << retFromSys << endl; // prints 0, not 55
getenv("DEBUG_SYS"); // Wrapper function called for this. Prints "my getenv ****** ..."
The most usual case of bad linking with LD_PRELOAD is when GCC replace your function by another one, when he think it can make your code faster to execute.
For instance, if GCC read this line in your code :
printf("%d", strlen("toto"));
It will replace with this line before compiling it :
puts("4");
Because it knows the printf and strlen functions, and think the output would be the same with puts function.
In this example, if you made your own printf or strlen function in a library loaded with LD_PRELOAD, your function won't be called after compilation, because GCC would have replaced function calls.
I think your problem is for the same reason. system is a very heavy function, and GCC may replaced your function call by another. For instance, if you tried :
system("ls");
GCC might replaced your line by :
execlp("ls", "ls");
That would do the same, but in less heavy. It couldn't know that you wanted to use your own system function. Try to disassemble your code to check if this is the problem.
As solution, I suggest you to try to call system with a more "random" parameter, to make GCC think it should not try to replace it. Maybe something like :
int main(int argc, char** argv)
{
char* line = NULL;
// Useless condition to make GCC think the parameter is variable
if (argc == 1)
line = "ls";
return (system(line));
}
C++ is a static, compiled language, templates are resolved during compile time and so on...
But is it possible to create a function during runtime, that is not described in the source code and has not been converted to machine language during compilation, so that a user can throw at it data that has not been anticipated in the source?
I am aware this cannot happen in a straightforward way, but surely it must be possible, there are plenty of programing languages that are not compiled and create that sort of stuff dynamically that are implemented in either C or C++.
Maybe if factories for all primitive types are created, along with suitable data structures to organize them into more complex objects such as user types and functions, this is achievable?
Any info on the subject as well as pointers to online materials are welcome. Thanks!
EDIT: I am aware it is possible, it is more like I am interested in implementation details :)
Yes, of course, without any tools mentioned in the other answers, but simply using the C++ compiler.
just follow these steps from within your C++ program (on linux, but must be similar on other OS)
write a C++ program into a file (e.g. in /tmp/prog.cc), using an ofstream
compile the program via system("c++ /tmp/prog.cc -o /tmp/prog.so -shared -fPIC");
load the program dynamically, e.g. using dlopen()
You can also just give the bytecode directly to a function and just pass it casted as the function type as demonstrated below.
e.g.
byte[3] func = { 0x90, 0x0f, 0x1 }
*reinterpret_cast<void**>(&func)()
Yes, JIT compilers do it all the time. They allocate a piece of memory that has been given special execution rights by the OS, then fill it with code and cast the pointer to a function pointer and execute it. Pretty simple.
EDIT: Here's an example on how to do it in Linux: http://burnttoys.blogspot.de/2011/04/how-to-allocate-executable-memory-on.html
Below an example for C++ runtime compilation based on the method mentioned before (write code to output file, compile via system(), load via dlopen() and dlsym()). See also the example in a related question. The difference here is that it dynamically compiles a class rather than a function. This is achieved by adding a C-style maker() function to the code to be compiled dynamically. References:
https://www.linuxjournal.com/article/3687
http://www.tldp.org/HOWTO/C++-dlopen/thesolution.html
The example only works under Linux (Windows has LoadLibrary and GetProcAddress functions instead), and requires the identical compiler to be available on the target machine.
baseclass.h
#ifndef BASECLASS_H
#define BASECLASS_H
class A
{
protected:
double m_input; // or use a pointer to a larger input object
public:
virtual double f(double x) const = 0;
void init(double input) { m_input=input; }
virtual ~A() {};
};
#endif /* BASECLASS_H */
main.cpp
#include "baseclass.h"
#include <cstdlib> // EXIT_FAILURE, etc
#include <string>
#include <iostream>
#include <fstream>
#include <dlfcn.h> // dynamic library loading, dlopen() etc
#include <memory> // std::shared_ptr
// compile code, instantiate class and return pointer to base class
// https://www.linuxjournal.com/article/3687
// http://www.tldp.org/HOWTO/C++-dlopen/thesolution.html
// https://stackoverflow.com/questions/11016078/
// https://stackoverflow.com/questions/10564670/
std::shared_ptr<A> compile(const std::string& code)
{
// temporary cpp/library output files
std::string outpath="/tmp";
std::string headerfile="baseclass.h";
std::string cppfile=outpath+"/runtimecode.cpp";
std::string libfile=outpath+"/runtimecode.so";
std::string logfile=outpath+"/runtimecode.log";
std::ofstream out(cppfile.c_str(), std::ofstream::out);
// copy required header file to outpath
std::string cp_cmd="cp " + headerfile + " " + outpath;
system(cp_cmd.c_str());
// add necessary header to the code
std::string newcode = "#include \"" + headerfile + "\"\n\n"
+ code + "\n\n"
"extern \"C\" {\n"
"A* maker()\n"
"{\n"
" return (A*) new B(); \n"
"}\n"
"} // extern C\n";
// output code to file
if(out.bad()) {
std::cout << "cannot open " << cppfile << std::endl;
exit(EXIT_FAILURE);
}
out << newcode;
out.flush();
out.close();
// compile the code
std::string cmd = "g++ -Wall -Wextra " + cppfile + " -o " + libfile
+ " -O2 -shared -fPIC &> " + logfile;
int ret = system(cmd.c_str());
if(WEXITSTATUS(ret) != EXIT_SUCCESS) {
std::cout << "compilation failed, see " << logfile << std::endl;
exit(EXIT_FAILURE);
}
// load dynamic library
void* dynlib = dlopen (libfile.c_str(), RTLD_LAZY);
if(!dynlib) {
std::cerr << "error loading library:\n" << dlerror() << std::endl;
exit(EXIT_FAILURE);
}
// loading symbol from library and assign to pointer
// (to be cast to function pointer later)
void* create = dlsym(dynlib, "maker");
const char* dlsym_error=dlerror();
if(dlsym_error != NULL) {
std::cerr << "error loading symbol:\n" << dlsym_error << std::endl;
exit(EXIT_FAILURE);
}
// execute "create" function
// (casting to function pointer first)
// https://stackoverflow.com/questions/8245880/
A* a = reinterpret_cast<A*(*)()> (create)();
// cannot close dynamic lib here, because all functions of the class
// object will still refer to the library code
// dlclose(dynlib);
return std::shared_ptr<A>(a);
}
int main(int argc, char** argv)
{
double input=2.0;
double x=5.1;
// code to be compiled at run-time
// class needs to be called B and derived from A
std::string code = "class B : public A {\n"
" double f(double x) const \n"
" {\n"
" return m_input*x;\n"
" }\n"
"};";
std::cout << "compiling.." << std::endl;
std::shared_ptr<A> a = compile(code);
a->init(input);
std::cout << "f(" << x << ") = " << a->f(x) << std::endl;
return EXIT_SUCCESS;
}
output
$ g++ -Wall -std=c++11 -O2 -c main.cpp -o main.o # c++11 required for std::shared_ptr
$ g++ -ldl main.o -o main
$ ./main
compiling..
f(5.1) = 10.2
Have a look at libtcc; it is simple, fast, reliable and suits your need. I use it whenever I need to compile C functions "on the fly".
In the archive, you will find the file examples/libtcc_test.c, which can give you a good head start.
This little tutorial might also help you: http://blog.mister-muffin.de/2011/10/22/discovering-tcc/
#include <stdlib.h>
#include <stdio.h>
#include "libtcc.h"
int add(int a, int b) { return a + b; }
char my_program[] =
"int fib(int n) {\n"
" if (n <= 2) return 1;\n"
" else return fib(n-1) + fib(n-2);\n"
"}\n"
"int foobar(int n) {\n"
" printf(\"fib(%d) = %d\\n\", n, fib(n));\n"
" printf(\"add(%d, %d) = %d\\n\", n, 2 * n, add(n, 2 * n));\n"
" return 1337;\n"
"}\n";
int main(int argc, char **argv)
{
TCCState *s;
int (*foobar_func)(int);
void *mem;
s = tcc_new();
tcc_set_output_type(s, TCC_OUTPUT_MEMORY);
tcc_compile_string(s, my_program);
tcc_add_symbol(s, "add", add);
mem = malloc(tcc_relocate(s, NULL));
tcc_relocate(s, mem);
foobar_func = tcc_get_symbol(s, "foobar");
tcc_delete(s);
printf("foobar returned: %d\n", foobar_func(32));
free(mem);
return 0;
}
Ask questions in the comments if you meet any problems using the library!
In addition to simply using an embedded scripting language (Lua is great for embedding) or writing your own compiler for C++ to use at runtime, if you really want to use C++ you can just use an existing compiler.
For example Clang is a C++ compiler built as libraries that could be easily embedded in another program. It was designed to be used from programs like IDEs that need to analyze and manipulate C++ source in various ways, but using the LLVM compiler infrasructure as a backend it also has the ability to generate code at runtime and hand you a function pointer that you can call to run the generated code.
Clang
LLVM
Essentially you will need to write a C++ compiler within your program (not a trivial task), and do the same thing JIT compilers do to run the code. You were actually 90% of the way there with this paragraph:
I am aware this cannot happen in a straightforward way, but surely it
must be possible, there are plenty of programing languages that are
not compiled and create that sort of stuff dynamically that are
implemented in either C or C++.
Exactly--those programs carry the interpreter with them. You run a python program by saying python MyProgram.py--python is the compiled C code that has the ability to interpret and run your program on the fly. You would need do something along those lines, but by using a C++ compiler.
If you need dynamic functions that badly, use a different language :)
A typical approach for this is to combine a C++ (or whatever it's written on) project with scripting language.
Lua is one of the top favorites, since it's well documented, small, and has bindings for a lot of languages.
But if you are not looking into that direction, perhaps you could think of making a use of dynamic libraries?
Yes - you can write a compiler for C++, in C++, with some extra features - write your own functions, compile and run automatically (or not)...
Have a look into ExpressionTrees in .NET - I think this is basically what you want to achieve. Create a tree of subexpressions and then evaluate them. In an object-oriented fashion, each node in the might know how to evaluate itself, by recursion into its subnodes. Your visual language would then create this tree and you can write a simple interpreter to execute it.
Also, check out Ptolemy II, as an example in Java on how such a visual programming language can be written.
You could take a look at Runtime Compiled C++ (or see RCC++ blog and videos), or perhaps try one of its alternatives.
Expanding on Jay's answer using opcodes, the below works on Linux.
Learn opcodes from your compiler:
write own myfunc.cpp, e.g.
double f(double x) { return x*x; }
compile with
$ g++ -O2 -c myfunc.cpp
disassemble function f
$ gdb -batch -ex "file ./myfunc.o" -ex "set disassembly-flavor intel" -ex "disassemble/rs f"
Dump of assembler code for function _Z1fd:
0x0000000000000000 <+0>: f2 0f 59 c0 mulsd xmm0,xmm0
0x0000000000000004 <+4>: c3 ret
End of assembler dump.
This means the function x*x in assembly is mulsd xmm0,xmm0, ret and in machine code f2 0f 59 c0 c3.
Write your own function in machine code:
opcode.cpp
#include <cstdlib> // EXIT_FAILURE etc
#include <cstdio> // printf(), fopen() etc
#include <cstring> // memcpy()
#include <sys/mman.h> // mmap()
// allocate memory and fill it with machine code instructions
// returns pointer to memory location and length in bytes
void* gencode(size_t& length)
{
// machine code
unsigned char opcode[] = {
0xf2, 0x0f, 0x59, 0xc0, // mulsd xmm0,xmm0
0xc3 // ret
};
// allocate memory which allows code execution
// https://en.wikipedia.org/wiki/NX_bit
void* buf = mmap(NULL,sizeof(opcode),PROT_READ|PROT_WRITE|PROT_EXEC,
MAP_PRIVATE|MAP_ANON,-1,0);
// copy machine code to executable memory location
memcpy(buf, opcode, sizeof(opcode));
// return: pointer to memory location with executable code
length = sizeof(opcode);
return buf;
}
// print the disassemby of buf
void print_asm(const void* buf, size_t length)
{
FILE* fp = fopen("/tmp/opcode.bin", "w");
if(fp!=NULL) {
fwrite(buf, length, 1, fp);
fclose(fp);
}
system("objdump -D -M intel -b binary -mi386 /tmp/opcode.bin");
}
int main(int, char**)
{
// generate machine code and point myfunc() to it
size_t length;
void* code=gencode(length);
double (*myfunc)(double); // function pointer
myfunc = reinterpret_cast<double(*)(double)>(code);
double x=1.5;
printf("f(%f)=%f\n", x,myfunc(x));
print_asm(code,length); // for debugging
return EXIT_SUCCESS;
}
compile and run
$ g++ -O2 opcode.cpp -o opcode
$ ./opcode
f(1.500000)=2.250000
/tmp/opcode.bin: file format binary
Disassembly of section .data:
00000000 <.data>:
0: f2 0f 59 c0 mulsd xmm0,xmm0
4: c3 ret
The simplest solution available, if you're not looking for performance is to embed a scripting language interpreter, e.g. for Lua or Python.
It worked for me like this. You have to use the -fpermissive flag.
I am using CodeBlocks 17.12.
#include <cstddef>
using namespace std;
int main()
{
char func[] = {'\x90', '\x0f', '\x1'};
void (*func2)() = reinterpret_cast<void*>(&func);
func2();
return 0;
}
In the new Go language, how do I call C++ code? In other words, how can I wrap my C++ classes and use them in Go?
Update: I've succeeded in linking a small test C++ class with Go
If you wrap you C++ code with a C interface you should be able to call your library with cgo (see the example of gmp in $GOROOT/misc/cgo/gmp).
I'm not sure if the idea of a class in C++ is really expressible in Go, as it doesn't have inheritance.
Here's an example:
I have a C++ class defined as:
// foo.hpp
class cxxFoo {
public:
int a;
cxxFoo(int _a):a(_a){};
~cxxFoo(){};
void Bar();
};
// foo.cpp
#include <iostream>
#include "foo.hpp"
void
cxxFoo::Bar(void){
std::cout<<this->a<<std::endl;
}
which I want to use in Go. I'll use the C interface
// foo.h
#ifdef __cplusplus
extern "C" {
#endif
typedef void* Foo;
Foo FooInit(void);
void FooFree(Foo);
void FooBar(Foo);
#ifdef __cplusplus
}
#endif
(I use a void* instead of a C struct so the compiler knows the size of Foo)
The implementation is:
//cfoo.cpp
#include "foo.hpp"
#include "foo.h"
Foo FooInit()
{
cxxFoo * ret = new cxxFoo(1);
return (void*)ret;
}
void FooFree(Foo f)
{
cxxFoo * foo = (cxxFoo*)f;
delete foo;
}
void FooBar(Foo f)
{
cxxFoo * foo = (cxxFoo*)f;
foo->Bar();
}
with all that done, the Go file is:
// foo.go
package foo
// #include "foo.h"
import "C"
import "unsafe"
type GoFoo struct {
foo C.Foo;
}
func New()(GoFoo){
var ret GoFoo;
ret.foo = C.FooInit();
return ret;
}
func (f GoFoo)Free(){
C.FooFree(unsafe.Pointer(f.foo));
}
func (f GoFoo)Bar(){
C.FooBar(unsafe.Pointer(f.foo));
}
The makefile I used to compile this was:
// makefile
TARG=foo
CGOFILES=foo.go
include $(GOROOT)/src/Make.$(GOARCH)
include $(GOROOT)/src/Make.pkg
foo.o:foo.cpp
g++ $(_CGO_CFLAGS_$(GOARCH)) -fPIC -O2 -o $# -c $(CGO_CFLAGS) $<
cfoo.o:cfoo.cpp
g++ $(_CGO_CFLAGS_$(GOARCH)) -fPIC -O2 -o $# -c $(CGO_CFLAGS) $<
CGO_LDFLAGS+=-lstdc++
$(elem)_foo.so: foo.cgo4.o foo.o cfoo.o
gcc $(_CGO_CFLAGS_$(GOARCH)) $(_CGO_LDFLAGS_$(GOOS)) -o $# $^ $(CGO_LDFLAGS)
Try testing it with:
// foo_test.go
package foo
import "testing"
func TestFoo(t *testing.T){
foo := New();
foo.Bar();
foo.Free();
}
You'll need to install the shared library with make install, then run make test. Expected output is:
gotest
rm -f _test/foo.a _gotest_.6
6g -o _gotest_.6 foo.cgo1.go foo.cgo2.go foo_test.go
rm -f _test/foo.a
gopack grc _test/foo.a _gotest_.6 foo.cgo3.6
1
PASS
Seems that currently SWIG is best solution for this:
https://www.swig.org/Doc4.0/Go.html
It supports inheritance and even allows to subclass C++ class with Go struct so when overridden methods are called in C++ code, Go code is fired.
Section about C++ in Go FAQ is updated and now mentions SWIG and no longer says "because Go is garbage-collected it will be unwise to do so, at least naively".
As of go1.2+, cgo automatically incorporates and compiles C++ code:
http://golang.org/doc/go1.2#cgo_and_cpp
You can't quite yet from what I read in the FAQ:
Do Go programs link with C/C++ programs?
There are two Go compiler implementations, gc (the 6g program and friends) and gccgo. Gc uses a different calling convention and linker and can therefore only be linked with C programs using the same convention. There is such a C compiler but no C++ compiler. Gccgo is a GCC front-end that can, with care, be linked with GCC-compiled C or C++ programs.
The cgo program provides the mechanism for a “foreign function interface” to allow safe calling of C libraries from Go code. SWIG extends this capability to C++ libraries.
I've created the following example based on Scott Wales' answer. I've tested it in macOS High Sierra 10.13.3 running go version go1.10 darwin/amd64.
(1) Code for library.hpp, the C++ API we aim to call.
#pragma once
class Foo {
public:
Foo(int value);
~Foo();
int value() const;
private:
int m_value;
};
(2) Code for library.cpp, the C++ implementation.
#include "library.hpp"
#include <iostream>
Foo::Foo(int value) : m_value(value) {
std::cout << "[c++] Foo::Foo(" << m_value << ")" << std::endl;
}
Foo::~Foo() { std::cout << "[c++] Foo::~Foo(" << m_value << ")" << std::endl; }
int Foo::value() const {
std::cout << "[c++] Foo::value() is " << m_value << std::endl;
return m_value;
}
(3) Code for library-bridge.h the bridge needed to expose a C API implemented in C++ so that go can use it.
#pragma once
#ifdef __cplusplus
extern "C" {
#endif
void* LIB_NewFoo(int value);
void LIB_DestroyFoo(void* foo);
int LIB_FooValue(void* foo);
#ifdef __cplusplus
} // extern "C"
#endif
(4) Code for library-bridge.cpp, the implementation of the bridge.
#include <iostream>
#include "library-bridge.h"
#include "library.hpp"
void* LIB_NewFoo(int value) {
std::cout << "[c++ bridge] LIB_NewFoo(" << value << ")" << std::endl;
auto foo = new Foo(value);
std::cout << "[c++ bridge] LIB_NewFoo(" << value << ") will return pointer "
<< foo << std::endl;
return foo;
}
// Utility function local to the bridge's implementation
Foo* AsFoo(void* foo) { return reinterpret_cast<Foo*>(foo); }
void LIB_DestroyFoo(void* foo) {
std::cout << "[c++ bridge] LIB_DestroyFoo(" << foo << ")" << std::endl;
AsFoo(foo)->~Foo();
}
int LIB_FooValue(void* foo) {
std::cout << "[c++ bridge] LIB_FooValue(" << foo << ")" << std::endl;
return AsFoo(foo)->value();
}
(5) Finally, library.go, the go program calling the C++ API.
package main
// #cgo LDFLAGS: -L. -llibrary
// #include "library-bridge.h"
import "C"
import "unsafe"
import "fmt"
type Foo struct {
ptr unsafe.Pointer
}
func NewFoo(value int) Foo {
var foo Foo
foo.ptr = C.LIB_NewFoo(C.int(value))
return foo
}
func (foo Foo) Free() {
C.LIB_DestroyFoo(foo.ptr)
}
func (foo Foo) value() int {
return int(C.LIB_FooValue(foo.ptr))
}
func main() {
foo := NewFoo(42)
defer foo.Free() // The Go analog to C++'s RAII
fmt.Println("[go]", foo.value())
}
Using the following Makefile
liblibrary.so: library.cpp library-bridge.cpp
clang++ -o liblibrary.so library.cpp library-bridge.cpp \
-std=c++17 -O3 -Wall -Wextra -fPIC -shared
I can run the example program as follows:
$ make
clang++ -o liblibrary.so library.cpp library-bridge.cpp \
-std=c++17 -O3 -Wall -Wextra -fPIC -shared
$ go run library.go
[c++ bridge] LIB_NewFoo(42)
[c++] Foo::Foo(42)
[c++ bridge] LIB_NewFoo(42) will return pointer 0x42002e0
[c++ bridge] LIB_FooValue(0x42002e0)
[c++] Foo::value() is 42
[go] 42
[c++ bridge] LIB_DestroyFoo(0x42002e0)
[c++] Foo::~Foo(42)
Important
The comments above import "C" in the go program are NOT OPTIONAL. You must put them exactly as shown so that cgo knows which header and library to load, in this case:
// #cgo LDFLAGS: -L. -llibrary
// #include "library-bridge.h"
import "C"
Link to GitHub repo with the full example.
Looks it's one of the early asked question about Golang . And same time answers to never update . During these three to four years , too many new libraries and blog post has been out . Below are the few links what I felt useful .
SWIG and Go
Calling C++ Code From Go With SWIG
On comparing languages, C++ and Go
GoForCPPProgrammers
There's talk about interoperability between C and Go when using the gcc Go compiler, gccgo. There are limitations both to the interoperability and the implemented feature set of Go when using gccgo, however (e.g., limited goroutines, no garbage collection).
You're walking on uncharted territory here. Here is the Go example for calling C code, perhaps you can do something like that after reading up on C++ name mangling and calling conventions, and lots of trial and error.
If you still feel like trying it, good luck.
You might need to add -lc++ to the LDFlags for Golang/CGo to recognize the need for the standard library.
The problem here is that a compliant implementation does not need to put your classes in a compile .cpp file. If the compiler can optimize out the existence of a class, so long as the program behaves the same way without it, then it can be omitted from the output executable.
C has a standardized binary interface. Therefore you'll be able to know that your functions are exported. But C++ has no such standard behind it.
Funny how many broader issues this announcement has dredged up. Dan Lyke had a very entertaining and thoughtful discussion on his website, Flutterby, about developing Interprocess Standards as a way of bootstrapping new languages (and other ramifications, but that's the one that is germane here).
This can be achieved using command cgo.
In essence
'If the import of "C" is immediately preceded by a comment, that comment, called the preamble, is used as a header when compiling the C parts of the package. For example:'
source:https://golang.org/cmd/cgo/
// #include <stdio.h>
// #include <errno.h>
import "C"