I'm trying to get the Y value of pixel from a frame that's in Ycbcr color mode.
here what I' wrote:
cv::Mat frame, Ycbcrframe, helpframe;
........
cvtColor(frame,yCbCrFrame,CV_RGB2YCrCb); // converting to Ycbcr
Vec3b intensity =yCbCrFrame.at<uchar>(YPoint);
uchar yv = intensity.val[0]; // I thought it's my Y value but its not, coz he gives me I think the Blue channel of RGB color space
any Idea how what the correct way to do that
what about the following code?
Vec3f Y_pix = YCbCrframe.at<Vec3f>(rows, cols);
int pixelval = Y_pix[0];
(P.S. I havent tried it yet)
You need to know both the depth (numerical format and precision of channel sample) as well as the channel count (typically 3, but can also be 1 (monochrome) or 4 (alpha-containing)), ahead of time.
For 3-channel, 8-bit unsigned integer (a.k.a. byte or uchar) pixel format, each pixel can be accessed with
mat8UC3.at<cv::Vec3b>(pt);
Related
I am receiving a video frame in a GstVideoFrame structure of a gstreamer element which is written in C++.
The frame is in YUV420 NV12 format
In this gstreamer element, I am trying to copy y-frame and uv-frame in separate buffers.
According to videolan.org, the YUV420 NV12 data is stored as following in the incoming frame buffer : (info copied from website)
NV12:
Related to I420, NV12 has one luma "luminance" plane Y and one plane with U and V values interleaved.
In NV12, chroma planes (blue and red) are subsampled in both the horizontal and vertical dimensions by a factor of 2.
For a 2×2 group of pixels, you have 4 Y samples and 1 U and 1 V sample.
It can be helpful to think of NV12 as I420 with the U and V planes interleaved.
Here is a graphical representation of NV12. Each letter represents one bit:
For 1 NV12 pixel: YYYYYYYY UVUV
For a 2-pixel NV12 frame: YYYYYYYYYYYYYYYY UVUVUVUV
For a 50-pixel NV12 frame: Y×8×50 (UV)×2×50
For a n-pixel NV12 frame: Y×8×n (UV)×2×n
but I cant seem to calculate the offset of y-data and uv-data in the buffer.
Update_1 : I have height and width of the frame to calculate the size of y-data and uv-data as:
y_size = width * height;
uv_size = y_size / 2;
any help or comments regarding this will be appreciated.
thanks
Thanks to #Ext3h, this is how I was able to separate y-data and uv-data from incoming YUV frame.
y_data = (u8 *)GST_VIDEO_FRAME_PLANE_DATA (in_frame, 0);
uv_data =(u8 *)GST_VIDEO_FRAME_PLANE_DATA (in_frame, 1);
I'm tries to access Cimg pixel values to print out the pixel intensity that my mouse is at, as well as calculating a histogram. However, I got all zeros from Cimg object.
The cimg image is initiated from memory buffer and it is 12 bit gray scale image, but padded to 16 bit to save in memory.
The code below is defined in a function that is called multiple times. I want to refresh the images in the current display and not to produce a new one every time the function is called. So the Cimgdisp is defined outside the function.
#include "include\CImg.h"
int main(){
CImg <unsigned short> image(width,height,1,1);
CImgDisplay disp(image);
//showImg() get called multiple times here
}
void showImg(){
unsigned short* imgPtr = (unsigned short*) (getImagePtr());
CImg <unsigned short> img(imgPtr,width,height);
img*=(65535/4095);//Renormalise from 12 bit input to 16bit for better display
//Display
disp->render(img);
disp->paint();
img*=(4095/65535);//Normalise back to get corect intensities
CImg <float> hist(img.histogram(100));
hist.display_graph(0,3);
//find mouse position and disp intensity
mouseX = disp->mouse_x()*width/disp->width();//Rescale the position of the mouse to true position of the image
mouseY = disp->mouse_y()*height/disp->height();
if (mouseX>0&mouseY>0){
PxIntensity = img(mouseX,mouseY,0,0);}
else {
PxIntensity = -1;}
}
All the intensities I retrieve are zero and the histogram is also zero.
img*=(4095/65535);//Normalise back to get corect intensities is incorrect, as (4095/65535)=0 in C/C++ (division of an integer by a larger one).
Maybe img*=(4095/65535.); ?
If you just want to scale between 12-bit and 16-bit and back then just using bit-shifts might be better.
img<<=4;//Renormalise from 12 bit input to 16bit for better display
//Display
disp->render(img);
disp->paint();
img>>=4;//Normalise back to get corect intensities
How can I achieve the values of the RGB channels as
Float data type
Intensity range within 0-255
I used CV_32FC4 as the matrix type since I'll perform floating-point mathematical operations to implement Daltonization. I was expecting that the intensity range is the same with the intensity range of the RGB Channels in CV_8UC3, just having a different data type. But when I printed the matrix I noticed that the intensities of the channels are not within 0-255. I realized that it due to the range of the float matrix type.
Mat mFrame(height, width, CV_32FC4, (unsigned char *)pNV21FrameData);
for(int y = 0 ; y < height ; y++){
for(int x = 0 ; x < width ; x++){
Vec4f BGRA = mFrame.at<Vec4f>(y,x);
// Algorithm Implementation
mFrame.at<Vec4f>(y,x) = BGRA;
}
}
Mat mResult;
mFrame.convertTo(mResult, CV_8UC4, 1.0/255.0);
I need to manipulate the pixels like BGRA[0] = BGRA[0] * n; then assign it back to the matrix.
By your comments and the link in it I see that the data comes in BGRA. The data is in uchar.
I assume this from this line:
Mat mResult(height, width, CV_8UC4, (unsigned char *)poutPixels);
To solve this you can create the matrix and then convert it to float.
Mat mFrame(height, width, CV_8UC4, (unsigned char *)pNV21FrameData);
Mat mFloatFrame;
mFrame.convertTo(mFloatFrame, CV_32FC4);
Notice that this will keep the current ranges (0-255) if you need another one (like 0-1) you may put the scaling factor.
Finally you can convert back, but beware that this function does saturate_cast. If you have an specific way you want to manage the overflow or the decimals, you will have to do it before converting it.
Mat mResult;
mFloatFrame.convertTo(mResult, CV_8UC4);
Note that 1.0/255.0 is not there, since the data is already in the range of 0-255 (at least before the operations).
One final comment, the link in your comments use IplImage and other old C (deprecated) versions of OpenCv. If you are working in c++, stick to the c++ versions like Mat. This is not in the code you show here, but in the you linked. This comment is more for you to avoid future headaches.
I've created a function that creates a BMP image using RGB values.
The RGB values are stored as floats that range from 0.0 to 1.0.
When writing the values to the BMP file they need to range from 0 to 255.0 so I multiply the floats by 255.0
They also need to be unsigned chars.
EDIT: Unless one of you can think of a better type.
So basically what I do is this
unsigned char pixel[3]
//BMP Expects BGR
pixel[0] = image.b*255.0;
pixel[1] = image.g*255.0;
pixel[2] = image.r*255.0;
fwrite(&pixel, 1, 3, file);
Where image.r is a float.
There seems to be some kind of loss of data in the conversion because some parts of the image are black when they shouldn't be.
The BMP image is set to 24 bits per pixel
I was going to post images but I don't have enough reputation.
edit:
BMP image
http://tinypic.com/r/2qw3cdv/8
Printscreen
http://tinypic.com/r/2q3rm07/8
Basically light blue parts become black.
If I multiply by 128 instead the image is darker but otherwise accurate. It starts getting weird around 180 ish
I'm working on a NES emulator right now and I'm having trouble figuring out how to render the pixels. I am using a 3 dimensional array to hold the RGB value of each pixel. The array definition looks like this for the 256 x 224 screen size:
byte screenData[224][256][3];
For example, [0][0][0] holds the blue value, [0][0][1] holds the green values and [0][0][2] holds the red value of the pixel at screen position [0][0].
When the vblank flag goes high, I need to render the screen. When SDL goes to render the screen, the screenData array will be full of the RGB values for each pixel. I was able to find a function named SDL_CreateRGBSurfaceFrom that looked like it may work for what I want to do. However, all of the examples I have seen use 1 dimensional arrays for the RGB values and not a 3 dimensional array.
What would be the best way for me to render my pixels? It would also be nice if the function allowed me to resize the surface somehow so I didn't have to use a 256 x 224 window size.
You need to store the data as an unidimensional char array:
int channels = 3; // for a RGB image
char* pixels = new char[img_width * img_height * channels];
// populate pixels with real data ...
SDL_Surface *surface = SDL_CreateRGBSurfaceFrom((void*)pixels,
img_width,
img_height,
channels * 8, // bits per pixel = 24
img_width * channels, // pitch
0x0000FF, // red mask
0x00FF00, // green mask
0xFF0000, // blue mask
0); // alpha mask (none)
In 2.0, use SDL_Texture + SDL_TEXTUREACCESS_STREAMING + SDL_RenderCopy, it's faster than SDL_RenderPoint.
See:
official example: http://hg.libsdl.org/SDL/file/e12c38730512/test/teststreaming.c
my derived example which does not require blob data and compares both methods: https://github.com/cirosantilli/cpp-cheat/blob/0607da1236030d2e1ec56256a0d12cadb6924a41/sdl/plot2d.c
Related: Why do I get bad performance with SDL2 and SDL_RenderCopy inside a double for loop over all pixels?