Unwanted division operator behavior, what should I do? - c++

Problem description
During my fluid simulation, the physical time is marching as 0, 0.001, 0.002, ..., 4.598, 4.599, 4.6, 4.601, 4.602, .... Now I want to choose time = 0.1, 0.2, ..., 4.5, 4.6, ... from this time series and then do the further analysis. So I wrote the following code to judge if the fractpart hits zero.
But I am so surprised that I found the following two division methods are getting two different results, what should I do?
double param, fractpart, intpart;
double org = 4.6;
double ddd = 0.1;
// This is the correct one I need. I got intpart=46 and fractpart=0
// param = org*(1/ddd);
// This is not what I want. I got intpart=45 and fractpart=1
param = org/ddd;
fractpart = modf(param , &intpart);
Info<< "\n\nfractpart\t=\t"
<< fractpart
<< "\nAnd intpart\t=\t"
<< intpart
<< endl;
Why does it happen in this way?
And if you guys tolerate me a little bit, can I shout loudly: "Could C++ committee do something about this? Because this is confusing." :)
What is the best way to get a correct remainder to avoid the cut-off error effect? Is fmod a better solution? Thanks
Respond to the answer of
David Schwartz
double aTmp = 1;
double bTmp = 2;
double cTmp = 3;
double AAA = bTmp/cTmp;
double BBB = bTmp*(aTmp/cTmp);
Info<< "\n2/3\t=\t"
<< AAA
<< "\n2*(1/3)\t=\t"
<< BBB
<< endl;
And I got both ,
2/3 = 0.666667
2*(1/3) = 0.666667

Floating point values cannot exactly represent every possible number, so your numbers are being approximated. This results in different results when used in calculations.
If you need to compare floating point numbers, you should always use a small epsilon value rather than testing for equality. In your case I would round to the nearest integer (not round down), subtract that from the original value, and compare the abs() of the result against an epsilon.
If the question is, why does the sum differ, the simple answer is that they are different sums. For a longer explanation, here are the actual representations of the numbers involved:
org: 4.5999999999999996 = 0x12666666666666 * 2^-50
ddd: 0.10000000000000001 = 0x1999999999999a * 2^-56
1/ddd: 10 = 0x14000000000000 * 2^-49
org * (1/ddd): 46 = 0x17000000000000 * 2^-47
org / ddd: 45.999999999999993 = 0x16ffffffffffff * 2^-47
You will see that neither input value is exactly represented in a double, each having been rounded up or down to the nearest value. org has been rounded down, because the next bit in the sequence would be 0. ddd has been rounded up, because the next bit in that sequence would be a 1.
Because of this, when mathematical operations are performed the rounding can either cancel, or accumulate, depending on the operation and how the original numbers have been rounded.
In this case, 1/0.1 happens to round neatly back to exactly 10.
Multiplying org by 10 happens to round up.
Dividing org by ddd happens to round down (I say 'happens to', but you're dividing a rounded-down number by a rounded-up number, so it's natural that the result is less).
Different inputs will round differently.
It's only a single bit of error, which can be easily ignored with even a tiny epsilon.

If I understand your question correctly, it's this: Why, with limited-precision arithmetic, is X/Y not the same is X * (1/Y)?
And the reason is simple: Consider, for example, using six digits of decimal precision. While this is not what doubles actually do, the concept is precisely the same.
With six decimal digits, 1/3 is .333333. But 2/3 is .666667. So:
2 / 3 = .666667
2 * (1/3) = 2 * .333333 = .6666666
That's just the nature of fixed-precision math. If you can't tolerate this behavior, don't use limited-precision types.

Hm not really sure what you want to achieve, but if you want get a value and then want to
do some refine in the range of 1/1000, why not use integers instead of floats/doubles?
You would have a divisor, which is 1000, and have values that you iterate over that you need to multiply by your divisor.
So you would get something like
double org = ... // comes from somewhere
int divisor = 1000;
int referenceValue = org * div;
for (size_t step = referenceValue - 10; step < referenceValue + 10; ++step) {
// use (double) step / divisor to feed to your algorithm
}

You can't represent 4.6 precisely: http://www.binaryconvert.com/result_double.html?decimal=052046054
Use rounding before separating integer and fraction parts.
UPDATE
You may wish to use rational class from Boost library: http://www.boost.org/doc/libs/1_52_0/libs/rational/rational.html
CONCERNING YOUR TASK
To find required double take precision into account, for example, to find 4.6 calculate "closeness" to it:
double time;
...
double epsilon = 0.001;
if( abs(time-4.6) <= epsilon ) {
// found!
}

Related

How to round a floating point type to two decimals or more in C++? [duplicate]

How can I round a float value (such as 37.777779) to two decimal places (37.78) in C?
If you just want to round the number for output purposes, then the "%.2f" format string is indeed the correct answer. However, if you actually want to round the floating point value for further computation, something like the following works:
#include <math.h>
float val = 37.777779;
float rounded_down = floorf(val * 100) / 100; /* Result: 37.77 */
float nearest = roundf(val * 100) / 100; /* Result: 37.78 */
float rounded_up = ceilf(val * 100) / 100; /* Result: 37.78 */
Notice that there are three different rounding rules you might want to choose: round down (ie, truncate after two decimal places), rounded to nearest, and round up. Usually, you want round to nearest.
As several others have pointed out, due to the quirks of floating point representation, these rounded values may not be exactly the "obvious" decimal values, but they will be very very close.
For much (much!) more information on rounding, and especially on tie-breaking rules for rounding to nearest, see the Wikipedia article on Rounding.
Using %.2f in printf. It only print 2 decimal points.
Example:
printf("%.2f", 37.777779);
Output:
37.77
Assuming you're talking about round the value for printing, then Andrew Coleson and AraK's answer are correct:
printf("%.2f", 37.777779);
But note that if you're aiming to round the number to exactly 37.78 for internal use (eg to compare against another value), then this isn't a good idea, due to the way floating point numbers work: you usually don't want to do equality comparisons for floating point, instead use a target value +/- a sigma value. Or encode the number as a string with a known precision, and compare that.
See the link in Greg Hewgill's answer to a related question, which also covers why you shouldn't use floating point for financial calculations.
How about this:
float value = 37.777779;
float rounded = ((int)(value * 100 + .5) / 100.0);
printf("%.2f", 37.777779);
If you want to write to C-string:
char number[24]; // dummy size, you should take care of the size!
sprintf(number, "%.2f", 37.777779);
Always use the printf family of functions for this. Even if you want to get the value as a float, you're best off using snprintf to get the rounded value as a string and then parsing it back with atof:
#include <math.h>
#include <stdio.h>
#include <stddef.h>
#include <stdlib.h>
double dround(double val, int dp) {
int charsNeeded = 1 + snprintf(NULL, 0, "%.*f", dp, val);
char *buffer = malloc(charsNeeded);
snprintf(buffer, charsNeeded, "%.*f", dp, val);
double result = atof(buffer);
free(buffer);
return result;
}
I say this because the approach shown by the currently top-voted answer and several others here -
multiplying by 100, rounding to the nearest integer, and then dividing by 100 again - is flawed in two ways:
For some values, it will round in the wrong direction because the multiplication by 100 changes the decimal digit determining the rounding direction from a 4 to a 5 or vice versa, due to the imprecision of floating point numbers
For some values, multiplying and then dividing by 100 doesn't round-trip, meaning that even if no rounding takes place the end result will be wrong
To illustrate the first kind of error - the rounding direction sometimes being wrong - try running this program:
int main(void) {
// This number is EXACTLY representable as a double
double x = 0.01499999999999999944488848768742172978818416595458984375;
printf("x: %.50f\n", x);
double res1 = dround(x, 2);
double res2 = round(100 * x) / 100;
printf("Rounded with snprintf: %.50f\n", res1);
printf("Rounded with round, then divided: %.50f\n", res2);
}
You'll see this output:
x: 0.01499999999999999944488848768742172978818416595459
Rounded with snprintf: 0.01000000000000000020816681711721685132943093776703
Rounded with round, then divided: 0.02000000000000000041633363423443370265886187553406
Note that the value we started with was less than 0.015, and so the mathematically correct answer when rounding it to 2 decimal places is 0.01. Of course, 0.01 is not exactly representable as a double, but we expect our result to be the double nearest to 0.01. Using snprintf gives us that result, but using round(100 * x) / 100 gives us 0.02, which is wrong. Why? Because 100 * x gives us exactly 1.5 as the result. Multiplying by 100 thus changes the correct direction to round in.
To illustrate the second kind of error - the result sometimes being wrong due to * 100 and / 100 not truly being inverses of each other - we can do a similar exercise with a very big number:
int main(void) {
double x = 8631192423766613.0;
printf("x: %.1f\n", x);
double res1 = dround(x, 2);
double res2 = round(100 * x) / 100;
printf("Rounded with snprintf: %.1f\n", res1);
printf("Rounded with round, then divided: %.1f\n", res2);
}
Our number now doesn't even have a fractional part; it's an integer value, just stored with type double. So the result after rounding it should be the same number we started with, right?
If you run the program above, you'll see:
x: 8631192423766613.0
Rounded with snprintf: 8631192423766613.0
Rounded with round, then divided: 8631192423766612.0
Oops. Our snprintf method returns the right result again, but the multiply-then-round-then-divide approach fails. That's because the mathematically correct value of 8631192423766613.0 * 100, 863119242376661300.0, is not exactly representable as a double; the closest value is 863119242376661248.0. When you divide that back by 100, you get 8631192423766612.0 - a different number to the one you started with.
Hopefully that's a sufficient demonstration that using roundf for rounding to a number of decimal places is broken, and that you should use snprintf instead. If that feels like a horrible hack to you, perhaps you'll be reassured by the knowledge that it's basically what CPython does.
Also, if you're using C++, you can just create a function like this:
string prd(const double x, const int decDigits) {
stringstream ss;
ss << fixed;
ss.precision(decDigits); // set # places after decimal
ss << x;
return ss.str();
}
You can then output any double myDouble with n places after the decimal point with code such as this:
std::cout << prd(myDouble,n);
There isn't a way to round a float to another float because the rounded float may not be representable (a limitation of floating-point numbers). For instance, say you round 37.777779 to 37.78, but the nearest representable number is 37.781.
However, you can "round" a float by using a format string function.
You can still use:
float ceilf(float x); // don't forget #include <math.h> and link with -lm.
example:
float valueToRound = 37.777779;
float roundedValue = ceilf(valueToRound * 100) / 100;
In C++ (or in C with C-style casts), you could create the function:
/* Function to control # of decimal places to be output for x */
double showDecimals(const double& x, const int& numDecimals) {
int y=x;
double z=x-y;
double m=pow(10,numDecimals);
double q=z*m;
double r=round(q);
return static_cast<double>(y)+(1.0/m)*r;
}
Then std::cout << showDecimals(37.777779,2); would produce: 37.78.
Obviously you don't really need to create all 5 variables in that function, but I leave them there so you can see the logic. There are probably simpler solutions, but this works well for me--especially since it allows me to adjust the number of digits after the decimal place as I need.
Use float roundf(float x).
"The round functions round their argument to the nearest integer value in floating-point format, rounding halfway cases away from zero, regardless of the current rounding direction." C11dr §7.12.9.5
#include <math.h>
float y = roundf(x * 100.0f) / 100.0f;
Depending on your float implementation, numbers that may appear to be half-way are not. as floating-point is typically base-2 oriented. Further, precisely rounding to the nearest 0.01 on all "half-way" cases is most challenging.
void r100(const char *s) {
float x, y;
sscanf(s, "%f", &x);
y = round(x*100.0)/100.0;
printf("%6s %.12e %.12e\n", s, x, y);
}
int main(void) {
r100("1.115");
r100("1.125");
r100("1.135");
return 0;
}
1.115 1.115000009537e+00 1.120000004768e+00
1.125 1.125000000000e+00 1.129999995232e+00
1.135 1.134999990463e+00 1.139999985695e+00
Although "1.115" is "half-way" between 1.11 and 1.12, when converted to float, the value is 1.115000009537... and is no longer "half-way", but closer to 1.12 and rounds to the closest float of 1.120000004768...
"1.125" is "half-way" between 1.12 and 1.13, when converted to float, the value is exactly 1.125 and is "half-way". It rounds toward 1.13 due to ties to even rule and rounds to the closest float of 1.129999995232...
Although "1.135" is "half-way" between 1.13 and 1.14, when converted to float, the value is 1.134999990463... and is no longer "half-way", but closer to 1.13 and rounds to the closest float of 1.129999995232...
If code used
y = roundf(x*100.0f)/100.0f;
Although "1.135" is "half-way" between 1.13 and 1.14, when converted to float, the value is 1.134999990463... and is no longer "half-way", but closer to 1.13 but incorrectly rounds to float of 1.139999985695... due to the more limited precision of float vs. double. This incorrect value may be viewed as correct, depending on coding goals.
Code definition :
#define roundz(x,d) ((floor(((x)*pow(10,d))+.5))/pow(10,d))
Results :
a = 8.000000
sqrt(a) = r = 2.828427
roundz(r,2) = 2.830000
roundz(r,3) = 2.828000
roundz(r,5) = 2.828430
double f_round(double dval, int n)
{
char l_fmtp[32], l_buf[64];
char *p_str;
sprintf (l_fmtp, "%%.%df", n);
if (dval>=0)
sprintf (l_buf, l_fmtp, dval);
else
sprintf (l_buf, l_fmtp, dval);
return ((double)strtod(l_buf, &p_str));
}
Here n is the number of decimals
example:
double d = 100.23456;
printf("%f", f_round(d, 4));// result: 100.2346
printf("%f", f_round(d, 2));// result: 100.23
I made this macro for rounding float numbers.
Add it in your header / being of file
#define ROUNDF(f, c) (((float)((int)((f) * (c))) / (c)))
Here is an example:
float x = ROUNDF(3.141592, 100)
x equals 3.14 :)
Let me first attempt to justify my reason for adding yet another answer to this question. In an ideal world, rounding is not really a big deal. However, in real systems, you may need to contend with several issues that can result in rounding that may not be what you expect. For example, you may be performing financial calculations where final results are rounded and displayed to users as 2 decimal places; these same values are stored with fixed precision in a database that may include more than 2 decimal places (for various reasons; there is no optimal number of places to keep...depends on specific situations each system must support, e.g. tiny items whose prices are fractions of a penny per unit); and, floating point computations performed on values where the results are plus/minus epsilon. I have been confronting these issues and evolving my own strategy over the years. I won't claim that I have faced every scenario or have the best answer, but below is an example of my approach so far that overcomes these issues:
Suppose 6 decimal places is regarded as sufficient precision for calculations on floats/doubles (an arbitrary decision for the specific application), using the following rounding function/method:
double Round(double x, int p)
{
if (x != 0.0) {
return ((floor((fabs(x)*pow(double(10.0),p))+0.5))/pow(double(10.0),p))*(x/fabs(x));
} else {
return 0.0;
}
}
Rounding to 2 decimal places for presentation of a result can be performed as:
double val;
// ...perform calculations on val
String(Round(Round(Round(val,8),6),2));
For val = 6.825, result is 6.83 as expected.
For val = 6.824999, result is 6.82. Here the assumption is that the calculation resulted in exactly 6.824999 and the 7th decimal place is zero.
For val = 6.8249999, result is 6.83. The 7th decimal place being 9 in this case causes the Round(val,6) function to give the expected result. For this case, there could be any number of trailing 9s.
For val = 6.824999499999, result is 6.83. Rounding to the 8th decimal place as a first step, i.e. Round(val,8), takes care of the one nasty case whereby a calculated floating point result calculates to 6.8249995, but is internally represented as 6.824999499999....
Finally, the example from the question...val = 37.777779 results in 37.78.
This approach could be further generalized as:
double val;
// ...perform calculations on val
String(Round(Round(Round(val,N+2),N),2));
where N is precision to be maintained for all intermediate calculations on floats/doubles. This works on negative values as well. I do not know if this approach is mathematically correct for all possibilities.
...or you can do it the old-fashioned way without any libraries:
float a = 37.777779;
int b = a; // b = 37
float c = a - b; // c = 0.777779
c *= 100; // c = 77.777863
int d = c; // d = 77;
a = b + d / (float)100; // a = 37.770000;
That of course if you want to remove the extra information from the number.
this function takes the number and precision and returns the rounded off number
float roundoff(float num,int precision)
{
int temp=(int )(num*pow(10,precision));
int num1=num*pow(10,precision+1);
temp*=10;
temp+=5;
if(num1>=temp)
num1+=10;
num1/=10;
num1*=10;
num=num1/pow(10,precision+1);
return num;
}
it converts the floating point number into int by left shifting the point and checking for the greater than five condition.

distribute two integers according to ratio

Say, I have some integer n and would like to subdivide it into two other integers according to some ratio. I have some approach where I ask myself whether it does work or not.
For example: 20 with ratio 70% should be subdivided into 14,6.
The obvious solution would be:
int n = 20;
double ratio = .7;
int n1 = static_cast<int>(n * ratio);
int n2 = static_cast<int>(n * (1 - ratio));
Since the cast always floors, however, I usually underrate my result. If I use std::round, there are still cases that are not working. For example, if the first decimal place is a 5, then both numbers will be rounded up.
Some colleagues suggested: Ceil the first number and floor the second one. In most of my tests, this works, however:
1) Does it really always work, also taking into accounting possible rounding errors that naturally occur in multiplying numbers? What I think of: 20*.7 could be 14, while 20*.3 could be 5.999999. So, my sum might be 14 + 5 = 19. This is just my guess, however, I do not know whether these kind of results can or cannot occur (otherwise the answer would be simply that this kind of rounding proposition does not work)
2) Even if it does work... Why?
(I have in mind that I could just calculate number 1 by n * ratio and calculate number 2 by n - n * ratio, but I would still be interested in the answer to this question)
How about this?
int n = 20;
double ratio = .7;
int n1 = static_cast<int>(n * ratio);
int n2 = n - n1;
Here is example that confirms your suspicion and shows that the ceil+floor method doesn't always work. It is caused by the finite precision of floating point numbers on computer:
#include <iostream>
#include <cmath>
int main() {
int n = 10;
double ratio = 0.7;
int n1 = static_cast<int>(floor(n * ratio));
int n2 = static_cast<int>(ceil(n * (1.0 - ratio)));
std::cout << n1 << " " << n2 << std::endl;
}
Output:
7 4
7 + 4 is 11, so it's wrong.
Your solution doesn't always work, take a ratio of 77%, you'll get 15 and 4 (See on coliru).
Welcome to the domain of numerical analysis.
First, your computer can't always perfectly store a floating number. As you can see in the example, .77 is stored as 0.77000000000000001776 (it is an approach of the number by a sum of powers of 2).
When doing floating point calculation, you will always have a loss in precision. You can get this precision with std::numeric_limits<double>::epsilon().
Moreover, you'll still get more precision loss when converting from a floating number to an integer, and in your case the difference is big enough to give you an incoherent result.
The solution provided by #ToniBig and your last sentence has the advantage of "hiding" this loss and keep coherent data.

In which segment a given number lies in? [duplicate]

This question already has answers here:
Is floating point math broken?
(31 answers)
Closed 6 years ago.
Suppose to have n (integer) contiguous segments of length l (floating point). That is:
Segment 0 = [0, l)
Segment 1 = [l, 2*l)
Segment 2 = [2*l, 3*l)
...
Segment (n-1) = [(n-1)*l, n*l)
Given a number x (floating point) I want to determine the id of the segment it lies inside.
My first idea is the following:
int segmentId = (int) floor(x/l);
Anyway, this sometimes does not work. For example, consider
double l = 1.1;
double x = 5.5;
int segmentId = (int) floor(x/l); //returns 5
double l = 1.1;
double x = 6.6;
int segmentId = (int) floor(x/l); //returns 5!!!
Of course, due to finite arithmetic, this does not work well.
Maybe some extra checks are required in order to have a robust implementation, but I really don't know how to proceed further.
The question is: how would you solve the problem "In which segment a given number lies in?"
Your problem is that neither 1.1, nor 6.6 are representable exactly in binary floating point. So when you type
double l = 1.1;
double x = 6.6;
you get 2 numbers stored in l and in x, which are slightly different than 1.1 and 6.6. After that, int segmentId = (int) floor(x/l); determines the correct segment for those slightly different numbers, but not for the original numbers.
You can solve this problem by using a decimal floating point data type instead of binary. You can check C++ decimal data types and Exact decimal datatype for C++? for the libraries, or implement the decimal data type yourself.
But still the problem will remain for numbers, which are not representable in finite decimal floating point, such as 1/3 (circulating fraction), sqrt(2) (irrational), pi (transcendental), etc.
Just in case u don't specifically want an O(1) answer you can go for the O(logn) answer by just doing a binary search on the segments.
What precision does your solution require? There can always be a problem with marginal values for given segment, cause they are most likely unrepresentable.
I think adding a very small epsilon in this case could help. However it may fail in other case.
Check the segments again after the division.
bool inSegment(double x, double l, double segment)
{
return (x >= l*(segment-1)) && (x < l*segment);
}
int segmentId;
double segment = floor(x/l);
if (inSegment(x, l, segment-1))
segmentId = segment - 1;
else if (inSegment(x, l, segment))
segmentId = segment;
else if (inSegment(x, l, segment+1))
segmentId = segment + 1;
else
printf("Something wrong happened\n");
Or use an epsilon and round the value up if the value is close enough to an integer above.
how would you solve the problem "In which segment a given number lie in?"
You should divide the number by the segment length, then truncate the fractional part away. Like this:
int segmentId = (int) floor(x/l);
It seems that you have already figured this out.
Of course, due to finite arithmetic, this does not work well.
If the result of 6.6 / 1.1 happens to be5.9999999999999991118215802998747676610946655273438, then 5 is in fact the correct segment for the result.
If you would like 6.6 / 1.1 to be exactly 6, then your problem is with finite precision division, which doesn't do what you want and with finite precision representation of floating point numbers that has no exact representation for all numbers. The segmentation itself worked perfectly.
I really don't know how to proceed further
Either don't use finite precision floating point (use fixed or arbitrary precision), or don't require the results of calculations to be exact.

c++ float subtraction rounding error

I have a float value between 0 and 1. I need to convert it with -120 to 80.
To do this, first I multiply with 200 after 120 subtract.
When subtract is made I had rounding error.
Let's look my example.
float val = 0.6050f;
val *= 200.f;
Now val is 121.0 as I expected.
val -= 120.0f;
Now val is 0.99999992
I thought maybe I can avoid this problem with multiplication and division.
float val = 0.6050f;
val *= 200.f;
val *= 100.f;
val -= 12000.0f;
val /= 100.f;
But it didn't help. I have still 0.99 on my hand.
Is there a solution for it?
Edit: After with detailed logging, I understand there is no problem with this part of code. Before my log shows me "0.605", after I had detailed log and I saw "0.60499995946884155273437500000000000000000000000000"
the problem is in different place.
Edit2: I think I found the guilty. The initialised value is 0.5750.
std::string floatToStr(double d)
{
std::stringstream ss;
ss << std::fixed << std::setprecision(15) << d;
return ss.str();
}
int main()
{
float val88 = 0.57500000000f;
std::cout << floatToStr(val88) << std::endl;
}
The result is 0.574999988079071
Actually I need to add and sub 0.0025 from this value every time.
Normally I expected 0.575, 0.5775, 0.5800, 0.5825 ....
Edit3: Actually I tried all of them with double. And it is working for my example.
std::string doubleToStr(double d)
{
std::stringstream ss;
ss << std::fixed << std::setprecision(15) << d;
return ss.str();
}
int main()
{
double val88 = 0.575;
std::cout << doubleToStr(val88) << std::endl;
val88 += 0.0025;
std::cout << doubleToStr(val88) << std::endl;
val88 += 0.0025;
std::cout << doubleToStr(val88) << std::endl;
val88 += 0.0025;
std::cout << doubleToStr(val88) << std::endl;
return 0;
}
The results are:
0.575000000000000
0.577500000000000
0.580000000000000
0.582500000000000
But I bound to float unfortunately. I need to change lots of things.
Thank you for all to help.
Edit4: I have found my solution with strings. I use ostringstream's rounding and convert to double after that. I can have 4 precision right numbers.
std::string doubleToStr(double d, int precision)
{
std::stringstream ss;
ss << std::fixed << std::setprecision(precision) << d;
return ss.str();
}
double val945 = (double)0.575f;
std::cout << doubleToStr(val945, 4) << std::endl;
std::cout << doubleToStr(val945, 15) << std::endl;
std::cout << atof(doubleToStr(val945, 4).c_str()) << std::endl;
and results are:
0.5750
0.574999988079071
0.575
Let us assume that your compiler implements IEEE 754 binary32 and binary64 exactly for float and double values and operations.
First, you must understand that 0.6050f does not represent the mathematical quantity 6050 / 10000. It is exactly 0.605000019073486328125, the nearest float to that. Even if you write perfect computations from there, you have to remember that these computations start from 0.605000019073486328125 and not from 0.6050.
Second, you can solve nearly all your accumulated roundoff problems by computing with double and converting to float only in the end:
$ cat t.c
#include <stdio.h>
int main(){
printf("0.6050f is %.53f\n", 0.6050f);
printf("%.53f\n", (float)((double)0.605f * 200. - 120.));
}
$ gcc t.c && ./a.out
0.6050f is 0.60500001907348632812500000000000000000000000000000000
1.00000381469726562500000000000000000000000000000000000
In the above code, all computations and intermediate values are double-precision.
This 1.0000038… is a very good answer if you remember that you started with 0.605000019073486328125 and not 0.6050 (which doesn't exist as a float).
If you really care about the difference between 0.99999992 and 1.0, float is not precise enough for your application. You need to at least change to double.
If you need an answer in a specific range, and you are getting answers slightly outside that range but within rounding error of one of the ends, replace the answer with the appropriate range end.
The point everybody is making can be summarised: in general, floating point is precise but not exact.
How precise is governed by the number of bits in the mantissa -- which is 24 for float, and 53 for double (assuming IEEE 754 binary formats, which is pretty safe these days ! [1]).
If you are looking for an exact result, you have to be ready to deal with values that differ (ever so slightly) from that exact result, but...
(1) The Exact Binary Fraction Problem
...the first issue is whether the exact value you are looking for can be represented exactly in binary floating point form...
...and that is rare -- which is often a disappointing surprise.
The binary floating point representation of a given value can be exact, but only under the following, restricted circumstances:
the value is an integer, < 2^24 (float) or < 2^53 (double).
this is the simplest case, and perhaps obvious. Since you are looking a result >= -120 and <= 80, this is sufficient.
or:
the value is an integer which divides exactly by 2^n and is then (as above) < 2^24 or < 2^53.
this includes the first rule, but is more general.
or:
the value has a fractional part, but when the value is multiplied by the smallest 2^n necessary to produce an integer, that integer is < 2^24 (float) or 2^53 (double).
This is the part which may come as a surprise.
Consider 27.01, which is a simple enough decimal value, and clearly well within the ~7 decimal digit precision of a float. Unfortunately, it does not have an exact binary floating point form -- you can multiply 27.01 by any 2^n you like, for example:
27.01 * (2^ 6) = 1728.64 (multiply by 64)
27.01 * (2^ 7) = 3457.28 (multiply by 128)
...
27.01 * (2^10) = 27658.24
...
27.01 * (2^20) = 28322037.76
...
27.01 * (2^25) = 906305208.32 (> 2^24 !)
and you never get an integer, let alone one < 2^24 or < 2^53.
Actually, all these rules boil down to one rule... if you can find an 'n' (positive or negative, integer) such that y = value * (2^n), and where y is an exact, odd integer, then value has an exact representation if y < 2^24 (float) or if y < 2^53 (double) -- assuming no under- or over-flow, which is another story.
This looks complicated, but the rule of thumb is simply: "very few decimal fractions can be represented exactly as binary fractions".
To illustrate how few, let us consider all the 4 digit decimal fractions, of which there are 10000, that is 0.0000 up to 0.9999 -- including the trivial, integer case 0.0000. We can enumerate how many of those have exact binary equivalents:
1: 0.0000 = 0/16 or 0/1
2: 0.0625 = 1/16
3: 0.1250 = 2/16 or 1/8
4: 0.1875 = 3/16
5: 0.2500 = 4/16 or 1/4
6: 0.3125 = 5/16
7: 0.3750 = 6/16 or 3/8
8: 0.4375 = 7/16
9: 0.5000 = 8/16 or 1/2
10: 0.5625 = 9/16
11: 0.6250 = 10/16 or 5/8
12: 0.6875 = 11/16
13: 0.7500 = 12/16 or 3/4
14: 0.8125 = 13/16
15: 0.8750 = 14/16 or 7/8
16: 0.9375 = 15/16
That's it ! Just 16/10000 possible 4 digit decimal fractions (including the trivial 0 case) have exact binary fraction equivalents, at any precision. All the other 9984/10000 possible decimal fractions give rise to recurring binary fractions. So, for 'n' digit decimal fractions only (2^n) / (10^n) can be represented exactly -- that's 1/(5^n) !!
This is, of course, because your decimal fraction is actually the rational x / (10^n)[2] and your binary fraction is y / (2^m) (for integer x, y, n and m), and for a given binary fraction to be exactly equal to a decimal fraction we must have:
y = (x / (10^n)) * (2^m)
= (x / ( 5^n)) * (2^(m-n))
which is only the case when x is an exact multiple of (5^n) -- for otherwise y is not an integer. (Noting that n <= m, assuming that x has no (spurious) trailing zeros, and hence n is as small as possible.)
(2) The Rounding Problem
The result of a floating point operation may need to be rounded to the precision of the destination variable. IEEE 754 requires that the operation is done as if there were no limit to the precision, and the ("true") result is then rounded to the nearest value at the precision of the destination. So, the final result is as precise as it can be... given the limitations on how precise the arguments are, and how precise the destination is... but not exact !
(With floats and doubles, 'C' may promote float arguments to double (or long double) before performing an operation, and the result of that will be rounded to double. The final result of an expression may then be a double (or long double), which is then rounded (again) if it is to be stored in a float variable. All of this adds to the fun ! See FLT_EVAL_METHOD for what your system does -- noting the default for a floating point constant is double.)
So, the other rules to remember are:
floating point values are not reals (they are, in fact, rationals with a limited denominator).
The precision of a floating point value may be large, but there are lots of real numbers that cannot be represented exactly !
floating point expressions are not algebra.
For example, converting from degrees to radians requires division by π. Any arithmetic with π has a problem ('cos it's irrational), and with floating point the value for π is rounded to whatever floating precision we are using. So, the conversion of (say) 27 (which is exact) degrees to radians involves division by 180 (which is exact) and multiplication by our "π". However exact the arguments, the division and the multiplication may round, so the result is may only approximate. Taking:
float pi = 3.14159265358979 ; /* plenty for float */
float x = 27.0 ;
float y = (x / 180.0) * pi ;
float z = (y / pi) * 180.0 ;
printf("z-x = %+6.3e\n", z-x) ;
my (pretty ordinary) machine gave: "z-x = +1.907e-06"... so, for our floating point:
x != (((x / 180.0) * pi) / pi) * 180 ;
at least, not for all x. In the case shown, the relative difference is small -- ~ 1.2 / (2^24) -- but not zero, which simple algebra might lead us to expect.
hence: floating point equality is a slippery notion.
For all the reasons above, the test x == y for two floating values is problematic. Depending on how x and y have been calculated, if you expect the two to be exactly the same, you may very well be sadly disappointed.
[1] There exists a standard for decimal floating point, but generally binary floating point is what people use.
[2] For any decimal fraction you can write down with a finite number of digits !
Even with double precision, you'll run into issues such as:
200. * .60499999999999992 = 120.99999999999997
It appears that you want some type of rounding so that 0.99999992 is rounded to 1.00000000 .
If the goal is to produce values to the nearest multiple of 1/1000, try:
#include <math.h>
val = (float) floor((200000.0f*val)-119999.5f)/1000.0f;
If the goal is to produce values to the nearest multiple of 1/200, try:
val = (float) floor((40000.0f*val)-23999.5f)/200.0f;
If the goal is to produce values to the nearest integer, try:
val = (float) floor((200.0f*val)-119.5f);

How does Excel successfully round floating point numbers even though they are imprecise?

For example, this blog says 0.005 is not exactly 0.005, but rounding that number yields the right result.
I have tried all kinds of rounding in C++ and it fails when rounding numbers to certain decimal places. For example, Round(x,y) rounds x to a multiple of y. So Round(37.785,0.01) should give you 37.79 and not 37.78.
I am reopening this question to ask the community for help. The problem is with the impreciseness of floating point numbers (37,785 is represented as 37.78499999999).
The question is how does Excel get around this problem?
The solution in this round() for float in C++ is incorrect for the above problem.
"Round(37.785,0.01) should give you 37.79 and not 37.78."
First off, there is no consensus that 37.79 rather than 37.78 is the "right" answer here? Tie-breakers are always a bit tough. While always rounding up in the case of a tie is a widely-used approach, it certainly is not the only approach.
Secondly, this isn't a tie-breaking situation. The numerical value in the IEEE binary64 floating point format is 37.784999999999997 (approximately). There are lots of ways to get a value of 37.784999999999997 besides a human typing in a value of 37.785 and happen to have that converted to that floating point representation. In most of these cases, the correct answer is 37.78 rather than 37.79.
Addendum
Consider the following Excel formulae:
=ROUND(37785/1000,2)
=ROUND(19810222/2^19+21474836/2^47,2)
Both cells will display the same value, 37.79. There is a legitimate argument over whether 37785/1000 should round to 37.78 or 37.79 with two place accuracy. How to deal with these corner cases is a bit arbitrary, and there is no consensus answer. There isn't even a consensus answer inside Microsoft: "the Round() function is not implemented in a consistent fashion among different Microsoft products for historical reasons." ( http://support.microsoft.com/kb/196652 ) Given an infinite precision machine, Microsoft's VBA would round 37.785 to 37.78 (banker's round) while Excel would yield 37.79 (symmetric arithmetic round).
There is no argument over the rounding of the latter formula. It is strictly less than 37.785, so it should round to 37.78, not 37.79. Yet Excel rounds it up. Why?
The reason has to do with how real numbers are represented in a computer. Microsoft, like many others, uses the IEEE 64 bit floating point format. The number 37785/1000 suffers from precision loss when expressed in this format. This precision loss does not occur with 19810222/2^19+21474836/2^47; it is an "exact number".
I intentionally constructed that exact number to have the same floating point representation as does the inexact 37785/1000. That Excel rounds this exact value up rather than down is the key to determining how Excel's ROUND() function works: It is a variant of symmetric arithmetic rounding. It rounds based on a comparison to the floating point representation of the corner case.
The algorithm in C++:
#include <cmath> // std::floor
// Compute 10 to some positive integral power.
// Dealing with overflow (exponent > 308) is an exercise left to the reader.
double pow10 (unsigned int exponent) {
double result = 1.0;
double base = 10.0;
while (exponent > 0) {
if ((exponent & 1) != 0) result *= base;
exponent >>= 1;
base *= base;
}
return result;
}
// Round the same way Excel does.
// Dealing with nonsense such as nplaces=400 is an exercise left to the reader.
double excel_round (double x, int nplaces) {
bool is_neg = false;
// Excel uses symmetric arithmetic round: Round away from zero.
// The algorithm will be easier if we only deal with positive numbers.
if (x < 0.0) {
is_neg = true;
x = -x;
}
// Construct the nearest rounded values and the nasty corner case.
// Note: We really do not want an optimizing compiler to put the corner
// case in an extended double precision register. Hence the volatile.
double round_down, round_up;
volatile double corner_case;
if (nplaces < 0) {
double scale = pow10 (-nplaces);
round_down = std::floor (x * scale);
corner_case = (round_down + 0.5) / scale;
round_up = (round_down + 1.0) / scale;
round_down /= scale;
}
else {
double scale = pow10 (nplaces);
round_down = std::floor (x / scale);
corner_case = (round_down + 0.5) * scale;
round_up = (round_down + 1.0) * scale;
round_down *= scale;
}
// Round by comparing to the corner case.
x = (x < corner_case) ? round_down : round_up;
// Correct the sign if needed.
if (is_neg) x = -x;
return x;
}
For very accurate arbitrary precision and rounding of floating point numbers to a fixed set of decimal places, you should take a look at a math library like GNU MPFR. While it's a C-library, the web-page I posted also links to a couple different C++ bindings if you want to avoid using C.
You may also want to read a paper entitled "What every computer scientist should know about floating point arithmetic" by David Goldberg at the Xerox Palo Alto Research Center. It's an excellent article demonstrating the underlying process that allows floating point numbers to be approximated in a computer that represents everything in binary data, and how rounding errors and other problems can creep up in FPU-based floating point math.
I don't know how Excel does it, but printing floating point numbers nicely is a hard problem: http://www.serpentine.com/blog/2011/06/29/here-be-dragons-advances-in-problems-you-didnt-even-know-you-had/
So your actual question seems to be, how to get correctly rounded floating point -> string conversions. By googling for those terms you'll get a bunch of articles, but if you're interested in something to use, most platforms provide reasonably competent implementations of sprintf()/snprintf(). So just use those, and if you find bugs, file a report to the vendor.
A function that takes a floating point number as argument and returns another floating point number, rounded exactly to a given number of decimal digits cannot be written, because there are many numbers with a finite decimal representation that have an infinite binary representation; one of the simplest examples is 0.1 .
To achieve what you want you must accept to use a different type as a result of your rounding function. If your immediate need is printing the number you can use a string and a formatting function: the problem becomes how to obtain exactly the formatting you expect. Otherwise if you need to store this number in order to perform exact calculations on it, for instance if you are doing accounting, you need a library that's capable of representing decimal numbers exactly. In this case the most common approach is to use a scaled representation: an integer for the value together with the number of decimal digits. Dividing the value by ten raised to the scale gives you the original number.
If any of these approaches is suitable, I'll try and expand my answer with practical suggestions.
Excel rounds numbers like this "correctly" by doing WORK. They started in 1985, with a fairly "normal" set of floating-point routines, and added some scaled-integer fake floating point, and they've been tuning those things and adding special cases ever since. The app DID used to have most of the same "obvious" bugs that everybody else did, it's just that it mostly had them a long time ago. I filed a couple myself, back when I was doing tech support for them in the early 90s.
I believe the following C# code rounds numbers as they are rounded in Excel. To exactly replicate the behavior in C++ you might need to use a special decimal type.
In plain English, the double-precision number is converted to a decimal and then rounded to fifteen significant digits (not to be confused with fifteen decimal places). The result is rounded a second time to the specified number of decimal places.
That might seem weird, but what you have to understand is that Excel always displays numbers that are rounded to 15 significant figures. If the ROUND() function weren't using that display value as a starting point, and used the internal double representation instead, then there would be cases where ROUND(A1,N) did not seem to correspond to the actual value in A1. That would be very confusing to a non-technical user.
The double which is closest to 37.785 has an exact decimal value of 37.784999999999996589394868351519107818603515625. (Any double can be represented precisely by a finite base ten decimal because one quarter, one eighth, one sixteenth, and so forth all have finite decimal expansions.) If that number were rounded directly to two decimal places, there would be no tie to break and the result would be 37.78. If you round to 15 significant figures first you get 37.7850000000000. If this is further rounded to two decimal places, then you get 37.79, so there is no real mystery after all.
// Convert to a floating decimal point number, round to fifteen
// significant digits, and then round to the number of places
// indicated.
static decimal SmartRoundDouble(double input, int places)
{
int numLeadingDigits = (int)Math.Log10(Math.Abs(input)) + 1;
decimal inputDec = GetAccurateDecimal(input);
inputDec = MoveDecimalPointRight(inputDec, -numLeadingDigits);
decimal round1 = Math.Round(inputDec, 15);
round1 = MoveDecimalPointRight(round1, numLeadingDigits);
decimal round2 = Math.Round(round1, places, MidpointRounding.AwayFromZero);
return round2;
}
static decimal MoveDecimalPointRight(decimal d, int n)
{
if (n > 0)
for (int i = 0; i < n; i++)
d *= 10.0m;
else
for (int i = 0; i > n; i--)
d /= 10.0m;
return d;
}
// The constructor for decimal that accepts a double does
// some rounding by default. This gets a more exact number.
static decimal GetAccurateDecimal(double r)
{
string accurateStr = r.ToString("G17", CultureInfo.InvariantCulture);
return Decimal.Parse(accurateStr, CultureInfo.InvariantCulture);
}
What you NEED is this :
double f = 22.0/7.0;
cout.setf(ios::fixed, ios::floatfield);
cout.precision(6);
cout<<f<<endl;
How it can be implemented (just a overview for rounding last digit)
:
long getRoundedPrec(double d, double precision = 9)
{
precision = (int)precision;
stringstream s;
long l = (d - ((double)((int)d)))* pow(10.0,precision+1);
int lastDigit = (l-((l/10)*10));
if( lastDigit >= 5){
l = l/10 +1;
}
return l;
}
Just as base-10 numbers must be rounded as they are converted to base-2, it is possible to round a number as it is converted from base-2 to base-10. Once the number has a base-10 representation it can be rounded again in a straightforward manner by looking at the digit to the right of the one you wish to round.
While there's nothing wrong with the above assertion, there's a much more pragmatic solution. The problem is that the binary representation tries to get as close as possible to the decimal number, even if that binary is less than the decimal. The amount of error is within [-0.5,0.5] least significant bits (LSB) of the true value. For rounding purposes you'd rather it be within [0,1] LSB so that the error is always positive, but that's not possible without changing all the rules of floating point math.
The one thing you can do is add 1 LSB to the value, so the error is within [0.5,1.5] LSB of the true value. This is less accurate overall, but only by a very tiny amount; when the value is rounded for representation as a decimal number it is much more likely to be rounded to a proper decimal number because the error is always positive.
To add 1 LSB to the value before rounding it, see the answers to this question. For example in Visual Studio C++ 2010 the procedure would be:
Round(_nextafter(37.785,37.785*1.1),0.01);
There are many ways to optimize the result of a floating-point value using statistical, numerical... algorithms
The easiest one is probably searching for repetitive 9s or 0s in the range of precision. If there are any, maybe those 9s are redundant, just round them up. But this may not work in many cases. Here's an example for a float with 6 digits of precision:
2.67899999 → 2.679
12.3499999 → 12.35
1.20000001 → 1.2
Excel always limits the input range to 15 digits and rounds the output to maximum 15 digits so this might be one of the way Excel uses
Or you can include the precision along with the number. After each step, adjust the accuracy depend on the precision of operands. For example
1.113 → 3 decimal digits
6.15634 → 5 decimal digits
Since both number are inside the double's 16-17 digits precision range, their sum will be accurate to the larger of them, which is 5 digits. Similarly, 3+5 < 16, so their product will be precise to 8 decimal numbers
1.113 + 6.15634 = 7.26934 → 5 decimal digits
1.113 * 6.15634 = 6.85200642 → 8 decimal digits
But 4.1341677841 * 2.251457145 will only take double's accuracy because the real result exceed double's precision
Another efficient algorithm is Grisu but I haven't had an opportunity to try.
In 2010, Florian Loitsch published a wonderful paper in PLDI, "Printing floating-point numbers quickly and accurately with integers", which represents the biggest step in this field in 20 years: he mostly figured out how to use machine integers to perform accurate rendering! Why do I say "mostly"? Because although Loitsch's "Grisu3" algorithm is very fast, it gives up on about 0.5% of numbers, in which case you have to fall back to Dragon4 or a derivative
Here be dragons: advances in problems you didn’t even know you had
In fact I think Excel must combine many different methods to achieve the best result of all
Example When a Value Reaches Zero
In Excel 95 or earlier, enter the following into a new workbook:
A1: =1.333+1.225-1.333-1.225
Right-click cell A1, and then click Format Cells. On the Number tab, click Scientific under Category. Set the Decimal places to 15.
Rather than displaying 0, Excel 95 displays -2.22044604925031E-16.
Excel 97, however, introduced an optimization that attempts to correct for this problem. Should an addition or subtraction operation result in a value at or very close to zero, Excel 97 and later will compensate for any error introduced as a result of converting an operand to and from binary. The example above when performed in Excel 97 and later correctly displays 0 or 0.000000000000000E+00 in scientific notation.
Floating-point arithmetic may give inaccurate results in Excel
As mjfgates says, Excel does hard work to get this "right". The first thing to do when you try to reimplement this, is define what you mean by "right". Obvious solutions:
implement rational arithmetic
Slow but reliable.
implement a bunch of heuristics
Fast but tricky to get right (think "years of bug reports").
It really depends on your application.
Most decimal fractions can't be accurately represented in binary.
double x = 0.0;
for (int i = 1; i <= 10; i++)
{
x += 0.1;
}
// x should now be 1.0, right?
//
// it isn't. Test it and see.
One solution is to use BCD. It's old. But, it's also tried and true. We have a lot of other old ideas that we use every day (like using a 0 to represent nothing...).
Another technique uses scaling upon input/output. This has the advantage of nearly all math being integer math.