OpenGL drawing 2D and 3D at the same time - c++

I have a 3D scene I'm drawing and I want to draw a rectangle for a dialogue text that will be stretched for all the screen's width, what's the best way to achieve this, having performance in mind?
I found about glOrtho() that I can use for exact pixel placing, but since it's a matrix multiplication task, won't my app feel much heavier during scenes with dialogues?
If yes, should I try to find a math solution to find the X position of my left window corner according to some Z distance and draw a QUAD from there? (Is this even possible?)

glOrtho() is the way to go.
In the course of OpenGL's rendering Pipeline, during the Primitive Assembly stage, every vertex will be transformed (projected) from eye coordinates to clip coordinates. Whether your projection matrix is used for 3D perspective or 2D orthogonalization, it's still one matrix multiplication per vertex before Rasterization starts.
glOrtho() will change your projection matrix to an orthographic one but the matrix only needs to be generated once per frame and the equations required to do so are very simple:
(image credit: MSDN)
Once you have a projection matrix, don't let the thought of matrix multiplication scare you. It's exactly what video cards are designed to do and it's hardly a frightening task for any processor or GPU these days.

Related

Using OpenGL for 2D

I have started with OpenGL and learned about model,view,and the projection matrix. From my understanding the projection matrix is only needed to project a 3D entity onto a 2D surface(the screen). So if I want to create a 2D game would I even need to mess around with the projection matrix?
It can still be nice to use a projection matrix for defining your coordinate system. By default a window will be defined between [-1,1] for both x and y no matter what resolution and aspect ratio. If you don't fix this using a projection matrix, you'll have to compensate in other ways. You want a square to render as a square, not a rectangle.
Depending on your GL version you can call glOrtho, construct it manually or use glm::ortho.
In my experience, working on the default [-1,1] system is extremely unpractical. For example : You don't want rotations around the z axis to deform your geometry.
No. When dealing purely with two dimensions, you can leave the projection matrix as the identity matrix.

OpenGL 360 degree perspective

I'm looking to capture a 360 degree - spherical panorama - photo of my scene. How can I do this best? If I have it right, I can't do this the ordinary way of setting the perspective to 360.
If I would need a vertex shader, is there one available?
This is actually a nontrivial thing to do.
In a naive approach a vertex shader that transforms the vertex positions not by matrix multiplication, but by feeding them through trigonometric functions may seem to do the trick. The problem is, that this will not make straight lines "curvy". You could use a tesselation shader to add sufficient geometry to compensate for this.
The most straightforward approach is two-fold. First you render your scene into a cubemap, i.e. render with a 90°×90° FOV into the 6 directions making up a cube. This allows you to use regular affine projections rendering the scene.
In a second step you use the generated cubemap to texture a screen filling grid, where the texture coordinates of each vertex are azimuth and elevation.
Another approach is to use tiled rendering with very small FOV and rotating the "camera", kind of like doing a panoramic picture without using a wide angle lens. As a matter of fact the cubemap based approach is tiled rendering, but its easier to get right than trying to do this directly with changed camera direction and viewport placement.

OpenGL define vertex position in pixels

I've been writing a 2D basic game engine in OpenGL/C++ and learning everything as I go along. I'm still rather confused about defining vertices and their "position". That is, I'm still trying to understand the vertex-to-pixels conversion mechanism of OpenGL. Can it be explained briefly or can someone point to an article or something that'll explain this. Thanks!
This is rather basic knowledge that your favourite OpenGL learning resource should teach you as one of the first things. But anyway the standard OpenGL pipeline is as follows:
The vertex position is transformed from object-space (local to some object) into world-space (in respect to some global coordinate system). This transformation specifies where your object (to which the vertices belong) is located in the world
Now the world-space position is transformed into camera/view-space. This transformation is determined by the position and orientation of the virtual camera by which you see the scene. In OpenGL these two transformations are actually combined into one, the modelview matrix, which directly transforms your vertices from object-space to view-space.
Next the projection transformation is applied. Whereas the modelview transformation should consist only of affine transformations (rotation, translation, scaling), the projection transformation can be a perspective one, which basically distorts the objects to realize a real perspective view (with farther away objects being smaller). But in your case of a 2D view it will probably be an orthographic projection, that does nothing more than a translation and scaling. This transformation is represented in OpenGL by the projection matrix.
After these 3 (or 2) transformations (and then following perspective division by the w component, which actually realizes the perspective distortion, if any) what you have are normalized device coordinates. This means after these transformations the coordinates of the visible objects should be in the range [-1,1]. Everything outside this range is clipped away.
In a final step the viewport transformation is applied and the coordinates are transformed from the [-1,1] range into the [0,w]x[0,h]x[0,1] cube (assuming a glViewport(0, w, 0, h) call), which are the vertex' final positions in the framebuffer and therefore its pixel coordinates.
When using a vertex shader, steps 1 to 3 are actually done in the shader and can therefore be done in any way you like, but usually one conforms to this standard modelview -> projection pipeline, too.
The main thing to keep in mind is, that after the modelview and projection transforms every vertex with coordinates outside the [-1,1] range will be clipped away. So the [-1,1]-box determines your visible scene after these two transformations.
So from your question I assume you want to use a 2D coordinate system with units of pixels for your vertex coordinates and transformations? In this case this is best done by using glOrtho(0.0, w, 0.0, h, -1.0, 1.0) with w and h being the dimensions of your viewport. This basically counters the viewport transformation and therefore transforms your vertices from the [0,w]x[0,h]x[-1,1]-box into the [-1,1]-box, which the viewport transformation then transforms back to the [0,w]x[0,h]x[0,1]-box.
These have been quite general explanations without mentioning that the actual transformations are done by matrix-vector-multiplications and without talking about homogenous coordinates, but they should have explained the essentials. This documentation of gluProject might also give you some insight, as it actually models the transformation pipeline for a single vertex. But in this documentation they actually forgot to mention the division by the w component (v" = v' / v'(3)) after the v' = P x M x v step.
EDIT: Don't forget to look at the first link in epatel's answer, which explains the transformation pipeline a bit more practical and detailed.
It is called transformation.
Vertices are set in 3D coordinates which is transformed into a viewport coordinates (into your window view). This transformation can be set in various ways. Orthogonal transformation can be easiest to understand as a starter.
http://www.songho.ca/opengl/gl_transform.html
http://www.opengl.org/wiki/Vertex_Transformation
http://www.falloutsoftware.com/tutorials/gl/gl5.htm
Firstly be aware that OpenGL not uses standard pixel coordinates. I mean by that for particular resolution, ie. 800x600 you dont have horizontal coordinates in range 0-799 or 1-800 stepped by one. You rather have coordinates ranged from -1 to 1 later send to graphic card rasterizing unit and after that matched to particular resolution.
I ommited one step here - before all that you have an ModelViewProjection matrix (or viewProjection matrix in some simple cases) which before all that will cast coordinates you use to an projection plane. Default use of that is to implement a camera which converts 3D space of world (View for placing an camera into right position and Projection for casting 3d coordinates into screen plane. In ModelViewProjection it's also step of placing a model into right place in world).
Another case (and you can use Projection matrix this way to achieve what you want) is to use these matrixes to convert one range of resolutions to another.
And there's a trick you will need. You should read about modelViewProjection matrix and camera in openGL if you want to go serious. But for now I will tell you that with proper matrix you can just cast your own coordinate system (and ie. use ranges 0-799 horizontaly and 0-599 verticaly) to standarized -1:1 range. That way you will not see that underlying openGL api uses his own -1 to 1 system.
The easiest way to achieve this is glOrtho function. Here's the link to documentation:
http://www.opengl.org/sdk/docs/man/xhtml/glOrtho.xml
This is example of proper usage:
glMatrixMode (GL_PROJECTION)
glLoadIdentity ();
glOrtho (0, 800, 600, 0, 0, 1)
glMatrixMode (GL_MODELVIEW)
Now you can use own modelView matrix ie. for translation (moving) objects but don't touch your projection example. This code should be executed before any drawing commands. (Can be after initializing opengl in fact if you wont use 3d graphics).
And here's working example: http://nehe.gamedev.net/tutorial/2d_texture_font/18002/
Just draw your figures instead of drawing text. And there is another thing - glPushMatrix and glPopMatrix for choosen matrix (in this example projection matrix) - you wont use that until you combining 3d with 2d rendering.
And you can still use model matrix (ie. for placing tiles somewhere in world) and view matrix (in example for zooming view, or scrolling through world - in this case your world can be larger than resolution and you could crop view by simple translations)
After looking at my answer I see it's a little chaotic but If you confused - just read about Model, View, and Projection matixes and try example with glOrtho. If you're still confused feel free to ask.
MSDN has a great explanation. It may be in terms of DirectX but OpenGL is more-or-less the same.
Google for "opengl rendering pipeline". The first five articles all provide good expositions.
The key transition from vertices to pixels (actually, fragments, but you won't be too far off if you think "pixels") is in the rasterization stage, which occurs after all vertices have been transformed from world-coordinates to screen coordinates and clipped.

GPU Render onto sphere

I am trying to write an optimized code that renders a 3D scene using OpenGL onto a sphere and then displays the unwrapped sphere on the screen ie producing a planar map of a purely reflective sphere. In math terms, I would like to produce a projection map where the x axis is the polar angle and y axis is the azimuth.
I am trying to do this by placing the camera at the center of the sphere probe and taking planar shots around so as to approximate spherical quads with planar tiles of the frustum. Then I can use this as texture to apply to a distorted planar patch.
Seems to me this is pretty tedious approach. I wonder if there is way to take this on using shaders or some GPU-smart method.
Thank you
S.
I can give you two solutions.
The first is to make a standard render-to-texture, but with a cubemap attached as the destination buffer. If your hardware is recent enough, it can be done in a single pass. This will deal with all the needed math in HW for you, but data repartition of cubemaps aren't ideal (quite a lot of distortion if the corners). In most cases, it should be enough though.
After this, you render a quad to the screen, and in a shader you map your UV coordinates to xyz vectors using staightforwad spherical mapping. The HW will compute for you which side of the cubemap to take, at which UV.
The second is more or less the same, but with a custom deformation and less HW support : dual paraboloids. Two paraboloids may not be enough, but you are free to slightly modify the equations and make 6 passes. The rendering pass is the same, but this time you're all by yourself to choose the right texture and compute the UVs.
By the time you've bothered to build the model, take the planar shots, apply non-affine transformations and stitch the whole thing together, you've probably gained no performance and considerable complexity. Just project the planar image mathematically and be done with it.
You seem to be asking for OpenGL's sphere mapping. NeHe has a tutorial on sphere mapping that might be useful.

Efficiency of perspective projection vs raytracing/ray casting

I have a very general question. I wish to determine the boundary points of a number of objects (comprising 30-50 closed polygons (z) each having around 300 points(x,y,z)). I am working with a fixed viewport which is rotated about x,y and z-axes (alpha, beta, gamma) wrt origin of coordinate system for polygons.
As I see it there are two possibilities: perspective projection or raytracing. Perspective projection would seem to requires a large number of matrix operations for each point to determine its position is within or without the viewport.
Or given the large number of points would I better to raytrace the viewport pixels to object?
i.e. determine whether there is an intersection and then whether intersection occurs within or without object(s).
In either case I will write this result as 0 (outside) or 1 (inside) to 200x200 an integer matrix representing the viewport
Thank you in anticipation
Perspective projection (and then scan-converting the polygons in image coordinates) is going to be a lot faster.
The matrix transform that is required in the case of perspective projection (essentially the world-to-camera matrix) is required in exactly the same way when raytracing. However, with perspective projection, you're only transforming the corner points, whereas with raytracing, you're transforming all the points in the image.
You should be able to use perspective projection and a perspective projection matrix to compute the position of the vertices in screen space? It's hard to understand what you want to do really. If you want to create an image of that 3D scene then with only few polygons it would be hard to see any difference anyway between ray tracing and rasterisation if your code is optimised (you will still need to use an acceleration structure for the ray tracing approach), however yes rasterisation is likely to be faster anyway.
Now if you need to compute the distance from between the eye (the camera's origin) and the geometry visible through the camera's view, the I don't see why you can't use the depth value of any sample for any pixel in the image and use the inverse of the perspective projection matrix to find its distance in camera space.
Why is speed an issue in your problem? Otherwise use RT indeed.
Most of this information can be found on www.scratchapixel.com