Subtracting unsigned long longs with signed long long result? - c++

Suppose I have these two types:
typedef unsigned long long uint64;
typedef signed long long sint64;
And I have these variables:
uint64 a = ...;
uint64 b = ...;
sint64 c;
I want to subtract b from a and assign the result to c, clearly if the absolute value of the difference is greater than 2^63 than it will wrap (or be undefined) which is ok. But for cases where the absolute difference is less than 2^63 I want the result to be correct.
Of the following three ways:
c = a - b; // sign conversion warning ignored
c = sint64(a - b);
c = sint64(a) - sint64(b);
Which of the them are guaranteed to work by the standard? (and why/how?)

None of the three work. The first fails if the difference is negative (no matter the absolute value), the second is the same as the first, and the third fails if either operand is too large.
It's impossible to implement without a branch.
c = b < a? a - b : - static_cast< sint64 >( b - a );
Fundamentally, unsigned types use modulo arithmetic without any kind of sign bit. They don't know they wrapped around, and the language spec doesn't identify wraparound with negative numbers. Also, assigning a value outside the range of a signed integral variable results in an implementation-defined, potentially nonsense result (integral overflow).
Consider a machine with no hardware to convert between native negative integers and two's complement. It can perform two's complement subtraction using bitwise negation and native two's complement addition, though. (Bizarre, maybe, but that is what C and C++ currently require.) The language leaves it up to the programmer, then, to convert the negative values. The only way to do that is to negate a positive value, which requires that the computed difference be positive. So…
The best solution is to avoid any attempt to represent a negative number as a large positive number in the first place.
EDIT: I forgot the cast before, which would have produced a large unsigned value, equivalently to the other solutions!

Potatoswatter's answer is probably the most pragmatic solution, but "impossible to implement without a branch" is like a red rag to a bull for me. If your hypothetical system implements undefined overflow/cast operations like that, my hypothetical system implements branches by killing puppies.
So I'm not completely familiar with what the standard(s) would say, but how about this:
sint64 c,d,r;
c = a >> 1;
d = b >> 1;
r = (c-d) * 2;
c = a & 1;
d = b & 1;
r += c - d;
I've written it in a fairly verbose fasion so the individual operations are clear, but have left some implicit casts. Is anything there undefined?
Steve Jessop rightly points out that this does fail in the case where the difference is exactly 2^63-1, as the multiply overflows before the 1 is subtracted.
So here's an even uglier version which should cover all underflow/overflow conditions:
sint64 c,d,r,ov;
c = a >> 1;
d = b >> 1;
ov = a >> 63;
r = (c-d-ov) * 2;
c = a & 1;
d = b & 1;
r += ov + ov + c - d;

if the absolute value of the difference is greater than 2^63 than it
will wrap (or be undefined) which is ok. But for cases where the
absolute difference is less than 2^63 I want the result to be correct.
Then all three of the notations you suggest work, assuming a conventional architecture. The notable difference
is that the third one sint64(a) - sint64(b) invokes undefined behavior
when the difference is not representable, whereas the first two are
guaranteed to wrap around (unsigned arithmetic overflow is guaranteed to wrap around and conversion from unsigned to signed is implementation-defined, whereas signed arithmetic overflow is undefined).

Related

The best way in C++ to cast different signedness types each other?

There is an uint64_t data field sent by the communication peer, it carries an order ID that I need to store into a Postgresql-11 DB that do NOT support unsigned integer types. Although a real data may exceed 2^63, I think a INT8 filed in Postgresql11 can hold it, if I do some casting carefully.
Let's say there be:
uint64_t order_id = 123; // received
int64_t to_db; // to be writed into db
I plan to use one of the following methods to cast an uint64_t value into an int64_t value:
to_db = order_id; // directly assigning;
to_db = (int64_t)order_id; //c-style casting;
to_db = static_cast<int64_t>(order_id);
to_db = *reinterpret_cast<const int64_t*>( &order_id );
and when I need to load it from the db, I can do a reversed casting.
I know they all work, I'm just interested in which one meet the C++ standard the most perfectly.
In other words, which method will always work in whatever 64bit platform with whatever compiler?
Depends where it would be compiled and run... any of those not fully portable without C++20 support.
The safest way without that would be doing conversion yourself by changing range of values, something like that
int64_t to_db = (order_id > (uint64_t)LLONG_MAX)
? int64_t(order_id - (uint64_t)LLONG_MAX - 1)
: int64_t(order_id ) - LLONG_MIN;
uint64_t from_db = (to_db < 0)
? to_db + LLONG_MIN
: uint64_t(to_db) + (uint64_t)LLONG_MAX + 1;
If order_id is greater than (2^63 -1), then order_id - (uint64_t)LLONG_MAX - 1 yields a non-negative value. If not, then cast to signed is well defined and subtraction ensures values to be shifted into negative range.
During reverse conversion, to_db + LLONG_MIN places value into [0, ULLONG_MAX] range.
and do opposite on reading. Database platform or compiler you use may do something awful with binary representation of unsigned values when converting them to signed, not to mention that different format of signed do exist.
For same reason inter-platform protocols often involve use of string formatting or "least bit's value" for representing floating point values as integers, i.e. as encoded fixed point.
I would go with memcpy. It avoids (? see comments) undefined behavior and typically compilers optimize any byte copying away:
int64_t uint64_t_to_int64_t(uint64_t u)
{
int64_t i;
memcpy(&i, &u, sizeof(int64_t));
return i;
}
order_id = uint64_t_to_int64_t(to_db);
GCC with -O2 generated the optimal assembly for uint64_t_to_int64_t:
mov rax, rdi
ret
Live demo: https://godbolt.org/z/Gbvhzh
All four methods will always work, as long as the value is within range. The first will generate warnings on many compilers, so should probably not be used. The second is more a C idiom than a C++ idiom, but is widely used in C++. The last one is ugly and relies on subtle details from the standard, and should not be used.
This function seems UB-free
int64_t fromUnsignedTwosComplement(uint64_t u)
{
if (u <= std::numeric_limits<int64_t>::max()) return static_cast<int64_t>(u);
else return -static_cast<int64_t>(-u);
}
It reduces to a no-op under optimisations.
Conversion in the other direction is a straight cast to uint64_t. It is always well-defined.

Can integer division in C/C++ run into loss of precision issues?

Suppose we have three integer (int, long, long long, unsigned int, etc) variables a, b, c. Normally, performing
c = a / b;
would result in truncate of fractions. However, is it possible for c to end up with an incorrect value?
I am not talking about a / b may be out of range for c's type. Rather, I am talking about how integer division is implemented in C. Does performing a / b first generate a float type intermediate result, and then the intermediate value is truncated?
If so, I wonder if loss of precision of the intermediate value can lead to an incorrect value of c. For example, suppose the precise value for a / b is 2, but somehow the intermediate result is 1.9999..., thus c will end up with an incorrect value of 1. Can such cases happen, or does integer division always result in a correct value if the expected value is in the range of c's type?
Does performing a / b first generate a float type intermediate result
As far as the language is concerned, there are no intermediate results.
does integer division always result in a correct value if the expected value is in the range of c's type?
Yes.
Section 6.5.5 of the C11 standards states
When integers are divided, the result of the / operator is the algebraic quotient with any fractional part discarded. If the quotient a/b is representable, the expression (a/b)*b + a%b shall equal a;
Which means there's no way, mathematically, that you'll get wrong results.
Suppose we have three integer (int, long, long long, unsigned int, etc) variables a, b, c. Normally, performing
c = a / b;
would result in truncate of fractions. However, is it possible for c to end up with an incorrect value? I am not talking about a / b may be out of range for c's type.
It should not be possible that for example the last digit of division be wrong, if all rules were followed otherwise. C11 6.5.5p6:
When integers are divided, the result of the / operator is the algebraic quotient with any fractional part discarded.
i.e. the result is not "close" to but exactly the same as a / b would be algebraically, just anything following the point discarded.
That does not mean there won't be any gotchas: it is possible that the division of a / b might be mathematically not out of range for c's type yet out of range for the type used in the division itself which can cause wrong values be set in c.
Consider this example:
#include <stdio.h>
#include <inttypes.h>
int main(void) {
int32_t a = INT32_MIN;
int32_t b = -1;
int64_t c = a / b;
printf("%" PRId64, c);
}
The result of division of INT32_MIN / -1 is representable in c, it is INT32_MAX + 1, which is positive. However on 32-bit platforms the arithmetic happens in 32 bits, and this division produces an integer overflow which causes the behaviour to be undefined. What happens on my computer is that if I compile without optimizations it aborts the program. If I compile with optimizations enabled (-O3), the compiler will resolve this calculation at compilation time, and handles the overflow in a peculiar way and produces the result -2147483648 which is negative.
Likewise, if you do this:
uint16_t a = 16;
int16_t b = -1;
int32_t result = a / b;
printf("%" PRId32 "\n", result);
the result on a 32-bit int machine is -16. If you change the type of a to uint32_t the math happens in unsigned:
uint32_t a = 16;
int16_t b = -1;
int32_t result = a / b;
printf("%" PRId32 "\n", result);
The result is of course 0. And you would get 0 from the former calculation too on a 16-bit machine.

Compile-time calculation of bits needed to represent a range

I need to calculate at compile-time the number of bits needed to represent a range.
For an unsigned range from 0 to n it is simple:
constexpr unsigned bits_to_represent(uintmax_t n)
{
return n > 0
? 1 + bits_to_represent(n/2)
: 0;
}
For a signed range, I have:
constexpr unsigned bits_in_range(intmax_t min,intmax_t max)
{
return bits_to_represent(max >= 0
? static_cast<uintmax_t>(max) - min
: max - min);
}
However this causes MSVC 2015 (recently updated) to complain:
warning C4308: negative integral constant converted to unsigned type
Can you explain why this happens? As a work-around, I static_cast min to uintmax_t, but I do not like this solution as it seems less portable than my preferred solution and probably even is undefined behaviour, even though I am sceptical is that can happen at compile time.
I'm not sure exactly why MSVC is giving a warning, but one thing that you are doing that could cause bad behavior is mixing signed and unsigned integers in arithmetic operations and comparisons.
You can read this for examples of problems caused by this: http://blog.regehr.org/archives/268
I would try rewriting your function like this:
constexpr unsigned bits_in_range(intmax_t min,intmax_t max)
{
return bits_to_represent(
static_cast<uintmax_t>(max) - static_cast<uintmax_t>(min));
}
This way is more programmer friendly. When you do arithmetic operations on mismatched integer types, the compiler is going to have to do implicit conversions to make them match. This way, it doesn't have to do that. Even if max and min are negative, this will still give well-defined and correct results, if you are sure that max >= min.
Do it in 4 parts. Each of min max at least zero.
If they share the same sign (with 0 as positive), 2s complement integers can have their difference represented as part of their own type.
That leaves max<min and max positive and min negative cases.
If we assume uint_max_t is big enough, arithmetic and conversion to that type all behaves according to math mod 2^n.
So unsigned(a)-unsigned(b) will actually be the unsigned distance to get from b to a as signed integers.
C = A-B mod X
C = A-B + kX
B+C=A+kX
With C positive and less than X, and X larger than B-A, gives us C must be the delta.
Thank you for your comments even though they did not explain the Microsoft warning. Clang compiles cleanly, so it might be a bug in the compiler.
Due to the nature of conversion from signed to unsigned values in C++ the correct answer will be obtained by simply casting both values (again assuming that min <= max):
constexpr unsigned bits_in_range(intmax_t min,intmax_t max)
{
return bits_to_represent(static_cast<largest_uint>(max) -
static_cast<largest_uint>(min));
}
The validity of the code can be inferred from this part of the draft standard (I looked at the newest draft but am confident that there has not been a change here).
4.7 Integral conversions [conv.integral]
If the destination type is unsigned, the resulting value is the least > unsigned integer congruent to the source
integer (modulo 2n where n is the number of bits used to represent the
unsigned type).

Efficient unsigned-to-signed cast avoiding implementation-defined behavior

I want to define a function that takes an unsigned int as argument and returns an int congruent modulo UINT_MAX+1 to the argument.
A first attempt might look like this:
int unsigned_to_signed(unsigned n)
{
return static_cast<int>(n);
}
But as any language lawyer knows, casting from unsigned to signed for values larger than INT_MAX is implementation-defined.
I want to implement this such that (a) it only relies on behavior mandated by the spec; and (b) it compiles into a no-op on any modern machine and optimizing compiler.
As for bizarre machines... If there is no signed int congruent modulo UINT_MAX+1 to the unsigned int, let's say I want to throw an exception. If there is more than one (I am not sure this is possible), let's say I want the largest one.
OK, second attempt:
int unsigned_to_signed(unsigned n)
{
int int_n = static_cast<int>(n);
if (n == static_cast<unsigned>(int_n))
return int_n;
// else do something long and complicated
}
I do not much care about the efficiency when I am not on a typical twos-complement system, since in my humble opinion that is unlikely. And if my code becomes a bottleneck on the omnipresent sign-magnitude systems of 2050, well, I bet someone can figure that out and optimize it then.
Now, this second attempt is pretty close to what I want. Although the cast to int is implementation-defined for some inputs, the cast back to unsigned is guaranteed by the standard to preserve the value modulo UINT_MAX+1. So the conditional does check exactly what I want, and it will compile into nothing on any system I am likely to encounter.
However... I am still casting to int without first checking whether it will invoke implementation-defined behavior. On some hypothetical system in 2050 it could do who-knows-what. So let's say I want to avoid that.
Question: What should my "third attempt" look like?
To recap, I want to:
Cast from unsigned int to signed int
Preserve the value mod UINT_MAX+1
Invoke only standard-mandated behavior
Compile into a no-op on a typical twos-complement machine with optimizing compiler
[Update]
Let me give an example to show why this is not a trivial question.
Consider a hypothetical C++ implementation with the following properties:
sizeof(int) equals 4
sizeof(unsigned) equals 4
INT_MAX equals 32767
INT_MIN equals -232 + 32768
UINT_MAX equals 232 - 1
Arithmetic on int is modulo 232 (into the range INT_MIN through INT_MAX)
std::numeric_limits<int>::is_modulo is true
Casting unsigned n to int preserves the value for 0 <= n <= 32767 and yields zero otherwise
On this hypothetical implementation, there is exactly one int value congruent (mod UINT_MAX+1) to each unsigned value. So my question would be well-defined.
I claim that this hypothetical C++ implementation fully conforms to the C++98, C++03, and C++11 specifications. I admit I have not memorized every word of all of them... But I believe I have read the relevant sections carefully. So if you want me to accept your answer, you either must (a) cite a spec that rules out this hypothetical implementation or (b) handle it correctly.
Indeed, a correct answer must handle every hypothetical implementation permitted by the standard. That is what "invoke only standard-mandated behavior" means, by definition.
Incidentally, note that std::numeric_limits<int>::is_modulo is utterly useless here for multiple reasons. For one thing, it can be true even if unsigned-to-signed casts do not work for large unsigned values. For another, it can be true even on one's-complement or sign-magnitude systems, if arithmetic is simply modulo the entire integer range. And so on. If your answer depends on is_modulo, it's wrong.
[Update 2]
hvd's answer taught me something: My hypothetical C++ implementation for integers is not permitted by modern C. The C99 and C11 standards are very specific about the representation of signed integers; indeed, they only permit twos-complement, ones-complement, and sign-magnitude (section 6.2.6.2 paragraph (2); ).
But C++ is not C. As it turns out, this fact lies at the very heart of my question.
The original C++98 standard was based on the much older C89, which says (section 3.1.2.5):
For each of the signed integer types, there is a corresponding (but
different) unsigned integer type (designated with the keyword
unsigned) that uses the same amount of storage (including sign
information) and has the same alignment requirements. The range of
nonnegative values of a signed integer type is a subrange of the
corresponding unsigned integer type, and the representation of the
same value in each type is the same.
C89 says nothing about only having one sign bit or only allowing twos-complement/ones-complement/sign-magnitude.
The C++98 standard adopted this language nearly verbatim (section 3.9.1 paragraph (3)):
For each of the signed integer types, there exists a corresponding
(but different) unsigned integer type: "unsigned char", "unsigned
short int", "unsigned int", and "unsigned long int", each of
which occupies the same amount of storage and has the same alignment
requirements (3.9) as the corresponding signed integer type ; that
is, each signed integer type has the same object representation as
its corresponding unsigned integer type. The range of nonnegative
values of a signed integer type is a subrange of the corresponding
unsigned integer type, and the value representation of each
corresponding signed/unsigned type shall be the same.
The C++03 standard uses essentially identical language, as does C++11.
No standard C++ spec constrains its signed integer representations to any C spec, as far as I can tell. And there is nothing mandating a single sign bit or anything of the kind. All it says is that non-negative signed integers must be a subrange of the corresponding unsigned.
So, again I claim that INT_MAX=32767 with INT_MIN=-232+32768 is permitted. If your answer assumes otherwise, it is incorrect unless you cite a C++ standard proving me wrong.
Expanding on user71404's answer:
int f(unsigned x)
{
if (x <= INT_MAX)
return static_cast<int>(x);
if (x >= INT_MIN)
return static_cast<int>(x - INT_MIN) + INT_MIN;
throw x; // Or whatever else you like
}
If x >= INT_MIN (keep the promotion rules in mind, INT_MIN gets converted to unsigned), then x - INT_MIN <= INT_MAX, so this won't have any overflow.
If that is not obvious, take a look at the claim "If x >= -4u, then x + 4 <= 3.", and keep in mind that INT_MAX will be equal to at least the mathematical value of -INT_MIN - 1.
On the most common systems, where !(x <= INT_MAX) implies x >= INT_MIN, the optimizer should be able (and on my system, is able) to remove the second check, determine that the two return statements can be compiled to the same code, and remove the first check too. Generated assembly listing:
__Z1fj:
LFB6:
.cfi_startproc
movl 4(%esp), %eax
ret
.cfi_endproc
The hypothetical implementation in your question:
INT_MAX equals 32767
INT_MIN equals -232 + 32768
is not possible, so does not need special consideration. INT_MIN will be equal to either -INT_MAX, or to -INT_MAX - 1. This follows from C's representation of integer types (6.2.6.2), which requires n bits to be value bits, one bit to be a sign bit, and only allows one single trap representation (not including representations that are invalid because of padding bits), namely the one that would otherwise represent negative zero / -INT_MAX - 1. C++ doesn't allow any integer representations beyond what C allows.
Update: Microsoft's compiler apparently does not notice that x > 10 and x >= 11 test the same thing. It only generates the desired code if x >= INT_MIN is replaced with x > INT_MIN - 1u, which it can detect as the negation of x <= INT_MAX (on this platform).
[Update from questioner (Nemo), elaborating on our discussion below]
I now believe this answer works in all cases, but for complicated reasons. I am likely to award the bounty to this solution, but I want to capture all the gory details in case anybody cares.
Let's start with C++11, section 18.3.3:
Table 31 describes the header <climits>.
...
The contents are the same as the Standard C library header <limits.h>.
Here, "Standard C" means C99, whose specification severely constrains the representation of signed integers. They are just like unsigned integers, but with one bit dedicated to "sign" and zero or more bits dedicated to "padding". The padding bits do not contribute to the value of the integer, and the sign bit contributes only as twos-complement, ones-complement, or sign-magnitude.
Since C++11 inherits the <climits> macros from C99, INT_MIN is either -INT_MAX or -INT_MAX-1, and hvd's code is guaranteed to work. (Note that, due to the padding, INT_MAX could be much less than UINT_MAX/2... But thanks to the way signed->unsigned casts work, this answer handles that fine.)
C++03/C++98 is trickier. It uses the same wording to inherit <climits> from "Standard C", but now "Standard C" means C89/C90.
All of these -- C++98, C++03, C89/C90 -- have the wording I give in my question, but also include this (C++03 section 3.9.1 paragraph 7):
The representations of integral types shall define values by use of a
pure binary numeration system.(44) [Example: this International
Standard permits 2’s complement, 1’s complement and signed magnitude
representations for integral types.]
Footnote (44) defines "pure binary numeration system":
A positional representation for integers that uses the binary digits 0
and 1, in which the values represented by successive bits are
additive, begin with 1, and are multiplied by successive integral
power of 2, except perhaps for the bit with the highest position.
What is interesting about this wording is that it contradicts itself, because the definition of "pure binary numeration system" does not permit a sign/magnitude representation! It does allow the high bit to have, say, the value -2n-1 (twos complement) or -(2n-1-1) (ones complement). But there is no value for the high bit that results in sign/magnitude.
Anyway, my "hypothetical implementation" does not qualify as "pure binary" under this definition, so it is ruled out.
However, the fact that the high bit is special means we can imagine it contributing any value at all: A small positive value, huge positive value, small negative value, or huge negative value. (If the sign bit can contribute -(2n-1-1), why not -(2n-1-2)? etc.)
So, let's imagine a signed integer representation that assigns a wacky value to the "sign" bit.
A small positive value for the sign bit would result in a positive range for int (possibly as large as unsigned), and hvd's code handles that just fine.
A huge positive value for the sign bit would result in int having a maximum larger than unsigned, which is is forbidden.
A huge negative value for the sign bit would result in int representing a non-contiguous range of values, and other wording in the spec rules that out.
Finally, how about a sign bit that contributes a small negative quantity? Could we have a 1 in the "sign bit" contribute, say, -37 to the value of the int? So then INT_MAX would be (say) 231-1 and INT_MIN would be -37?
This would result in some numbers having two representations... But ones-complement gives two representations to zero, and that is allowed according to the "Example". Nowhere does the spec say that zero is the only integer that might have two representations. So I think this new hypothetical is allowed by the spec.
Indeed, any negative value from -1 down to -INT_MAX-1 appears to be permissible as a value for the "sign bit", but nothing smaller (lest the range be non-contiguous). In other words, INT_MIN might be anything from -INT_MAX-1 to -1.
Now, guess what? For the second cast in hvd's code to avoid implementation-defined behavior, we just need x - (unsigned)INT_MIN less than or equal to INT_MAX. We just showed INT_MIN is at least -INT_MAX-1. Obviously, x is at most UINT_MAX. Casting a negative number to unsigned is the same as adding UINT_MAX+1. Put it all together:
x - (unsigned)INT_MIN <= INT_MAX
if and only if
UINT_MAX - (INT_MIN + UINT_MAX + 1) <= INT_MAX
-INT_MIN-1 <= INT_MAX
-INT_MIN <= INT_MAX+1
INT_MIN >= -INT_MAX-1
That last is what we just showed, so even in this perverse case, the code actually works.
That exhausts all of the possibilities, thus ending this extremely academic exercise.
Bottom line: There is some seriously under-specified behavior for signed integers in C89/C90 that got inherited by C++98/C++03. It is fixed in C99, and C++11 indirectly inherits the fix by incorporating <limits.h> from C99. But even C++11 retains the self-contradictory "pure binary representation" wording...
This code relies only on behavior, mandated by the spec, so requirement (a) is easily satisfied:
int unsigned_to_signed(unsigned n)
{
int result = INT_MAX;
if (n > INT_MAX && n < INT_MIN)
throw runtime_error("no signed int for this number");
for (unsigned i = INT_MAX; i != n; --i)
--result;
return result;
}
It's not so easy with requirement (b). This compiles into a no-op with gcc 4.6.3 (-Os, -O2, -O3) and with clang 3.0 (-Os, -O, -O2, -O3). Intel 12.1.0 refuses to optimize this. And I have no info about Visual C.
The original answer solved the problem only for unsigned => int. What if we want to solve the general problem of "some unsigned type" to its corresponding signed type? Furthermore, the original answer was excellent at citing sections of the standard and analyzing some corner cases, but it did not really help me get a feel for why it worked, so this answer will try to give a strong conceptual basis. This answer will try to help explain "why", and use modern C++ features to try to simplify the code.
C++20 answer
The problem has simplified dramatically with P0907: Signed Integers are Two’s Complement and the final wording P1236 that was voted into the C++20 standard. Now, the answer is as simple as possible:
template<std::unsigned_integral T>
constexpr auto cast_to_signed_integer(T const value) {
return static_cast<std::make_signed_t<T>>(value);
}
That's it. A static_cast (or C-style cast) is finally guaranteed to do the thing you need for this question, and the thing many programmers thought it always did.
C++17 answer
In C++17, things are much more complicated. We have to deal with three possible integer representations (two's complement, ones' complement, and sign-magnitude). Even in the case where we know it must be two's complement because we checked the range of possible values, the conversion of a value outside the range of the signed integer to that signed integer still gives us an implementation-defined result. We have to use tricks like we have seen in other answers.
First, here is the code for how to solve the problem generically:
template<typename T, typename = std::enable_if_t<std::is_unsigned_v<T>>>
constexpr auto cast_to_signed_integer(T const value) {
using result = std::make_signed_t<T>;
using result_limits = std::numeric_limits<result>;
if constexpr (result_limits::min() + 1 != -result_limits::max()) {
if (value == static_cast<T>(result_limits::max()) + 1) {
throw std::runtime_error("Cannot convert the maximum possible unsigned to a signed value on this system");
}
}
if (value <= result_limits::max()) {
return static_cast<result>(value);
} else {
using promoted_unsigned = std::conditional_t<sizeof(T) <= sizeof(unsigned), unsigned, T>;
using promoted_signed = std::make_signed_t<promoted_unsigned>;
constexpr auto shift_by_window = [](auto x) {
// static_cast to avoid conversion warning
return x - static_cast<decltype(x)>(result_limits::max()) - 1;
};
return static_cast<result>(
shift_by_window( // shift values from common range to negative range
static_cast<promoted_signed>(
shift_by_window( // shift large values into common range
static_cast<promoted_unsigned>(value) // cast to avoid promotion to int
)
)
)
);
}
}
This has a few more casts than the accepted answer, and that is to ensure there are no signed / unsigned mismatch warnings from your compiler and to properly handle integer promotion rules.
We first have a special case for systems that are not two's complement (and thus we must handle the maximum possible value specially because it doesn't have anything to map to). After that, we get to the real algorithm.
The second top-level condition is straightforward: we know the value is less than or equal to the maximum value, so it fits in the result type. The third condition is a little more complicated even with the comments, so some examples would probably help understand why each statement is necessary.
Conceptual basis: the number line
First, what is this window concept? Consider the following number line:
| signed |
<.........................>
| unsigned |
It turns out that for two's complement integers, you can divide the subset of the number line that can be reached by either type into three equally sized categories:
- => signed only
= => both
+ => unsigned only
<..-------=======+++++++..>
This can be easily proven by considering the representation. An unsigned integer starts at 0 and uses all of the bits to increase the value in powers of 2. A signed integer is exactly the same for all of the bits except the sign bit, which is worth -(2^position) instead of 2^position. This means that for all n - 1 bits, they represent the same values. Then, unsigned integers have one more normal bit, which doubles the total number of values (in other words, there are just as many values with that bit set as without it set). The same logic holds for signed integers, except that all the values with that bit set are negative.
The other two legal integer representations, ones' complement and sign-magnitude, have all of the same values as two's complement integers except for one: the most negative value. C++ defines everything about integer types, except for reinterpret_cast (and the C++20 std::bit_cast), in terms of the range of representable values, not in terms of the bit representation. This means that our analysis will hold for each of these three representations as long as we do not ever try to create the trap representation. The unsigned value that would map to this missing value is a rather unfortunate one: the one right in the middle of the unsigned values. Fortunately, our first condition checks (at compile time) whether such a representation exists, and then handles it specially with a runtime check.
The first condition handles the case where we are in the = section, which means that we are in the overlapping region where the values in one can be represented in the other without change. The shift_by_window function in the code moves all values down by the size of each of these segments (we have to subtract the max value then subtract 1 to avoid arithmetic overflow issues). If we are outside of that region (we are in the + region), we need to jump down by one window size. This puts us in the overlapping range, which means we can safely convert from unsigned to signed because there is no change in value. However, we are not done yet because we have mapped two unsigned values to each signed value. Therefore, we need to shift down to the next window (the - region) so that we have a unique mapping again.
Now, does this give us a result congruent mod UINT_MAX + 1, as requested in the question? UINT_MAX + 1 is equivalent to 2^n, where n is the number of bits in the value representation. The value we use for our window size is equal to 2^(n - 1) (the final index in a sequence of values is one less than the size). We subtract that value twice, which means we subtract 2 * 2^(n - 1) which is equal to 2^n. Adding and subtracting x is a no-op in arithmetic mod x, so we have not affected the original value mod 2^n.
Properly handling integer promotions
Because this is a generic function and not just int and unsigned, we also have to concern ourselves with integral promotion rules. There are two possibly interesting cases: one in which short is smaller than int and one in which short is the same size as int.
Example: short smaller than int
If short is smaller than int (common on modern platforms) then we also know that unsigned short can fit in an int, which means that any operations on it will actually happen in int, so we explicitly cast to the promoted type to avoid this. Our final statement is pretty abstract and becomes easier to understand if we substitute in real values. For our first interesting case, with no loss of generality let us consider a 16-bit short and a 17-bit int (which is still allowed under the new rules, and would just mean that at least one of those two integer types have some padding bits):
constexpr auto shift_by_window = [](auto x) {
return x - static_cast<decltype(x)>(32767) - 1;
};
return static_cast<int16_t>(
shift_by_window(
static_cast<int17_t>(
shift_by_window(
static_cast<uint17_t>(value)
)
)
)
);
Solving for the greatest possible 16-bit unsigned value
constexpr auto shift_by_window = [](auto x) {
return x - static_cast<decltype(x)>(32767) - 1;
};
return int16_t(
shift_by_window(
int17_t(
shift_by_window(
uint17_t(65535)
)
)
)
);
Simplifies to
return int16_t(
int17_t(
uint17_t(65535) - uint17_t(32767) - 1
) -
int17_t(32767) -
1
);
Simplifies to
return int16_t(
int17_t(uint17_t(32767)) -
int17_t(32767) -
1
);
Simplifies to
return int16_t(
int17_t(32767) -
int17_t(32767) -
1
);
Simplifies to
return int16_t(-1);
We put in the largest possible unsigned and get back -1, success!
Example: short same size as int
If short is the same size as int (uncommon on modern platforms), the integral promotion rule are slightly different. In this case, short promotes to int and unsigned short promotes to unsigned. Fortunately, we explicitly cast each result to the type we want to do the calculation in, so we end up with no problematic promotions. With no loss of generality let us consider a 16-bit short and a 16-bit int:
constexpr auto shift_by_window = [](auto x) {
return x - static_cast<decltype(x)>(32767) - 1;
};
return static_cast<int16_t>(
shift_by_window(
static_cast<int16_t>(
shift_by_window(
static_cast<uint16_t>(value)
)
)
)
);
Solving for the greatest possible 16-bit unsigned value
auto x = int16_t(
uint16_t(65535) - uint16_t(32767) - 1
);
return int16_t(
x - int16_t(32767) - 1
);
Simplifies to
return int16_t(
int16_t(32767) - int16_t(32767) - 1
);
Simplifies to
return int16_t(-1);
We put in the largest possible unsigned and get back -1, success!
What if I just care about int and unsigned and don't care about warnings, like the original question?
constexpr int cast_to_signed_integer(unsigned const value) {
using result_limits = std::numeric_limits<int>;
if constexpr (result_limits::min() + 1 != -result_limits::max()) {
if (value == static_cast<unsigned>(result_limits::max()) + 1) {
throw std::runtime_error("Cannot convert the maximum possible unsigned to a signed value on this system");
}
}
if (value <= result_limits::max()) {
return static_cast<int>(value);
} else {
constexpr int window = result_limits::min();
return static_cast<int>(value + window) + window;
}
}
See it live
https://godbolt.org/z/74hY81
Here we see that clang, gcc, and icc generate no code for cast and cast_to_signed_integer_basic at -O2 and -O3, and MSVC generates no code at /O2, so the solution is optimal.
You can explicitly tell the compiler what you want to do:
int unsigned_to_signed(unsigned n) {
if (n > INT_MAX) {
if (n <= UINT_MAX + INT_MIN) {
throw "no result";
}
return static_cast<int>(n + INT_MIN) - (UINT_MAX + INT_MIN + 1);
} else {
return static_cast<int>(n);
}
}
Compiles with gcc 4.7.2 for x86_64-linux (g++ -O -S test.cpp) to
_Z18unsigned_to_signedj:
movl %edi, %eax
ret
If x is our input...
If x > INT_MAX, we want to find a constant k such that 0 < x - k*INT_MAX < INT_MAX.
This is easy -- unsigned int k = x / INT_MAX;. Then, let unsigned int x2 = x - k*INT_MAX;
We can now cast x2 to int safely. Let int x3 = static_cast<int>(x2);
We now want to subtract something like UINT_MAX - k * INT_MAX + 1 from x3, if k > 0.
Now, on a 2s complement system, so long as x > INT_MAX, this works out to:
unsigned int k = x / INT_MAX;
x -= k*INT_MAX;
int r = int(x);
r += k*INT_MAX;
r -= UINT_MAX+1;
Note that UINT_MAX+1 is zero in C++ guaranteed, the conversion to int was a noop, and we subtracted k*INT_MAX then added it back on "the same value". So an acceptable optimizer should be able to erase all that tomfoolery!
That leaves the problem of x > INT_MAX or not. Well, we create 2 branches, one with x > INT_MAX, and one without. The one without does a strait cast, which the compiler optimizes to a noop. The one with ... does a noop after the optimizer is done. The smart optimizer realizes both branches to the same thing, and drops the branch.
Issues: if UINT_MAX is really large relative to INT_MAX, the above might not work. I am assuming that k*INT_MAX <= UINT_MAX+1 implicitly.
We could probably attack this with some enums like:
enum { divisor = UINT_MAX/INT_MAX, remainder = UINT_MAX-divisor*INT_MAX };
which work out to 2 and 1 on a 2s complement system I believe (are we guaranteed for that math to work? That's tricky...), and do logic based on these that easily optimize away on non-2s complement systems...
This also opens up the exception case. It is only possible if UINT_MAX is much larger than (INT_MIN-INT_MAX), so you can put your exception code in an if block asking exactly that question somehow, and it won't slow you down on a traditional system.
I'm not exactly sure how to construct those compile-time constants to deal correctly with that.
std::numeric_limits<int>::is_modulo is a compile time constant. so you can use it for template specialization. problem solved, at least if compiler plays along with inlining.
#include <limits>
#include <stdexcept>
#include <string>
#ifdef TESTING_SF
bool const testing_sf = true;
#else
bool const testing_sf = false;
#endif
// C++ "extensions"
namespace cppx {
using std::runtime_error;
using std::string;
inline bool hopefully( bool const c ) { return c; }
inline bool throw_x( string const& s ) { throw runtime_error( s ); }
} // namespace cppx
// C++ "portability perversions"
namespace cppp {
using cppx::hopefully;
using cppx::throw_x;
using std::numeric_limits;
namespace detail {
template< bool isTwosComplement >
int signed_from( unsigned const n )
{
if( n <= unsigned( numeric_limits<int>::max() ) )
{
return static_cast<int>( n );
}
unsigned const u_max = unsigned( -1 );
unsigned const u_half = u_max/2 + 1;
if( n == u_half )
{
throw_x( "signed_from: unsupported value (negative max)" );
}
int const i_quarter = static_cast<int>( u_half/2 );
int const int_n1 = static_cast<int>( n - u_half );
int const int_n2 = int_n1 - i_quarter;
int const int_n3 = int_n2 - i_quarter;
hopefully( n == static_cast<unsigned>( int_n3 ) )
|| throw_x( "signed_from: range error" );
return int_n3;
}
template<>
inline int signed_from<true>( unsigned const n )
{
return static_cast<int>( n );
}
} // namespace detail
inline int signed_from( unsigned const n )
{
bool const is_modulo = numeric_limits< int >::is_modulo;
return detail::signed_from< is_modulo && !testing_sf >( n );
}
} // namespace cppp
#include <iostream>
using namespace std;
int main()
{
int const x = cppp::signed_from( -42u );
wcout << x << endl;
}
EDIT: Fixed up code to avoid possible trap on non-modular-int machines (only one is known to exist, namely the archaically configured versions of the Unisys Clearpath). For simplicity this is done by not supporting the value -2n-1 where n is the number of int value bits, on such machine (i.e., on the Clearpath). in practice this value will not be supported by the machine either (i.e., with sign-and-magnitude or 1’s complement representation).
I think the int type is at least two bytes, so the INT_MIN and INT_MAX may change in different platforms.
Fundamental types
≤climits≥ header
My money is on using memcpy. Any decent compiler knows to optimise it away:
#include <stdio.h>
#include <memory.h>
#include <limits.h>
static inline int unsigned_to_signed(unsigned n)
{
int result;
memcpy( &result, &n, sizeof(result));
return result;
}
int main(int argc, const char * argv[])
{
unsigned int x = UINT_MAX - 1;
int xx = unsigned_to_signed(x);
return xx;
}
For me (Xcode 8.3.2, Apple LLVM 8.1, -O3), that produces:
_main: ## #main
Lfunc_begin0:
.loc 1 21 0 ## /Users/Someone/main.c:21:0
.cfi_startproc
## BB#0:
pushq %rbp
Ltmp0:
.cfi_def_cfa_offset 16
Ltmp1:
.cfi_offset %rbp, -16
movq %rsp, %rbp
Ltmp2:
.cfi_def_cfa_register %rbp
##DEBUG_VALUE: main:argc <- %EDI
##DEBUG_VALUE: main:argv <- %RSI
Ltmp3:
##DEBUG_VALUE: main:x <- 2147483646
##DEBUG_VALUE: main:xx <- 2147483646
.loc 1 24 5 prologue_end ## /Users/Someone/main.c:24:5
movl $-2, %eax
popq %rbp
retq
Ltmp4:
Lfunc_end0:
.cfi_endproc

Curious arithmetic error- 255x256x256x256=18446744073692774400

I encountered a strange thing when I was programming under c++. It's about a simple multiplication.
Code:
unsigned __int64 a1 = 255*256*256*256;
unsigned __int64 a2= 255 << 24; // same as the above
cerr()<<"a1 is:"<<a1;
cerr()<<"a2 is:"<<a2;
interestingly the result is:
a1 is: 18446744073692774400
a2 is: 18446744073692774400
whereas it should be:(using calculator confirms)
4278190080
Can anybody tell me how could it be possible?
255*256*256*256
all operands are int you are overflowing int. The overflow of a signed integer is undefined behavior in C and C++.
EDIT:
note that the expression 255 << 24 in your second declaration also invokes undefined behavior if your int type is 32-bit. 255 x (2^24) is 4278190080 which cannot be represented in a 32-bit int (the maximum value is usually 2147483647 on a 32-bit int in two's complement representation).
C and C++ both say for E1 << E2 that if E1 is of a signed type and positive and that E1 x (2^E2) cannot be represented in the type of E1, the program invokes undefined behavior. Here ^ is the mathematical power operator.
Your literals are int. This means that all the operations are actually performed on int, and promptly overflow. This overflowed value, when converted to an unsigned 64bit int, is the value you observe.
It is perhaps worth explaining what happened to produce the number 18446744073692774400. Technically speaking, the expressions you wrote trigger "undefined behavior" and so the compiler could have produced anything as the result; however, assuming int is a 32-bit type, which it almost always is nowadays, you'll get the same "wrong" answer if you write
uint64_t x = (int) (255u*256u*256u*256u);
and that expression does not trigger undefined behavior. (The conversion from unsigned int to int involves implementation-defined behavior, but as nobody has produced a ones-complement or sign-and-magnitude CPU in many years, all implementations you are likely to encounter define it exactly the same way.) I have written the cast in C style because everything I'm saying here applies equally to C and C++.
First off, let's look at the multiplication. I'm writing the right hand side in hex because it's easier to see what's going on that way.
255u * 256u = 0x0000FF00u
255u * 256u * 256u = 0x00FF0000u
255u * 256u * 256u * 256u = 0xFF000000u (= 4278190080)
That last result, 0xFF000000u, has the highest bit of a 32-bit number set. Casting that value to a signed 32-bit type therefore causes it to become negative as-if 232 had been subtracted from it (that's the implementation-defined operation I mentioned above).
(int) (255u*256u*256u*256u) = 0xFF000000 = -16777216
I write the hexadecimal number there, sans u suffix, to emphasize that the bit pattern of the value does not change when you convert it to a signed type; it is only reinterpreted.
Now, when you assign -16777216 to a uint64_t variable, it is back-converted to unsigned as-if by adding 264. (Unlike the unsigned-to-signed conversion, this semantic is prescribed by the standard.) This does change the bit pattern, setting all of the high 32 bits of the number to 1 instead of 0 as you had expected:
(uint64_t) (int) (255u*256u*256u*256u) = 0xFFFFFFFFFF000000u
And if you write 0xFFFFFFFFFF000000 in decimal, you get 18446744073692774400.
As a closing piece of advice, whenever you get an "impossible" integer from C or C++, try printing it out in hexadecimal; it's much easier to see oddities of twos-complement fixed-width arithmetic that way.
The answer is simple -- overflowed.
Here Overflow occurred on int and when you are assigning it to unsigned int64 its converted in to 18446744073692774400 instead of 4278190080