How can RAII be used with pointers? - c++

If have a class:
class classA {
public:
int z = 5;
};
I understand RAII to be when I write classA Aobject but what do I do if I want to declare a global pointer?
classA *Aobject;
int main()
{
Aobject = new classA; //not RAII
cout << Aobject->z << endl;
return 1;
}

I assume that what you mean is you want to declare an object, but you don't want to initialize it right away, perhaps because you don't have all the parameters you need in order to construct it properly yet. Is that correct? Use a smart pointer.
#include <memory>
#include <iostream>
std::unique_ptr<classA> Aobject;
int main()
{
Aobject.reset(new classA);
cout << Aobject->z << endl;
return 1;
}

Related

Creating Smart pointer of the object itself (this) in its constructor

So lets say I have
class A
{
A(std::vector<std::shared_pointer<A>> &a_vec)
{
auto shared_ptr = std::make_shared<A>(*this);
a_vec.pushback<shared_ptr>;
{
};
class B
{
std::vector<std::shared_pointer<A>> a_vector_;
void constructA()
{
created_A = make_shared<A>(a_vector_);
}
}
So Im creating a method for B which creates an A and the A pushes itself to the vector B provides.
And on paper this dependancy works like I expected to, atleast I thought it was until I realised the a_vec.pushback<this*>; is not very dependable.
When I have more code inbetween the push and the shared pointer initialisation as such
A(std::vector<std::shared_pointer<A>> a_vec)
{
auto shared_ptr = std::make_shared<A>(*this);
//insert more code here
a_vec.pushback<shared_ptr>;
{
It seems that the initialisations and other stuff I do in there isn't reflected to the pointer the shared pointer is pointing. Whats the cause of this and is there a way to fix it? Also is there a reason this would be a bad practice to use?
One of the challenges when you are programming in C++ is to understand object lifetime. So it is better to make object creation and destruction as clear as possible.
As I understood your case is to memoize "automagically" all created objects. It is easier to do using "factory method" constructA
#include <iostream>
#include <vector>
#include <memory>
class A
{
public:
A() = default;
};
class B//AInstanceFactory - is a better name
{
std::vector<std::shared_ptr<A>> a_instances;
public:
void constructA()
{
a_instances.push_back(std::make_shared<A>());
}
const std::vector<std::shared_ptr<A>>& getAInstances() {
return a_instances;
}
};
int main()
{
B b;
b.constructA();
std::cout << b.getAInstances().size() << "\n";
b.constructA();
std::cout << b.getAInstances().size() << "\n";
}
[WRONG PATH]
It is possible to make object which aware of shared_ptr/weak_ptr: use template std::enable_shared_from_this.
In that case your code might be following,:
#include <iostream>
#include <vector>
#include <memory>
class A : std::enable_shared_from_this<A>
{
public:
A(std::vector<std::shared_ptr<A>>& a_vec)
{
a_vec.push_back(shared_from_this());//bad_weak_ptr here!!!!
}
};
class B
{
std::vector<std::shared_ptr<A>> a_vector_;
public:
void constructA()
{
auto a_ptr = make_shared<A>(a_vector_);
}
const std::vector<std::shared_ptr<A>>& getAVec() {
return a_vector_;
}
};
int main()
{
B b;
b.constructA();
std::cout << b.getAVec().size() << "\n";
}
BUT it wrong, because underlying weak_ptr is "ready" only after function make_shared is executed, means only after construction call.
Calling shared_from_this or weak_from_this is valid only after make_shared function is executed.

vector of call back functions and function pointer binding

I am new to the std::function and trying to implement a callback function. In the following code "Callback_t" contains a function that holds a vector of function to be called. Class "other" is a nested class inside "SomeClass". An object of "SomeClass" contains an array of nested class object "b". The "other" class constructor assigns a function pointer to "fptr". I push this function in to the vector of callback class "Callback_t". When I run this code, I get the segmentation fault when the first function in the vector is invoked. I am not able to figure out what is wrong with the statement
this->loc_ptr->set_of_cb.push_back(this->b[i].fptr);
However if I replace it with
this->loc_ptr->set_of_cb.push_back(std::bind(&other::func, &(this->b[i])))
the code works perfectly. I need help to understand what's wrong with the original statement.
#include <functional>
#include <iostream>
#include <vector>
typedef std::function<void(void)> func_type;
class Callback_t {
public:
std::vector<func_type> set_of_cb;
void myCallback()
{
for (int i = 0; i < set_of_cb.size(); i ++){
set_of_cb[i]();
}
}
};
class SomeClass;
class SomeClass {
private:
Callback_t *loc_ptr;
int a[10];
class other{
public:
int id;
SomeClass *loc;
func_type fptr;
other(){};
other(SomeClass *loc, int id){
this->id = id;
this->loc =loc;
fptr = std::bind(&other::func,this);
}
void func(void){
this->loc->a[id] = loc->a[id] * id;
return;
}
};
public:
other *b;
//other b[10];
SomeClass(Callback_t *a = nullptr){
this->loc_ptr = a;
this->b = new other[10];
for(int i =0; i <10;i++){
this->a[i] = i;
this->b[i] = other(this, i);
this->loc_ptr->set_of_cb.push_back(this->b[i].fptr);
}
}
void read(void){
for(int i =0; i <10;i++){
std::cout<<a[i]<<std::endl;
}
}
};
int main()
{
Callback_t *tmp;
tmp = new Callback_t;
SomeClass tmp1(tmp);
tmp1.read();
tmp->myCallback();
tmp1.read();
delete tmp;
}
other(SomeClass *loc, int id){
this->id = id;
this->loc =loc;
fptr = std::bind(&other::func,this);
}
The constructor binds fptr to this, which is the constructed object. Now, pay careful attention:
this->b[i] = other(this, i);
This performs the following sequence of events. There are quite a few things happening here, that are crucial to this mystery:
A temporary other object gets constructed, and its constructor does what it does. Note that the object is temporary, so its constructor ends up binding its fptr to a temporary object! You're beginning to see the problem, but let's close the loop, anyway:
The object gets assigned to this->b[i]. This is effectively a copy.
The original temporary objects gets destroyed.
The end result is that b[i]'s bound function ends up getting bound to a temporary object that is now destroyed. This results in undefined behavior and your crash.
And with your working alternative:
this->loc_ptr->set_of_cb.push_back(std::bind(&other::func, &(this->b[i])))
You are binding the std::function to a valid instance of the object, in b[i].
That's it.
The other answer explains what is going wrong in your code. What is left to do is to show case a more canonical example of achieving what you go for (with a little help from lambda functions). Of course, std::bind() also works, but it is pre C++11 and I think nowadays most would rather do it as I do in my code below.
#include <iostream>
#include <functional>
#include <vector>
class Foo {
public:
void FooFun() {
std::cout << "Foo::FooFun() called" << std::endl;
}
};
class Bar {
public:
void BarFun() {
std::cout << "Bar::BarFun() called" << std::endl;
}
};
using CallbackFun_t = std::function<void()>;
using Callbacks_t = std::vector<CallbackFun_t>;
int main(int argc, const char * argv[]) {
Foo foo{};
Bar bar{};
Callbacks_t callbacks
{ [&foo]{ foo.FooFun();}
, [&bar]{ bar.BarFun();}
};
for( auto& cb : callbacks ) {
cb();
}
return 0;
}

Why can I use memcpy to copy one object variable to another

I have this class
class TestClass
{
public:
int* tab;
};
int main()
{
TestClass a;
a.tab[0]=8;
a.tab[1]=5;
TestClass b;
memcpy(b.tab,a.tab,sizeof(int)*2);
cout << b.tab[0] << endl;
return 0;
}
and I want to copy tab from a to b tab. But this code doesn't work.
I tried to copy tab to dynamic array and it worked.
TestClass a;
a.tab[0]=8;
a.tab[1]=5;
int* b=new int[2];
memcpy(b,a.tab,sizeof(int)*2);
cout << b[0] << endl;
Can someone explain why first code doesn't work but second works?
You're causing undefined behavior by trying to use the subscript operator with an uninitialized pointer. Instead of doing any of these, use std::vector or std::array, depending on what you are trying to achieve:
#include <iostream>
#include <vector>
class TestClass
{
public:
std::vector<int> tab;
};
int main()
{
TestClass a{ { 8, 5 } };
TestClass b{ a };
std::cout << b.tab[0] << '\n';
}
This keeps it simple and maintainable. STL containers have more friendly value semantics and they are in general easier to use, harder to abuse.

Pointer to a Vector of Class - I can't reach the members of the Class

I try to create a vector with a pointer (so that everything is stored in/on the heap). I then want to fill the vector with an array of a class. I am thinking about accessing the class by class[i].member... Sadly, it does not work.
If I try this without a vector it works, like in:
tClass *MyClass = new tClass[5]
I am trying this without a specific purpose and only to understand C++ better. Can anyone have a look where I am wrong? Thanks!
Here is the code:
#include "iostream"
#include "vector"
using namespace std;
class tClass
{
private:
int x = 0;
public:
int y = 0;
tClass(){cout << "New" << endl;};
~tClass(){}; //do I need to make a delete here?
int main ()
{
vector<tClass> *MyClass[5];
MyClass = new vector<tClass>[5];
cout << MyClass[3].y << endl;
delete[] MyClass;
}
as others have suggested if you want just a vector of tClass you would do the following
vector<tClass> vectorName (5);
and access it like so
vectorName[3].y;
however if you wanted a vector of tClass pointers you would initialise and acess it like this
vector<tClass*> vectorName(5);
vectorName[3]->y;
edit
this might help you a bit more, this is your code, with comment to help you understand what is going wrong
class tClass
{
private:
int x = 0;
public:
int y = 0;
tClass(){ cout << "New" << endl; };
~tClass(){}; //do I need to make a delete here? //no you dont need to make a delete here as this class contains no "news"
int main()
{
vector<tClass> *MyClass[5]; //use () to give a vector an initial size, [] is only to access a member
//also to have a vector holding pointers, the asterisk needs to be after tClass not before the vector name
MyClass = new vector<tClass>[5];
cout << MyClass[3].y << endl; //discused above
delete[] MyClass; //only needed if a new is used, however you dont need one here, as it will just go out of scope
}
here is you code, but fixed to compile and run with the use of pointers
#include <iostream>
#include <vector>
using namespace std;
class tClass
{
private:
int x = 0;
public:
int y = 0;
tClass(){ cout << "New" << endl; };
};
int main()
{
vector<tClass*> MyClass(5);
cout << MyClass[3]->y << endl;
}
note though that this will give an error as the vector of class pointers are not pointing to any class

Why aren't these shared_ptrs pointing to the same container?

I have a class Model:
class Model
{
...
boost::shared_ptr<Deck> _deck;
boost::shared_ptr<CardStack> _stack[22];
};
Deck inherits from CardStack.
I tried to make _stack[0] point to the same thing that _deck points to by going:
{
_deck = boost::shared_ptr<Deck>(new Deck());
_stack[0] = _deck;
}
It seems that the assignment to _deck of _stack[0] results in a copy of _deck being made. (I know this because modifications to _stack[0] do not result in modifications to _deck.) How can I get them to point to the same thing?
Ok - no copy constructor is being called. I have verified this by implementing it and seeing if it gets called - it doesn't.
However - I have a function that operates on CardStack objects:
void TransferSingleCard(CardStack & src, CardStack & dst, Face f)
{
if( !src._cards.empty() )
{
src._cards.back().SetFace(f);
dst.PushCard(src._cards.back());
src._cards.pop_back();
}
}
Now - when I call:
{
TransferSingleCard(*_stack[DECK], _someotherplace, FACEDOWN);
std::cout << *_stack[DECK];
std::cout << *_deck;
}
I get this output (where std::cout on a CardStack will print out the size of that stack):
Num(103) TOP
Num(104) TOP
... so I've concluded (incorrectly?) that _stack[DECK] points to something different.
The Deck
class Deck : public CardStack
{
public:
Deck(int numsuits=2, StackIndex index = NO_SUCH_STACK );
Deck::Deck( const Deck & d);
int DealsLeft() const;
void RecalcDealsLeft();
private:
int _dealsleft;
};
Not clear what you are asking about - consider this code:
#include <iostream>
#include "boost/shared_ptr.hpp"
using namespace std;
struct A {
virtual ~A() {
cout << "destroyed" << endl;
}
};
struct B : public A {
};
int main() {
boost::shared_ptr<B> b( new B );
boost::shared_ptr<A> a;
a = b;
}
Only one "destroy" message appears, indicating that no copy has been made.
This example - derives from #Neil's answer, tries to emulate what you say is happening. Could you check that it works as expected (A and B have the same count) on your system.
Then we could try and modify this code or your code until they match.
#include <boost/shared_ptr.hpp>
#include <iostream>
class A {
public:
virtual ~A()
{
std::cerr << "Delete A" << std::endl;
}
int _count;
void decrement()
{
_count --;
}
};
class B : public A {
public:
virtual ~B()
{
std::cerr << "Delete B" << std::endl;
}
};
int main()
{
boost::shared_ptr<B> b(new B);
b->_count = 104;
boost::shared_ptr<A> a;
a = b;
a->decrement();
std::cerr << "A:" << a->_count << std::endl;
std::cerr << "B:" << b->_count << std::endl;
return 0;
}
EDIT:
So from the comment, we know the original pointers are correct, so now we need to trace.
Either:
log pointers to see when they change.
Use watchpoints in a debugger to see when the pointer changes.
Use a third shared pointer to see which pointer is changed.
Introduce a function that changes both pointers at the same time.
I think the problem is that you're assigning between different types here. boost::shared_ptr is a template and templates are not polymorphic even if the type in them is. So what's happening is that your compiler sees the assignment from boost::shared_ptr<Deck> to boost::shared_ptr<CardStack> and notices that it can make the assignment by calling the copy constructor for CardStack to duplicate the Deck object.
I think what you want the assignment to look like is something like this:
_stack[0] = boost::static_pointer_cast<CardStack>(_deck);
Which will do the conversion the way you expect it to.
I think you may want shared_array for _stack . . . Take a look at the documentation on shared_ptr;from boost.org, specifically:
http://www.boost.org/doc/libs/1_42_0/libs/smart_ptr/shared_ptr.htm
"Normally, a shared_ptr cannot
correctly hold a pointer to a
dynamically allocated array. See
shared_array for that usage."
Also, be aware of the T* get() function (not to be used without good reason) which returns the raw pointer being held by the managed pointer (shared_ptr in this case).