Creating more than 1 different objects in OpenGL - c++

Well, I have been learning openGL with this tutorial: opengl-tutorial.org.
That tutorial do not explain how do the shaders works. I mean, is the vertex shader readed before the fragment shader?
Ok talking about the question, I want to create two objects for practice, one box (3D Square with a texture) and a pyramid (3D Triangle with a texture), I don't know how to do it, I know how to draw it with C++/OpenGl but talking about the GLSL.... Do I need to create another program? How can I do that?
(OpenGL 3.3)

OpenGL does not maintain "objects" in such a way as you seem to assume (the term object is used to refer to "something" internal that OpenGL uses and that you can refer to via an identifier. A vertex buffer, a texture, or a shader are all examples of "objects"). OpenGL is not a scenegraph.
You need to create the vertex data for each of your objects in your application (or load that data from a file) and to provide OpenGL with that by feeding a buffer object with that data.
Then you tell OpenGL to draw a number of vertices from that buffer. OpenGL does not care what that data is or how to draw it. It will only do exactly what you tell it to do. If you tell it "take this block of data that contains vertex coordinates, and now draw 5 triangles", then it will just do that.

Related

OpenGL big projects, VAO-s and more

So I've been learning OpenGL 3.3 on https://open.gl/ and I got really confused about some stuff.
VAO-s. By my understanding they are used to store the glVertexAttribPointer calls.
VBO-s. They store vertecies. So if I am making something with multiple objects do I need a VBO for every object?
Shader Programs - Why do we need multiple ones and what exactly do they do ?
What exactly does this line do : glBindFragDataLocation(shaderProgram, 0, "outColor");
The most important thing is how does all of this fit into a big program? For what exactly are used the VAO-s? Most tutorials just cover the things just to drawing a cube or 2 with hard coded vertices, so how would one go to managing scenes with a lot of objects? I've read this thread and got a little bit of understanding on how the scene management happens and all but still I can't figure out how to connect the OpenGL stuff to it all.
1-Yes. VAOs store vertex array bindings in general. When you see that you're doing lots of calls that does enabling, disabling and changing of GPU states, you can do all that at some early point in the program and then use VAOs to take a "snapshot" ,of what is bound and what isn't, at that point in time. Later, during your actual draw calls, all you need to do is bind that VAO again to set all the vertex states to what they were then. Just like how VBOs are faster that immediate mode because they send all vertices at once, VAOs work faster by changing many vertex states at once.
2-VBOs are just another way to send your glPosition, glColor..etc coordinates to the GPU to render on screen. The idea is, unlike with immediate mode where you send your vertex data one by one with the gl*Attribute* calls, is to upload all your vertices to the GPU in advance and retrieve their location as an ID. At time of rendering, you're only going to point the GPU (you bind the VBO id to something like GL_ARRAY_BUFFER, and use glVertexAttribPointer to specify details of how you stored the vertices data) to that location and issue your order to render. That obviously saves lots of time by doing things overhead, and so it's much faster.
As for whether one should have one VBO per object or even one VBO for all the objects is up to the programmer and the structure of the objects they want to render. After all, VBOs themselves are just a bunch of data you stored in the GPU, and you tell the computer how they're arranged using the glVertexAttribPointer calls.
3-Shaders are used to define a pipeline - a routine - of what happens to the vertices, colors, normals..etc after they've been sent to the GPU until they're rendered as fragments or pixels on the screen. When you send vertices over to the GPU, they're often still 3D coordinates, but the screen is a 2D sheet of pixels. There still comes the process of re-positioning these vertices according to the ProjectionModelView matrices (job of vertex shader) and then "flattening" or rasterizing the 3D geometry (geometry shader) into a 2D plane. Then it follows with coloring the flattened 2D scene (fragment shader) and finally lighting the pixels on your screen accordingly. In OpenGL versions 1.5 core and below, you didn't have much control over those stages as it was all fixed (hence the term fixed pipeline). Just think about what you could do in any of these shader stages and you will see that there is a lot of awesome things you can do with them. For example, in the fragment shader, just before you send the fragment color to the GPU, negate the sign of the color and add 1 to have colors of objects rendered with that shader inverted!
As for how many shaders one needs to use, again, it's up to the programmer to decide whether to have many or not. They could merge all the functionalities they need into one big giant shader (uber shader) and switch these functionalities on and off with boolean uniforms (very often considered as a bad practice), or have every shader do a certain thing and bind the right one according to what they need.
What exactly does this line do :
glBindFragDataLocation(shaderProgram, 0, "outColor");
It means that whatever is stored in the out declared variable "outColor" at the end of the fragment shader execution will be sent to the GPU as the final primary fragment color.
The most important thing is how does all of this fit into a big
program? For what exactly are used the VAO-s? Most tutorials just
cover the things just to drawing a cube or 2 with hard coded vertices,
so how would one go to managing scenes with a lot of objects? I've
read this thread and got a little bit of understanding on how the
scene management happens and all but still I can't figure out how to
connect the OpenGL stuff to it all.
They all work together to draw your nice colored shapes on the screen. VBOs are the structures where the vertices of your scene are stored (all aligned in an ugly fashion), VertexAttribPointer calls to tell the GPU how the data in the VBO is arranged, VAOs to store all these VertexAttribPointer instructions ahead of time and send them all at once with simply binding one during rendering in your main loop, and shaders to give you more control during the process of drawing your scene on the screen.
All of this can sound overwhelming at first, but with practice you will get used to it.

Get data back from OpenGL shader?

My computer doesn't support OpenCL on the GPU or OpenGL compute shaders so I was wondering if it would be a straight forward process to get data from a vertex or fragment shader?
My goal is to pass 2 textures to the shader and have the shader computer the locations where one texture exists in the other. Where there is a pixel match. I need to retrieve the locations of possible matches from the shader.
Is this plausible? If so, how would I go about it? I have the basic OpenGL knowledge, I have set up a program that draws polygons with colors. I really just need a way to get position values back from the shader.
You can render to memory instead of to screen, and then fetch data from it.
Create and bind a Framebuffer Object
Create a Renderbuffer Object and attach it to the Framebuffer Object
Render your scene. The result will end up in the bound Framebuffer Object instead of on the screen.
Use glReadPixels to pull data from the Framebuffer Object.
Be aware that glReadPixels, like most methods of fetching data from GPU memory back to main memory, is slow and likely unsuitable for real-time applications. But it's the best you can do if you don't have features intended for that, like Compute Shaders, or are willing to do it asynchronously with Pixel Buffer Objects.
You can read more about Framebuffers here.

OpenGL concept question

I'm just starting OpenGL programming in Win32 C++ so don't be too hard on me :) I've been wandering along the NeHe tutorials and 'the red book' a bit now, but I'm confused. So far I've been able to set up an OpenGL window, draw some triangles etc, no problem. But now I want to build a model and view it from different angles. So do we:
Load a model into memory (saving triangles/quads coordinates in structs on the heap) and in each scene render we draw all stuff we have to the screen using glVertex3f and so on.
Load/draw the model once using glVertex3f etc and we can just change the viewing position in each scene.
Other...?
It seems to me option 1 is most plausible from all I read so far, however it seems a bit ehh.. dumb! Do we have to decide which objects are visible, and only draw those. Isn't that very slow? Option 2 might seem more attractive :)
EDIT: Thanks for all the help, I've decided to do: read my model from file, then load it into the GPU memory using glBufferData and then feed that data to the render function using glVertexPointer and glDrawArrays.
First you need to understand, that OpenGL actually doesn't understand the term "model", all what OpenGL sees is a stream of vertices coming in and depending on the current mode it uses those streams of vertices to draw triangles to the screen.
Every frame drawing iteration follows some outline like this:
clear all buffers
for each window element (main scene, HUD, minimap, etc.):
set scissor and viewport
conditionally clear depth and/or stencil
set projection matrix
set modelview matrix for initial view
for each model
apply model transformation onto matrix stack
bind model data (textures, vertices, etc.)
issue model drawing commands
swap buffers
OpenGL does not remember what's happening up there. There was (is) some facility, called Display Lists but they are not able to store all kinds of commands – also they got deprecated and removed from recent OpenGL versions. The immediate mode commands glBegin, glEnd, glVertex, glNormal and glTexCoord have been removed as well.
So the idea is to upload some data (textures, vertex arrays, etc.) into OpenGL buffer objects. However only textures are directly understood by OpenGL as what they are (images). All other kinds of buffers require you telling OpenGL how to deal with them. This is done by calls to gl{Vertex,Color,TexCoord,Normal,Attrib}Pointer to set data access parameters and glDraw{Arrays,Elements} to trigger OpenGL fetching a stream of vertices to be fed to the rasterizer.
You should upload the data to the GPU memory once, and then draw each frame using as few commands as possible.
Previously, this was done using display lists. Nowadays, it's all about vertex buffer objects (a.k.a. VBOs), so look into those.
Here's a tutorial about VBOs, written before they were only an extension, and not a core part of OpenGL.

Using Vertex Buffer Objects for a tile-based game and texture atlases

I'm creating a tile-based game in C# with OpenGL and I'm trying to optimize my code as best as possible.
I've read several articles and sections in books and all come to the same conclusion (as you may know) that use of VBOs greatly increases performance.
I'm not quite sure, however, how they work exactly.
My game will have tiles on the screen, some will change and some will stay the same. To use a VBO for this, I would need to add the coordinates of each tile to an array, correct?
Also, to texture these tiles, I would have to create a separate VBO for this?
I'm not quite sure what the code would look like for tiling these coordinates if I've got tiles that are animated and tiles that will be static on the screen.
Could anyone give me a quick rundown of this?
I plan on using a texture atlas of all of my tiles. I'm not sure where to begin to use this atlas for the textured tiles.
Would I need to compute the coordinates of the tile in the atlas to be applied? Is there any way I could simply use the coordinates of the atlas to apply a texture?
If anyone could clear up these questions it would be greatly appreciated. I could even possibly reimburse someone for their time & help if wanted.
Thanks,
Greg
OK, so let's split this into parts. You didn't specify which version of OpenGL you want to use - I'll assume GL 3.3.
VBO
Vertex buffer objects, when considered as an alternative to client vertex arrays, mostly save the GPU bandwidth. A tile map is not really a lot of geometry. However, in recent GL versions the vertex buffer objects are the only way of specifying the vertices (which makes a lot of sense), so we cannot really talked about "increasing performance" here. If you mean "compared to deprecated vertex specification methods like immediate mode or client-side arrays", then yes, you'll get a performance boost, but you'd probably only feel it with 10k+ vertices per frame, I suppose.
Texture atlases
The texture atlases are indeed a nice feature to save on texture switching. However, on GL3 (and DX10)-enabled GPUs you can save yourself a LOT of trouble characteristic to this technique, because a more modern and convenient approach is available. Check the GL reference docs for TEXTURE_2D_ARRAY - you'll like it. If GL3 cards are your target, forget texture atlases. If not, have a google which older cards support texture arrays as an extension, I'm not familiar with the details.
Rendering
So how to draw a tile map efficiently? Let's focus on the data. There are lots of tiles and each tile has the following infromation:
grid position (x,y)
material (let's call it "material" not "texture" because as you said the image might be animated and change in time; the "material" would then be interpreted as "one texture or set of textures which change in time" or anything you want).
That should be all the "per-tile" data you'd need to send to the GPU. You want to render each tile as a quad or triangle strip, so you have two alternatives:
send 4 vertices (x,y),(x+w,y),(x+w,y+h),(x,y+h) instead of (x,y) per tile,
use a geometry shader to calculate the 4 points along with texture coords for every 1 point sent.
Pick your favourite. Also note that directly corresponds to what your VBO is going to contain - the latter solution would make it 4x smaller.
For the material, you can pass it as a symbolic integer, and in your fragment shader - basing on current time (passed as an uniform variable) and the material ID for a given tile - you can decide on the texture ID from the texture array to use. In this way you can make a simple texture animation.

Applying a shader to framebuffer object to get fisheye affect

Lets say i have an application ( the details of the application should be irrelevent for solving the problem ). Instead of rendering to the screen, i am somehow able to force the application to render to a framebuffer object instead of rendering to the screen ( messing with glew or intercepting a call in a dll ).
Once the application has rendered its content to the FBO is it possible to apply a shader to the contents of the FB? My knowledge is limited here, so from what i understand at this stage all information about vertices is no longer available and all the necessary tests have been applied, so whats left in the buffer is just pixel data. Is this correct?
If it is possible to apply a shader to the FBO, is is possible to get a fisheye affect? ( like this for example: http://idea.hosting.lv/a/gfx/quakeshots.html )
The technique used in the linke above is to create 6 different viewports and render each viewport to a cubemap face and then apply the texture to a mesh.
Thanks
A framebuffer object encapsulates several other buffers, specifically those that are implicitly indexed by fragment location. So a single framebuffer object may bundle together a colour buffer, a depth buffer, a stencil buffer and a bunch of others. The individual buffers are known as renderbuffers.
You're right — there's no geometry in there. For the purposes of reading back the scene you get only final fragment values, which if you're highjacking an existing app will probably be a 2d pixel image of the frame and some other things that you don't care about.
If your GPU has render-to-texture support (originally an extension circa OpenGL 1.3 but you'd be hard pressed to find a GPU without it nowadays, even in mobile phones) then you can link a texture as a renderbuffer within a framebuffer. So the rendering code is exactly as it would be normally but ends up writing the results to a texture that you can then use as a source for drawing.
Fragment shaders can programmatically decide which location of a texture map to sample in order to create their output. So you can write a fragment shader that applies a fisheye lens, though you're restricted to the field of view rendered in the original texture, obviously. Which would probably be what you'd get in your Quake example if you had just one of the sides of the cube available rather than six.
In summary: the answer is 'yes' to all of your questions. There's a brief introduction to framebuffer objects here.
Look here for some relevant info:
http://www.opengl.org/wiki/Framebuffer_Object
The short, simple explanation is that a FBO is the 3D equivalent of a software frame buffer. You have direct access to individual pixels, instead of having to modify a texture and upload it. You can get shaders to point to an FBO. The link above gives an overview of the procedure.