cancel a c++ 11 async task - c++

How can I stop/cancel an asynchronous task created with std::async and policy std::launch::async? In other words, I have started a task running on another thread, using future object. Is there a way to cancel or stop the running task?

In short no.
Longer explanation: There is no safe way to cancel any threads in standard C++. This would require thread cancellation. This feature has been discussed many times during the C++11 standardisation and the general consensus is that there is no safe way to do so. To my knowledge there were three main considered ways to do thread cancellation in C++.
Abort the thread. This would be rather like an emergency stop. Unfortunately it would result in no stack unwinding or destructors called. The thread could have been in any state so possibly holding mutexes, having heap allocated data which would be leaked, etc. This was clearly never going to be considered for long since it would make the entire program undefined. If you want to do this yourself however just use native_handle to do it. It will however be non-portable.
Compulsory cancellation/interruption points. When a thread cancel is requested it internally sets some variable so that next time any of a predefined set of interruption points is called (such as sleep, wait, etc) it will throw some exception. This would cause the stack to unwind and cleanup can be done. Unfortunately this type of system makes it very difficult make any code exception safe since most multithreaded code can then suddenly throw. This is the model that boost.thread uses. It uses disable_interruption to work around some of the problems but it is still exceedingly difficult to get right for anything but the simplest of cases. Boost.thread uses this model but it has always been considered risky and understandably it was not accepted into the standard along with the rest.
Voluntary cancellation/interruption points. ultimately this boils down to checking some condition yourself when you want to and if appropriate exiting the thread yourself in a controlled fashion. I vaguely recall some talk about adding some library features to help with this but it was never agreed upon.
I would just use a variation of 3. If you are using lambdas for instance it would be quite easy to reference an atomic "cancel" variable which you can check from time to time.

In C++11 (I think) there is no standard way to cancel a thread. If you get std::thread::native_handle(), you can do something with it but that's not portable.

maybe you can do like this way by checking some condition:
class Timer{
public:
Timer():timer_destory(false){}
~Timer(){
timer_destory=true;
for(auto result:async_result){
result.get();
}
}
int register_event(){
async_result.push_back(
std::async(std::launch::async,[](std::atomic<bool>& timer_destory){
while(!timer_destory){
//do something
}
},std::ref(timer_destory))
);
}
private:
std::vector<std::future<int>> async_result;
std::atomic<bool> timer_destory;
}

Related

Why do I need to explicitly detach a short term variable?

Let's say I have a small operation which I want to perform in a separate thread. I do not need to know when it completes, nor do I need to wait for its completion, but I do not want the operation blocking my current thread. When I write the following code, I will get a crash:
void myFunction() {
// do other stuff
std::thread([]()
{
// do thread stuff
});
}
This crash is solved by assigning the thread to a variable, and detaching it:
void myFunction() {
// do other stuff
std::thread t([]()
{
// do thread stuff
});
t.detach();
}
Why is this step necessary? Or is there a better way to create a small single-use thread?
Because the std::thread::~thread() specification says so:
A thread object does not have an associated thread (and is safe to destroy) after
it was default-constructed
it was moved from
join() has been called
detach() has been called
It looks like detach() is the only one of these that makes sense in your case, unless you want to return the thread object (by moving) to the caller.
Why is this step necessary?
Consider that the thread object represents a long-running "thread" of execution (a lightweight process or kernel schedulable entity or similar).
Allowing you to destroy the object while the thread is still executing, leaves you no way to subsequently join (and find the result of) that thread. This may be a logical error, but it can also make it hard even to correctly exit your program.
Or is there a better way to create a small single-use thread?
Not obviously, but it's frequently better to use a thread pool for running tasks in the background, instead of starting and stopping lots of short-lived threads.
You might be able to use std::async() instead, but the future it returns may block in the destructor in some circumstances, if you try to discard it.
See the documentation of the destructor of std:thread:
If *this has an associated thread (joinable() == true), std::terminate() is called.
You should explicitly say that you don't care what's going to happen with the thread, and that you're OK with loosing any control over it. And that is what detach is for.
In general, this looks like a design problem so crashing makes sense: it's hard to propose a general and not surprising rule about what should happen in such a case (e.g. your program might as well normally end its execution - what should happen with the thread?).
Basically, your use case requires a call to detach() because your use case is pretty weird, and not what C++ is trying to make easy.
While Java and .Net blithely let you toss away a Thread object whose associated thread is still running, in the C++ model the Thread is closer to being the thread, in the sense that the existence of the Thread object coincides with the lifetime, or at least joinability, of the execution it refers to. Note how it's not possible to create a Thread without starting it (except in the case of the default constructor, which is really just there in the service of move semantics), or to copy it or to make one from a thread id. C++ wants Thread to outlive the thread.
Maintaining that condition has various benefits. Final cleanup of a thread's control data doesn't have to be done automagically by the OS, because once a Thread goes away, nothing can ever try to join it. It's easier to ensure that variables with thread storage get destroyed in time, since the main thread is the last to exit (barring some move shenanigans). And a missing join -- which is an extremely common type of bug -- gets properly flagged at runtime.
Letting some thread wander off into the distance, in contrast, is allowed, but it's an unusual thing to do. Unless it's interacting with your other threads through sync objects, there's no way to ensure it's done whatever it was meant to do. A detached thread is on the level of reinterpret_cast: You're allowed to tell the compiler that you know something it doesn't, but that has to be explicit, not just the consequence of the function you didn't call.
Consider this: thread A creates thread B and thread A leaves its scope of execution. The handle for thread B is about to be lost. What should happen now? There are several possibilities, with most obvious as follows:
Thread B is detached and continues its execution indempedently
Thread A waits (joins) thread B before quiting its own scope
Now you can argue which is better: 1 or 2? How should we (the compiler) decide on which one of these is better?
So what the designers did was something different: crash terminate the code so that the developer picks one of these solutions explicitely. In order to avoid implicit (perhaps unwanted) behaviuor. It's a signal for you: "hey, pay attention now, this piece of code is important and I (the compiler) don't want to decide for you".

Forcibly terminate method after a certain amount of time

Say I have a function whose prototype looks like this, belonging to class container_class:
std::vector<int> container_class::func(int param);
The function may or may not cause an infinite loop on certain inputs; it is impossible to tell which inputs will cause a success and which will cause an infinite loop. The function is in a library of which I do not have the source of and cannot modify (this is a bug and will be fixed in the next release in a few months, but for now I need a way to work around it), so solutions which modify the function or class will not work.
I've tried isolating the function using std::async and std::future, and using a while loop to constantly check the state of the thread:
container_class c();
long start = get_current_time(); //get the current time in ms
auto future = std::async(&container_class::func, &c, 2);
while(future.wait_for(0ms) != std::future_status::ready) {
if(get_current_time() - start > 1000) {
//forcibly terminate future
}
sleep(2);
}
This code has many problems. One is that I can't forcibly terminate the std::future object (and the thread that it represents).
At the far extreme, if I can't find any other solution, I can isolate the function in its own executable, run it, and then check its state and terminate it appropriately. However, I would rather not do this.
How can I accomplish this? Is there a better way than what I'm doing right now?
You are out of luck, sorry.
First off, C++ doesn't even guarantee you there will be a thread for future execution. Although it would be extremely hard (probably impossible) to implement all std::async guarantees in a single thread, there is no direct prohibition of that, and also, there is certainly no guarantee that there will be a thread per async call. Because of that, there is no way to cancel the async execution.
Second, there is no such way even in the lowest level of thread implementation. While pthread_cancel exists, it won't protect you from infinite loops not visiting cancellation points, for example.
You can not arbitrarily kill a thread in Posix, and C++ thread model is based on it. A process really can't be a scheduler of it's own threads, and while sometimes it is a pain, it is what it is.

Why should I use std::async?

I'm trying to explore all the options of the new C++11 standard in depth, while using std::async and reading its definition, I noticed 2 things, at least under linux with gcc 4.8.1 :
it's called async, but it got a really "sequential behaviour", basically in the row where you call the future associated with your async function foo, the program blocks until the execution of foo it's completed.
it depends on the exact same external library as others, and better, non-blocking solutions, which means pthread, if you want to use std::async you need pthread.
at this point it's natural for me asking why choosing std::async over even a simple set of functors ? It's a solution that doesn't even scale at all, the more future you call, the less responsive your program will be.
Am I missing something ? Can you show an example that is granted to be executed in an async, non blocking, way ?
it's called async, but it got a really "sequential behaviour",
No, if you use the std::launch::async policy then it runs asynchronously in a new thread. If you don't specify a policy it might run in a new thread.
basically in the row where you call the future associated with your async function foo, the program blocks until the execution of foo it's completed.
It only blocks if foo hasn't completed, but if it was run asynchronously (e.g. because you use the std::launch::async policy) it might have completed before you need it.
it depends on the exact same external library as others, and better, non-blocking solutions, which means pthread, if you want to use std::async you need pthread.
Wrong, it doesn't have to be implemented using Pthreads (and on Windows it isn't, it uses the ConcRT features.)
at this point it's natural for me asking why choosing std::async over even a simple set of functors ?
Because it guarantees thread-safety and propagates exceptions across threads. Can you do that with a simple set of functors?
It's a solution that doesn't even scale at all, the more future you call, the less responsive your program will be.
Not necessarily. If you don't specify the launch policy then a smart implementation can decide whether to start a new thread, or return a deferred function, or return something that decides later, when more resources may be available.
Now, it's true that with GCC's implementation, if you don't provide a launch policy then with current releases it will never run in a new thread (there's a bugzilla report for that) but that's a property of that implementation, not of std::async in general. You should not confuse the specification in the standard with a particular implementation. Reading the implementation of one standard library is a poor way to learn about C++11.
Can you show an example that is granted to be executed in an async, non blocking, way ?
This shouldn't block:
auto fut = std::async(std::launch::async, doSomethingThatTakesTenSeconds);
auto result1 = doSomethingThatTakesTwentySeconds();
auto result2 = fut.get();
By specifying the launch policy you force asynchronous execution, and if you do other work while it's executing then the result will be ready when you need it.
If you need the result of an asynchronous operation, then you have to block, no matter what library you use. The idea is that you get to choose when to block, and, hopefully when you do that, you block for a negligible time because all the work has already been done.
Note also that std::async can be launched with policies std::launch::async or std::launch::deferred. If you don't specify it, the implementation is allowed to choose, and it could well choose to use deferred evaluation, which would result in all the work being done when you attempt to get the result from the future, resulting in a longer block. So if you want to make sure that the work is done asynchronously, use std::launch::async.
I think your problem is with std::future saying that it blocks on get. It only blocks if the result isn't already ready.
If you can arrange for the result to be already ready, this isn't a problem.
There are many ways to know that the result is already ready. You can poll the future and ask it (relatively simple), you could use locks or atomic data to relay the fact that it is ready, you could build up a framework to deliver "finished" future items into a queue that consumers can interact with, you could use signals of some kind (which is just blocking on multiple things at once, or polling).
Or, you could finish all the work you can do locally, and then block on the remote work.
As an example, imagine a parallel recursive merge sort. It splits the array into two chunks, then does an async sort on one chunk while sorting the other chunk. Once it is done sorting its half, the originating thread cannot progress until the second task is finished. So it does a .get() and blocks. Once both halves have been sorted, it can then do a merge (in theory, the merge can be done at least partially in parallel as well).
This task behaves like a linear task to those interacting with it on the outside -- when it is done, the array is sorted.
We can then wrap this in a std::async task, and have a future sorted array. If we want, we could add in a signally procedure to let us know that the future is finished, but that only makes sense if we have a thread waiting on the signals.
In the reference: http://en.cppreference.com/w/cpp/thread/async
If the async flag is set (i.e. policy & std::launch::async != 0), then
async executes the function f on a separate thread of execution as if
spawned by std::thread(f, args...), except that if the function f
returns a value or throws an exception, it is stored in the shared
state accessible through the std::future that async returns to the
caller.
It is a nice property to keep a record of exceptions thrown.
http://www.cplusplus.com/reference/future/async/
there are three type of policy,
launch::async
launch::deferred
launch::async|launch::deferred
by default launch::async|launch::deferred is passed to std::async.

Is it ok to read a shared boolean flag without locking it when another thread may set it (at most once)?

I would like my thread to shut down more gracefully so I am trying to implement a simple signalling mechanism. I don't think I want a fully event-driven thread so I have a worker with a method to graceully stop it using a critical section Monitor (equivalent to a C# lock I believe):
DrawingThread.h
class DrawingThread {
bool stopRequested;
Runtime::Monitor CSMonitor;
CPInfo *pPInfo;
//More..
}
DrawingThread.cpp
void DrawingThread::Run() {
if (!stopRequested)
//Time consuming call#1
if (!stopRequested) {
CSMonitor.Enter();
pPInfo = new CPInfo(/**/);
//Not time consuming but pPInfo must either be null or constructed.
CSMonitor.Exit();
}
if (!stopRequested) {
pPInfo->foobar(/**/);//Time consuming and can be signalled
}
if (!stopRequested) {
//One more optional but time consuming call.
}
}
void DrawingThread::RequestStop() {
CSMonitor.Enter();
stopRequested = true;
if (pPInfo) pPInfo->RequestStop();
CSMonitor.Exit();
}
I understand (at least in Windows) Monitor/locks are the least expensive thread synchronization primitive but I am keen to avoid overuse. Should I be wrapping each read of this boolean flag? It is initialized to false and only set once to true when stop is requested (if it is requested before the task completes).
My tutors advised to protect even bool's because read/writing may not be atomic. I think this one shot flag is the exception that proves the rule?
It is never OK to read something possibly modified in a different thread without synchronization. What level of synchronization is needed depends on what you are actually reading. For primitive types, you should have a look at atomic reads, e.g. in the form of std::atomic<bool>.
The reason synchronization is always needed is that the processors will have the data possibly shared in a cache line. It has no reason to update this value to a value possibly changed in a different thread if there is no synchronization. Worse, yet, if there is no synchronization it may write the wrong value if something stored close to the value is changed and synchronized.
Boolean assignment is atomic. That's not the problem.
The problem is that a thread may not not see changes to a variable done by a different thread due to either compiler or CPU instruction reordering or data caching (i.e. the thread that reads the boolean flag may read a cached value, instead of the actual updated value).
The solution is a memory fence, which indeed is implicitly added by lock statements, but for a single variable it's overkill. Just declare it as std::atomic<bool>.
The answer, I believe, is "it depends." If you're using C++03, threading isn't defined in the Standard, and you'll have to read what your compiler and your thread library say, although this kind of thing is usually called a "benign race" and is usually OK.
If you're using C++11, benign races are undefined behavior. Even when undefined behavior doesn't make sense for the underlying data type. The problem is that compilers can assume that programs have no undefined behavior, and make optimizations based on that (see also the Part 1 and Part 2 linked from there). For instance, your compiler could decide to read the flag once and cache the value because it's undefined behavior to write to the variable in another thread without some kind of mutex or memory barrier.
Of course, it may well be that your compiler promises to not make that optimization. You'll need to look.
The easiest solution is to use std::atomic<bool> in C++11, or something like Hans Boehm's atomic_ops elsewhere.
No, you have to protect every access, since modern compilers and cpus reorder the code without your multithreading tasks in mind. The read access from different threads might work, but don't have to work.

C++ Thread question - setting a value to indicate the thread has finished

Is the following safe?
I am new to threading and I want to delegate a time consuming process to a separate thread in my C++ program.
Using the boost libraries I have written code something like this:
thrd = new boost::thread(boost::bind(&myclass::mymethod, this, &finished_flag);
Where finished_flag is a boolean member of my class. When the thread is finished it sets the value and the main loop of my program checks for a change in that value.
I assume that this is okay because I only ever start one thread, and that thread is the only thing that changes the value (except for when it is initialised before I start the thread)
So is this okay, or am I missing something, and need to use locks and mutexes, etc
You never mentioned the type of finished_flag...
If it's a straight bool, then it might work, but it's certainly bad practice, for several reasons. First, some compilers will cache the reads of the finished_flag variable, since the compiler doesn't always pick up the fact that it's being written to by another thread. You can get around this by declaring the bool volatile, but that's taking us in the wrong direction. Even if reads and writes are happening as you'd expect, there's nothing to stop the OS scheduler from interleaving the two threads half way through a read / write. That might not be such a problem here where you have one read and one write op in separate threads, but it's a good idea to start as you mean to carry on.
If, on the other hand it's a thread-safe type, like a CEvent in MFC (or equivilent in boost) then you should be fine. This is the best approach: use thread-safe synchronization objects for inter-thread communication, even for simple flags.
Instead of using a member variable to signal that the thread is done, why not use a condition? You are already are using the boost libraries, and condition is part of the thread library.
Check it out. It allows the worker thread to 'signal' that is has finished, and the main thread can check during execution if the condition has been signaled and then do whatever it needs to do with the completed work. There are examples in the link.
As a general case I would neve make the assumption that a resource will only be modified by the thread. You might know what it is for, however someone else might not - causing no ends of grief as the main thread thinks that the work is done and tries to access data that is not correct! It might even delete it while the worker thread is still using it, and causing the app to crash. Using a condition will help this.
Looking at the thread documentation, you could also call thread.timed_join in the main thread. timed_join will wait for a specified amount for the thread to 'join' (join means that the thread has finsihed)
I don't mean to be presumptive, but it seems like the purpose of your finished_flag variable is to pause the main thread (at some point) until the thread thrd has completed.
The easiest way to do this is to use boost::thread::join
// launch the thread...
thrd = new boost::thread(boost::bind(&myclass::mymethod, this, &finished_flag);
// ... do other things maybe ...
// wait for the thread to complete
thrd.join();
If you really want to get into the details of communication between threads via shared memory, even declaring a variable volatile won't be enough, even if the compiler does use appropriate access semantics to ensure that it won't get a stale version of data after checking the flag. The CPU can issue reads and writes out of order as long (x86 usually doesn't, but PPC definitely does) and there is nothing in C++9x that allows the compiler to generate code to order memory accesses appropriately.
Herb Sutter's Effective Concurrency series has an extremely in depth look at how the C++ world intersects the multicore/multiprocessor world.
Having the thread set a flag (or signal an event) before it exits is a race condition. The thread has not necessarily returned to the OS yet, and may still be executing.
For example, consider a program that loads a dynamic library (pseudocode):
lib = loadLibrary("someLibrary");
fun = getFunction("someFunction");
fun();
unloadLibrary(lib);
And let's suppose that this library uses your thread:
void someFunction() {
volatile bool finished_flag = false;
thrd = new boost::thread(boost::bind(&myclass::mymethod, this, &finished_flag);
while(!finished_flag) { // ignore the polling loop, it's besides the point
sleep();
}
delete thrd;
}
void myclass::mymethod() {
// do stuff
finished_flag = true;
}
When myclass::mymethod() sets finished_flag to true, myclass::mymethod() hasn't returned yet. At the very least, it still has to execute a "return" instruction of some sort (if not much more: destructors, exception handler management, etc.). If the thread executing myclass::mymethod() gets pre-empted before that point, someFunction() will return to the calling program, and the calling program will unload the library. When the thread executing myclass::mymethod() gets scheduled to run again, the address containing the "return" instruction is no longer valid, and the program crashes.
The solution would be for someFunction() to call thrd->join() before returning. This would ensure that the thread has returned to the OS and is no longer executing.