Drawing rect on a frame - c++

I'm trying to detect pixels that have value higher than let say cvScalar(200,200,200).
And after that I want to draw a rectangle on all those pixel using cv::rectangle. Can anybody help me how to do this?
see this figure below to it exactly what I want to do.
![ image ] : http://technical-recipes.com/wp-content/uploads/2011/10/glove3.jpg

Here's how I solve your problem:
I found all needed pixels using inRange.
After this, I found all contours.
Then I constructed big contour from all these contours.
Finally, found boundingRect of this big contour and draw it.
Here's a c++ code:
Mat src = imread("image.jpg"), mask;
const Scalar minScalar = Scalar(200, 200, 200);
const Scalar maxScalar = Scalar(255, 255, 255);
inRange(src, minScalar, maxScalar, mask);
vector<vector<Point2i> > contours;
findContours(mask, contours, CV_RETR_LIST, CV_CHAIN_APPROX_SIMPLE);
vector<Point2i> bigContour;
for (int i=0; i<contours.size(); i++)
{
for (int j=0; j<contours[i].size(); j++)
{
bigContour.push_back(contours[i][j]);
}
}
Rect rect = boundingRect(bigContour);
rectangle(src, rect, Scalar(255, 0, 255));
imshow("Image", src);
waitKey();

Related

C++ Open CV draw one color for the same shape of contour

I have this code where I use Image Moments. I want to draw once a color per shape of the contour. Now if I have five triangles, all of it is drawing in different colors. All I want to do is a way to separate shapes each other, drawing them with the same color.
vector<vector<Point> > contours;
vector<Vec4i> hierarchy;
findContours(src, contours, hierarchy,
CV_RETR_CCOMP, CV_CHAIN_APPROX_SIMPLE);
vector<Moments> mu(contours.size());
vector<Point2f> mc(contours.size());
for (int i = 0; i < contours.size(); i++)
{
mu[i] = moments(Mat(contours[i]), false);
mc[i] = Point2f(mu[i].m10 / mu[i].m00, mu[i].m01 / mu[i].m00);
}
for (int i = 0; i < contours.size(); i++)
{
Scalar color(rng.uniform(0, 255), rng.uniform(0, 255), rng.uniform(0, 255));
drawContours(dst, contours, i, color, CV_16U, 8, hierarchy);
}
for (int i = 0; i < contours.size(); i++)
{
Scalar color(rng.uniform(0, 255), rng.uniform(0, 255), rng.uniform(0, 255));
drawContours(dst, contours, i, color, CV_16U, 8, hierarchy);
}
In the above code Scalar color(.....) defines the colour for each contour. Currently this is in the for loop, as such it creates a new colour for every contour.
Move the Scalar color(.....) out of the for loop and you will only have one colour assigned to the contours.
Scalar color(rng.uniform(0, 255), rng.uniform(0, 255), rng.uniform(0, 255));
for (int i = 0; i < contours.size(); i++)
{
drawContours(dst, contours, i, color, CV_16U, 8, hierarchy);
}
I would suggest you create a scalar vector containing colors for each of the shape you want. total_shape corresponds to side of the shape you wish to color. For example if you would like to color shapes that includes octagon, then total_shape = 8 + 1. Store the colors to the vector shape_colors.
std::vector<Scalar> shape_colors;
for (int i = 0; i < total_shape; i++)
{
Scalar color(rng.uniform(0, 255), rng.uniform(0, 255), rng.uniform(0, 255));
shape_colors.push_back(color);
}
Then when you want to color your contour, check out how many points each of your contour has. Based on the point number, select the color from the shape_color and voila, same color scheme for same shape.
However, depending on the angle of the shape, the contour result might return too many points. We need to simplify the contour to the simplest form as possible using approxPolyDP. Meaning we want a rectangle to contain only 4 points, a triangle 3 and a pentagon 5 points. The detailed explanation of this function is given by this link. By doing so, we will be able to determine the shape of contour by the total number of point it contains.
for (int i = 0; i < contours.size(); i++)
{
cv::Mat approx;
approxPolyDP(contours[i], approx, 30, true);
int n = approx.checkVector(2);
drawContours(dst, contours, i, shape_colors[n],25);
}
Here is the entire code:
void process()
{
cv::Mat src;
cv::Mat dst;
cv::RNG rng;
std::string image_path = "Picture1.png";
src = cv::imread(image_path,0);
dst = cv::imread(image_path);
vector<vector<Point> > contours;
vector<Vec4i> hierarchy;
cv::threshold(src, src, 120, 255, cv::THRESH_BINARY);
findContours(src, contours, hierarchy,
CV_RETR_CCOMP, CV_CHAIN_APPROX_SIMPLE);
int total_shape = 10;
std::vector<Scalar> shape_colors;
for (int i = 0; i < total_shape; i++)
{
Scalar color(rng.uniform(0, 255), rng.uniform(0, 255), rng.uniform(0, 255));
shape_colors.push_back(color);
}
for (int i = 0; i < contours.size(); i++)
{
cv::Mat approx;
approxPolyDP(contours[i], approx, 30, true);
int n = approx.checkVector(2);
drawContours(dst, contours, i, shape_colors[n],25);
}
cv::imshow("dst", dst);
cv::waitKey(0);
}
And here is the result :

Draw mat from contour?

I use openCV to recognize contours. Now I want to create a new binary mat containing all coordinates of this contour.
Canny edge detection applied
found contour's (red one is the one I'd like to use)
just coordinates inside contour are drawn into new mat
This is what I've got so far:
vector<cv::Point> contour; // red marked contour;
cv::Rect boundingBox = cv::boundingRect(contour);
Mat newMat;
vector<cv::Point> insideContour;
for (int i=0; i<contour.size(); i++) {
// get all coordinates inside of contour
// insideContour.push_back(?)
}
for (int y=0; y<boundingBox.height; y++) {
for (int x=0; x<boundingBox.width; x++) {
// newMat
}
}
Any help how to go on would be really appreciated because I'm absolutely clueless.
Try this. For simplicity cv::Point(250, 219) is a point inside the red contour, use Haar to find bounding box and it's center in reality.
cv::Mat image = imread("Smiley.jpg");
cv::Mat image2 = imread("Smiley2.jpg");
// subtract images and floodfill to prepare red mask
Mat red_contour, red_mask, maskMat, outputMat;
subtract(image2, image, red_contour);
threshold(red_contour, red_mask, 100, 255, THRESH_BINARY);
int filling = cv::floodFill(red_mask, cv::Point(250, 219), cv::Scalar(0, 0, 255), (cv::Rect*)0, cv::Scalar(), cv::Scalar(), 4);
//prepare a grey mask
cv::cvtColor(red_mask, maskMat, CV_BGR2GRAY);
threshold(maskMat, maskMat, 0, 255, THRESH_BINARY);
// use mask to crop original image
image.copyTo(outputMat, maskMat);
cv::namedWindow("Image");
cv::imshow("Image", outputMat);
cv::waitKey();
return 0;

crop triangle from blackbackground

I'm new to image processing and development.I have a triangle in black background. I want to save that triangle as a Mat object without black pixels[0]. In order to do I tried as below.
Set threshold
find contours
identify contour[0] as trangle // has 2 contours one is triangle other one is backpixels.
save the contour points
crop the image.
My code please find below.
Mat finalImage = imread("test.png, CV_LOAD_IMAGE_GRAYSCALE);
img.copyTo(finalImage, mask);
Mat canny_output;
vector<vector<Point> > contours;
vector<Vec4i> hierarchy;
int thresh = 100;
int max_thresh = 255;
RNG rng(12345);
/// Detect edges using canny
Canny(finalImage, canny_output, thresh, thresh * 2, 3);
/// Find contours
findContours(canny_output, contours, hierarchy, CV_RETR_TREE, CV_CHAIN_APPROX_SIMPLE, Point(0, 0)); //find this method
/// Draw contours
Mat drawing = Mat::zeros(canny_output.size(), CV_8UC1);
for (int i = 0; i< contours.size(); i++)
{
Scalar color = Scalar(rng.uniform(0, 255), rng.uniform(0, 255), rng.uniform(0, 255));
drawContours(drawing, contours, i, color, 2, 8, hierarchy, 0, Point()); // find this method.
}
I have points of contour but by using points of contours i have no idea how to crop only the trangle in input image.
You can get the bounding Rect of the various contours at the same time you are re drawing the contours. So in Your for loop where you are iterating the contours, you may use cv::boundingRect() to get the bounding Rect of the respective contour as:
/// Draw contours
Mat drawing = Mat::zeros(canny_output.size(), CV_8UC1);
for (int i = 0; i< contours.size(); i++)
{
Scalar color = Scalar(rng.uniform(0, 255), rng.uniform(0, 255), rng.uniform(0, 255));
drawContours(drawing, contours, i, color, 2, 8, hierarchy, 0, Point()); // find this method.
cv::Rect boundingRect = cv::boundingRect(contours[i]);
}

how to detect the pallet in fork lift using find contours

Im trying to detect the pallet in forklift. but find contours cant detect the rectangle in a correct way.
how can I detect the large pallet.
I have tried hough transform but it fails of detecting the forklift rectangle, so I'm using findcontours instead.
pallet
#include <opencv2/imgproc/imgproc.hpp>
#include <opencv2/highgui/highgui.hpp>
#include <iostream>
int main()
{
cv::Mat input = cv::imread("pallet.jpg");
// convert to grayscale (you could load as grayscale instead)
cv::Mat gray;
cv::cvtColor(input,gray, CV_BGR2GRAY);
// compute mask (you could use a simple threshold if the image is always as good as the one you provided)
cv::Mat mask;
cv::threshold(gray, mask, 0, 255, CV_THRESH_BINARY_INV | CV_THRESH_OTSU);
// find contours (if always so easy to segment as your image, you could just add the black/rect pixels to a vector)
std::vector<std::vector<cv::Point> > contours;
std::vector<cv::Vec4i> hierarchy;
cv::findContours(mask,contours, CV_RETR_EXTERNAL, CV_CHAIN_APPROX_SIMPLE);
/// Draw contours and find biggest contour (if there are other contours in the image, we assume the biggest one is the desired rect)
// drawing here is only for demonstration!
int biggestContourIdx = -1;
float biggestContourArea = 0;
cv::Mat drawing = cv::Mat::zeros( mask.size(), CV_8UC3 );
for( int i = 0; i< contours.size(); i++ )
{
cv::Scalar color = cv::Scalar(0, 100, 0);
drawContours( drawing, contours, i, color, 1, 8, hierarchy, 0, cv::Point() );
float ctArea= cv::contourArea(contours[i]);
if(ctArea > biggestContourArea)
{
biggestContourArea = ctArea;
biggestContourIdx = i;
}
}
// if no contour found
if(biggestContourIdx < 0)
{
std::cout << "no contour found" << std::endl;
return 1;
}
// compute the rotated bounding rect of the biggest contour! (this is the part that does what you want/need)
cv::RotatedRect boundingBox = cv::minAreaRect(contours[biggestContourIdx]);
// one thing to remark: this will compute the OUTER boundary box, so maybe you have to erode/dilate if you want something between the ragged lines
// draw the rotated rect
cv::Point2f corners[4];
boundingBox.points(corners);
cv::line(drawing, corners[0], corners[1], cv::Scalar(255,255,255));
cv::line(drawing, corners[1], corners[2], cv::Scalar(255,255,255));
cv::line(drawing, corners[2], corners[3], cv::Scalar(255,255,255));
cv::line(drawing, corners[3], corners[0], cv::Scalar(255,255,255));
// display
cv::imshow("input", input);
cv::imshow("drawing", drawing);
cv::waitKey(0);
cv::imwrite("rotatedRect.png",drawing);
return 0;
}

Detect rectangles drawn on an background image using OpenCV

I’m trying to detect some rectangles (white colored) which is drawn on an image. (say using paint or some other image editing tool).
As I’m very much beginner to image processing I searched through net and OpenCV sample program to accomplish the job, but could not get it to working perfectly. I’m using OpenCV C++ library.
Algorithm that I’ve tried
cv::Mat src = cv::imread(argv[1]);
cv::Mat gray;
cv::cvtColor(src, gray, CV_BGR2GRAY);
meanStdDev(gray, mu, sigma);
cv::Mat bw;
cv::Canny(gray, bw, mu.val[0] - sigma.val[0], mu.val[0] + sigma.val[0]);
std::vector<std::vector<cv::Point> > contours;
cv::findContours(bw.clone(), contours, CV_RETR_EXTERNAL, CV_CHAIN_APPROX_SIMPLE);
std::vector<cv::Point> approx;
for (int i = 0; i < contours.size(); i++){
cv::approxPolyDP(cv::Mat(contours[i]), approx, cv::arcLength(cv::Mat(contours[i]), true)*0.02, true);
if (approx.size() >= 4 && approx.size() <= 6)
Rect boundRect = boundingRect( Mat(approx) );
rectangle( dst, boundRect.tl(), boundRect.br(), Scalar(255,255,255), 1, 8, 0 );}
Only one rectangle is detected. Can you please guide me or some link for the same.
Input image:
Output image:
I could not compile your code sample because there boundRect is declared within the if-block but rectangle drawing (trying to access boundRect) is outside of the if-block, so I adjusted your code:
int main(int argc, char* argv[])
{
cv::Mat src = cv::imread("C:/StackOverflow/Input/rectangles.png");
cv::Mat dst = src.clone();
cv::Mat gray;
cv::cvtColor(src, gray, CV_BGR2GRAY);
// ADDED: missing declaration of mu and sigma
cv::Scalar mu, sigma;
meanStdDev(gray, mu, sigma);
cv::Mat bw;
cv::Canny(gray, bw, mu.val[0] - sigma.val[0], mu.val[0] + sigma.val[0]);
// ADDED: displaying the canny output
cv::imshow("canny", bw);
std::vector<std::vector<cv::Point> > contours;
cv::findContours(bw.clone(), contours, CV_RETR_EXTERNAL, CV_CHAIN_APPROX_SIMPLE);
std::vector<cv::Point> approx;
for (int i = 0; i < contours.size(); i++){
cv::approxPolyDP(cv::Mat(contours[i]), approx, cv::arcLength(cv::Mat(contours[i]), true)*0.02, true);
if (approx.size() >= 4 && approx.size() <= 6)
{
// ADDED: brackets around both lines belonging to the if-block
cv::Rect boundRect = cv::boundingRect(cv::Mat(approx));
cv::rectangle(dst, boundRect.tl(), boundRect.br(), cv::Scalar(255, 255, 255), 3, 8, 0);
}
}
// ADDED: displaying input and results
cv::imshow("input", src);
cv::imshow("dst", dst);
cv::imwrite("C:/StackOverflow/Output/rectangles.png", dst);
cv::waitKey(0);
return 0;
}
with your input image I do get this output:
which is probably not what you expected. See the canny output image (it is always good to have a look at intermediate results for visual debugging!), there are just too many structures in the image and contours will cover all of these, so there are some that will be approximated to polynomes with 4 to 6 elements.
Instead you'll have to become a bit smarter. You could try to extract straight lines with cv::HoughLinesP and connect those lines. Or you could try to segment the image first by finding white areas (if your rectangles are always white).
int main(int argc, char* argv[])
{
cv::Mat src = cv::imread("C:/StackOverflow/Input/rectangles.png");
cv::Mat dst = src.clone();
cv::Mat gray;
cv::cvtColor(src, gray, CV_BGR2GRAY);
cv::Mat mask;
// find "white" pixel
cv::inRange(src, cv::Scalar(230, 230, 230), cv::Scalar(255, 255, 255), mask);
cv::imshow("mask", mask);
std::vector<std::vector<cv::Point> > contours;
cv::findContours(mask, contours, CV_RETR_EXTERNAL, CV_CHAIN_APPROX_SIMPLE);
std::vector<cv::Point> approx;
for (int i = 0; i < contours.size(); i++){
cv::approxPolyDP(cv::Mat(contours[i]), approx, cv::arcLength(cv::Mat(contours[i]), true)*0.02, true);
if (approx.size() >= 4 && approx.size() <= 6)
{
cv::Rect boundRect = cv::boundingRect(cv::Mat(approx));
cv::rectangle(dst, boundRect.tl(), boundRect.br(), cv::Scalar(255, 255, 255), 1, 8, 0);
}
}
cv::imshow("input", src);
cv::imshow("dst", dst);
cv::imwrite("C:/StackOverflow/Output/rectangles2.png", dst);
cv::waitKey(0);
return 0;
}
gives this result:
As you can see, there are other bright regions near white, too. The polynom approximation does not help much, too.
In general, it's easier to segment a color (even white) in HSV space. With appropriate thresholds:
inRange(hsv, Scalar(0, 0, 220), Scalar(180, 30, 255), mask);
where we don't care about the Hue, and keep only low Saturation and high Value, I get:
Then you can easily find connected components, and discard blobs smaller than a threshold th_blob_size. Resulting rectangles are (in green):
You can eventually apply other filtering stage to account for more difficult situations, but for this image removing small blobs is enough. Please post other images if you need something more robust in general.
Code:
#include <opencv2/opencv.hpp>
#include <iostream>
using namespace cv;
using namespace std;
int main(int argc, char** argv)
{
Mat3b img = imread("path_to_image");
int th_blob_size = 100;
Mat3b hsv;
cvtColor(img, hsv, COLOR_BGR2HSV);
Mat1b mask;
inRange(hsv, Scalar(0, 0, 220), Scalar(180, 30, 255), mask);
vector<vector<Point>> contours;
findContours(mask.clone(), contours, RETR_EXTERNAL, CHAIN_APPROX_NONE);
Mat3b res = img.clone();
for (int i = 0; i < contours.size(); ++i)
{
// Remove small blobs
if (contours[i].size() < th_blob_size)
{
continue;
}
Rect box = boundingRect(contours[i]);
rectangle(res, box, Scalar(0,255,0), 1);
}
imshow("Result", res);
waitKey();
return 0;
}
Are you sure you are only finding one contour or are you only drawing one contour? It doesn't look like you are looping in the drawing routine so you will only ever draw the first one that is found.
I have a blog, long since dead, that may provide you some good direction on this: http://workingwithcomputervision.blogspot.co.uk/2012/09/game-player-step-2-finding-game-board.html
Should the link die I believe this is the most relevant part of the article which relates to drawing contours:
//Draw contours
for (int i = 0; i < contours.size(); i++) {
Scalar color = Scalar(0, 255, 0);
drawContours(drawing, contours, i, color, 2, 8, hierarchy, 0, Point());
}
I notice you are using bounding rectangles for the drawing. Here is an alternative drawing routine, again from the above link, that does this:
Rect bounds;
Mat drawing = Mat::zeros(purpleOnly.size(), CV_8UC3);
int j = 0;
for (int i = 0; i < contours.size(); i++) {
if (arcLength(contours[i], true) > 500){
Rect temp = boundingRect(contours[i]);
rectangle(drawing, temp, Scalar(255, 0, 0), 2, 8);
if (j == 0) {
bounds = temp;
} else {
bounds = bounds | temp;
}
j++;
}
}
Note that I also do some checks on the size of the contour to filter out noise.