reducing duplicated methods? - c++

So I'm working on a 2D space simulator and I have the resource manager 'calc' that handles all calculations for everything. For example, from calc.hpp:
var calc::eccentricity (object A, object B);
var calc::distance (object A, object B);
var calc::orbitV (object A, object B);
etc. However, the way I have my program structured is in my calc class I have
private:
object *ship //the currently controlled ship
object *targ //target
object *ref //reference (from which speeds, position, etc. are calculated)
and to use the calculations given in the first example with these, I write three functions for each calculation function, like so:
var calc::ship_ecc (object A){
if(!ship) //catches null pointers
return NAN;
return eccentricity(*ship, A);
}
var calc::ship_ref_ecc (){
if(!ref) //catches null pointers
return NAN;
return ship_ecc(*ref);
}
var calc::ship_targ_ecc (){
if(!targ) //catches null pointers
return NAN;
return ship_ecc(*targ);
}
for eccentricity, and then the same for distance and orbitV. So I end up having four functions for every calculation. As you can see from calc.hpp this makes for plenty of duplicated code. And duplicated code is a Bad Thing.
What my question is
Is there some way to call
calc.ship.targ.eccentricity();
calc.ship.ref.eccentricity(); //or variation thereof
or
calc.ship.targ(eccentricity);
calc.ship.ref(eccentricity); //or variation thereof
instead of
calc.ship_targ_ecc();
calc.ship_ref_ecc();
? I'm wondering if you could do some fancy operator() overloading, or pass a function, or make a friend class in calc. Ideally I should only be able to access lines 31 - 53, which are all public.
Thanks!
EDIT: got an example for yall: https://ideone.com/jypJQS this is what it should output and how it is working now

Maybe this changes too much your current code. But I think that the functions in calc should be members of object. So you could things like :
ship.eccentricity(target);
What confuses me (and what is probably the big problem here) is that you seem to define some hard relations in your calc object (the private members). What are those for ? From the code, I guess there is a calc object for every "ship". If yes, it would be an other reason to add the code to object instead of maintaining 1-1 relations between object and calc.

This might require a little bit of refactoring, but I think it's worth it. For a simple game, you can use OOP and Polymorphism to fix the issue.
First of all, create an object class.
class Object {
public:
Object();
~Object();
};
This object class would be a basis for all your objects in the game (ship, character, etc...). You, then, would create a sub class for your ship.
class Ship : public Object {
};
This would allow an easy expansion to future objects that require the same principle.
In the object class, you would have some basic properties:
physical (optional)
dimensions
speed (last calculated speed)
controlled (bool - current controlling ship or not)
This would eliminate the need to have hard relationships with the calc and ship class.
Next, you would change your calc class to become general. You don't want to depend on a single ship object, this is cumbersome.
Option 1
You could create an instance of the calc class for each object. This calc instance would have access to the already available properties of the object and ship class.
Option 2
Create a general calc class that would require you to pass a reference to the ship/object instance. calc->eccentricity(&ship, target);
Option 3
Within a possible manager class, or a simple "global" variable. You could hold a reference to the currently controlled ship (if that's how your system works, I'm not sure). Or you could store the index of the ship and all instances are held inside a vector<&Ship>.
In a simplistic game, straight forward OOP will suffice, but if you want more decoupling, component based game design would be a better bet (in combination with OOP, of course).

So I took this over to /r/learnprogramming, and I got a good answer from zzyzzyxx (as always). His answer:
What's wrong with simply having functions that take the required two or three parameters? They don't have to be in any special calc class. Maybe a calc namespace. I'm not sure it makes sense with the rest of your design, but what about making it a member function so that anything can calculate what it needs given a target and potentially a reference point if there's no sensible default?
So basically, don't worry about all this calc.eccentricity(A, B), calc.ship_ecc(A), calc.ship_ref_ecc() business, just say
calc.eccentricity(*calc.targ(), B)
Also, don't make calc a singleton, make it a namespace.
I'll go do that now.

Related

How to Avoid Using Getters/Setters in C++?

I understand the reason why we should avoid using getters/setters, but I don't know how to avoid using them.
For example, I have three classes as follows,
A (private: point_B)
B (private: point_C)
C (private: val_C)
A has a private member point_B which is a pointer that points to B, and B also has a private member point_C which is a pointer that points to C. And C has a private int value val_C.
How can I access val_C in A?
Update:
In this case,
A is a class called state, which has the address point_B.
B is a class called node, which has a pointer call pointer_C.
C is a class called base_file, which has two derived classes called file and directory.
Update 2:
Ty guys for you help. Some of you are really trying to help instead of acting like someone who knows everything. I appreciate it.
Sry I can't post the whole assignment here since its too large even without documents. I'll post professor's answer here if you guys are interested tomorrow.
Update 3:
Please find reference here
The right thing to do is to leave the implementation to specify class.
Update 4:
The answer is to not to access private value in each class, but to implement functions to use them. That explains why making them private at the first place.
Maybe a little clarification is in order -- getters and setters aren't meant to be avoided at all costs; they have their place. The reason people say they should be avoided is because one goal of good object-oriented program design is encapsulation -- that is to say, each class should keep the details of its own implementation as private as possible, so that users of that class don't need to know (or care) about how the class was implemented. This becomes increasingly important as the program gets larger and more complicated, because a human programmer can only keep so many details in his/her head at once, and if the programmer has to remember everything about how class C works while simultaneously writing/debugging class A, that's an additional/unecessary cognitive burden that at some point will cause the programmer's brain to explode.
So, getting back to the main question -- how to avoid getters and setters -- the way to do it is to define your classes' interfaces at a higher level of abstraction than as simple repositories for state variables. (After all, if you wanted a simple collection of state variables, there's no reason to use a C++ class at all, you could simply declare a C-style struct instead)
For example, if your class C was intended to represent, say, a slot machine, a poor interface to class C might include lots of getters and setters, like this:
int getNumCoins() const {return numCoins;}
void setNumCoins(int newCoinCount) {numCounts = newCoinCount;}
void setDisplayedResult(const string & displayStr) {result = displayStr;}
int getDisplayedResult() const {return result;}
... and the poor programmer who was forced to use class C would have to write code like this:
playersWallet--; // take a coin out of the player's wallet
c.setNumCoins(c.getNumCoins()+1); // insert the coin into the machine
string newResult = "10 J A"; // somehow figure out what the machine should display
c.setDisplayedResult(newResult); // and make the machine display it
if (c.getDisplayedResult() == "7 7 7")
{
cout << "YOU ARE WINNER!" << endl;
int numCoinsWon = 5000; // jackpot!
c.setNumCoins(c.getNumCoins()-numCoinsWon); // deduct from machine's balance
playersWallet += numCoinsWon; // add to player's balance
}
[... and so on...]
Note that in the above code, the programmer had to think about all of the internal mechanisms of the slot machine, and write his own code to handle each step of its operation. With good encapsulation, on the other hand, the slot machine's public interface would be much simpler and more opaque, like this:
// returns the number of coins the player won on this round
int pullTheBigLever();
... and the programmer who was using this API might write code like this:
playersWallet += (c.pullTheBigLever() - 1); // -1 for the coin the player put in
Note that there is only one line of code, and that the programmer didn't have to think at all about how the internals of the slot machine worked. This avoids exploding-programmer-brain-syndrome, and just as importantly it means you (or someone else) can go back later and change the private implementation of how the slot machine works without breaking the code that interacts with the slot machine.
So when are getters and setters acceptable? Answer: when there really isn't any higher level of abstraction to be had. If you are writing a class that represents a light switch, then just being able to examine the switch's current position, or specify a new position for it, may be all the functionality you need. But in many (most?) cases you are implementing the functionality of something more complex than that, and the more of that complexity you can hide behind your public interface, the happier users of that class (including you) will be.
Short answers, in OOP, classes should have "properties" as part of their public API. Properties can have have things like getters, setters and change notifications, as appropriate. Wether a getter directly returns a private member variable, that is an implementation detail, and could change as needed. Distinguish the concept of property from the concept of member variable.
When thinking about it like this, the direct answer to your question is, that there's nothing you should try to "avoid", other than having unnecessary readable properties.
Note that often there is no explicit syntax or support for properties in an object oriented language (popular counter-example: C#), so it's easy to think they are same thing as a member variable with a setter and a getter. But the overlap is sort of a coincident, and not something you should care about when using a class. In a way, there is no getter for a member variable, there is only a getter for the property, even if it happens to map 1:1 with a member variable.
How avoid using getters/setters in C++.
To avoid setter/getter, all code that accesses a data attribute of class C, must be part of a class C method.
Alternate wording: bring the code that uses the data attribute inside the class.
update 2016/01/25
Would an example help? I find it trivial to avoid getters and setters (and public data and friends, etc.) I suppose I'm just used to it.
I recently completed yet another implementation of the game-of-life. The whole game is the entertainment value of watching the cells change patterns. Impressively complex behaviour from a small set of rules.
My class Cell_t has ONLY private data, No getters, no setters, and no friends. No other class has access to any cells data.
Here is a snippet of that part of my game illustrating how easy it is to live without getters, setters and friends creating the undesirable coupling and cohesion:
// somewhere in GameOfLife exists
std::vector<Cell_t> m_ptCellVec; // a vector of cell ptrs
GameOfLife::exec(...)
{
// ... preliminary stuff
do {
// ... some preliminary stuff
// NOTE 1
for ( auto it : m_ptCellVec ) it->countNeighbor();
// NOTE 2
for ( auto it : m_ptCellVec ) { it->updateDisplay();}
// .... more stuff
if(timeElapsed > timeLimit) break;
if(m_generation > genLimit) break;
}while(1);
}
NOTE 1 -- The class GameOfLife does not count neigbors ... each cell does its own counting. The next state is computed from these counts.
NOTE 2 -- The class GameOfLife does not update the display ... each cell updates it's own little piece of the screen.
THUS, there is no getter of Cell_t state, or next state, or living-neighbour count, or dead-neighbour count, etc.
With respect to this aspect of these two classes
The cohesion (of Cell_t) is functional, the most desirable.
The coupling (of GameOfLife_t to Cell_t) is 'none', also the most
desirable.
Changing the name or type of a Cell_t private data attribute has no
impact on any other code.
Oh, and a debug routine I often add (for another example):
std::string Cell_t dump() {
std::stringstream ss;
ss << // .... anything you want to 'dump' from this instance
return (ss.str());
}
I use the method name dump() to indicate an intent for a 'deeper' investigation of the activity of a specific Cell_t ... I have sometimes generated tabular data of state changes, with time stamps.
I often have a very similar method called show(), which typically provides a string for the user ...
These two examples, perhaps, illustrate the idea that a getter is simply bypassing an important aspect of the design process - naming what you are doing.
I believe the question stated in Problem could be modified. The question should not be "How can I avoid getters and setters?". This question is also related to other questions like "Should this method be a non-static member, static member, friend or helper?" or "Should this property be private or protected?". A better question to ask yourself is rather, "Who needs to access a particular property".
One way of writing classes which are easy to maintain is to limit the number of functions which have access to a specific property. This does not necessarily mean that no function should ever have access to a private property or that getters/setters should never be used. Take for example the class std::vector. Which can be simplified to something like this (with a lot of reservartions). The actual implementation of vector is normally much more sophisticated and may have different internal implementation but this simplified construction will be used to show a point.
template<class T, class Allocator<T> a = basic_allocator<T>>
class vector {
size_t sz;
size_t cap;
Allocator a;
T* elem;
// ... private methods
public:
// public methods and operators.
}
This class lets the developer access all elements in the internal array, where data is stored. This is done either via the operator [] (unchecked) or via the function at (checked). The developer have full rights to read or write to these elements. Without this access the vector class would be fairly useless and people would revert to use arrays instead. The class also provides getters to sz and cap via methods size() and capacity(). However sz and cap is otherwise seen as internal information and the developer is not allowed to change these directly. Instead the developer can use methods like push_back(), pop_back(), shrink_to_fit(), resize(), ... To add or remove data, manage allocated memory, etc ... The reason is that these operations requires some quite advanced memory handling and modifying these variables would cause leaks and/or crashes. Further, the developer does really not need to bother about these abstractions, since the developer only need the elements in the array.
So to conclude encapsulation is good and need to be considered. However this does not mean that the developer is never allowed to directly modify properties of some classes.

How to avoid having my GameManager class be friend with most stuff?

I'm writing a game for a video game course (which unfortunately taught nothing), and I'm having trouble designing the interactions between the game entities and the class that actually runs the game.
My problem reduces pretty much to this: assuming an entity has a position, it shouldn't be able to modify it directly (instead having to wait for the game manager to run a game step), but it should be able to access it, to run AI checks and so on.
My solution would be to create a Position class that is friend with GameManager, and to create an entity class like this
class Entity {
public:
Position & getPosition() { return pos_; }
private:
Position pos_;
};
So the manager would be able to modify the entities' positions but other classes would only be able to observe. However this reasoning would hold for lots and lots of other properties, and since the entity class is actually derived into a series of subclasses, which have more and more properties, I would have to put the friend attribute almost everywhere.
What would be a better approach to solve this problem?
The idea of identifying certain classes as friend and certain others as non-friend is not a good idea, for many reasons. What this means is that,
How this class is being used is also a concern of this class.
But this is not its concern at all. This class, whatever class is under consideration, should be designed to do its own responsibility.
Now, with your case, first of all you should decide on where the action/behaviour of changing position belongs to; does it belong to Entity, Entity Manager, or something else. For example, which of these two cases make more sense:
Entity changes its position from x1 to x2.
Entity Manager changes to position of Entity from x1 to x2.
Suppose you decided that this behaviour really belongs to Entity, rather than Entity manager (case 1). In that case, as is pointed out in the comments by #bengoesboom, it should provide a setter that users of the class can use to change its position.
Now, if you think that this class might be used in ways that is not desired, then you should enforce constraints and business rules within this class. For example (just a simple example), if you want to allow only certain range of values in an operation. You check the input, if it is not in the range, then you throw an exception.
Once, you have properly taken care of rules and constraints, then you don't care about who will use this class.

C++ construct if satisfies conditions

i have a design issue, not complicated actually, but i would like to find an elegant way to solve it. And i thought about this:
Issue:
i have a class A that initialize and keep a collection of B
B is just an interface and must be implemented (so we have classes C,D,E,..).
in constructor A recive a bunch of dataset and must initialize some of B (also lot of different instantiation of same or different class) given each dataset. I would like A to not to know any implementation of B.
I have several working solution, but i was thinking about a kind of "delegate in the constructor".
eg:
1. for each dataset, ds
2. for each implementation of B, bi
3. try to instantiate bi(ds)
4. if success (means no exception)
5. keep reference
this because the data and calculus i use to check if bi are pretty the same of initialization and being in a performance-critic application i would like to avoid doing that twice or doing it in collection class.
it would be really nice but obviously the problem is line 2...
...as well as the doubt about using exception for something that is not actually an exception. (line 4)
so what should be a pattern that
- let me evaluate data and construct all in one.
- avoid creating several "architectural-classes" i would like to avoid an explosion of classes ( kind of typical when exagerating with following design patterns java-style principles imho ) for such a simple task.
- as fast as possible.
- ...is elegant :)
The answer is based on my intuition right now, so it may not be perfect, but on the other hand, most of the design solutions aren't.
I would create just one additional class, call it factory or something similar. Then run all the constructions through this class. It should be able to be initialized with possible instantiations of derives of B either in run-time (by running callbacks at the beginning of the program), or, even better, by variadic template traits.
template<class ... RegisteredBImplementations>
class CFactory
{
B* Create (dataset const& d)
{
// some magical meta-ifs to create compile time conditions
// or for (auto& registered_type : registered types), and then choose one
return new T(d);
}
}
Then, A could use an instance of this class to initialize it's pointers properly:
for (auto& dataset : datasets)
{
m_BPtrs.emplace_back( std::unique_ptr<dataset> (m_FactoryInstance.Create(dataset)) );
}
The main point of this solution is that class A effectively manages "B" objects, leaving proper construction of them to the other class. They are effectively separated, and addition of a new B implementation means a change only in CFactory, not in A.
Your pseudocode suggests a solution: your use of bi is nothing more than a factory function that takes a dataset as input and returns a B* as output. So, you really just need to take bi from a collection of std::function<B* (dataset)> objects.
It would be easy enough to require that these factories are only 'conditional' factories: that sometimes they return valid objects, and sometimes they don't, returning nullptr instead. This would let you avoid exceptions, and is more faithful to the intent of your usage.
The simplest solution is to delegate to a Factory method.
std::unique_ptr<B> build(DataSet const& ds) {
if (ds.property() == value) {
return std::unique_ptr<B>(new D(ds));
}
return std::unique_ptr<B>(new C(ds));
}
Then A need only depend on the declaration of build.

Pattern to share data between objects in C++

I have started a migration of a high energy physics algorithm written in FORTRAN to an object oriented approach in C++. The FORTRAN code uses a lot of global variables all across a lot of functions.
I have simplified the global variables into a set of input variables, and a set of invariants (variables calculated once at the beginning of the algorithm and then used by all the functions).
Also, I have divided the full algorithm into three logical steps, represented by three different classes. So, in a very simple way, I have something like this:
double calculateFactor(double x, double y, double z)
{
InvariantsTypeA invA();
InvariantsTypeB invB();
// they need x, y and z
invA.CalculateValues();
invB.CalculateValues();
Step1 s1();
Step2 s2();
Step3 s3();
// they need x, y, z, invA and invB
return s1.Eval() + s2.Eval() + s3.Eval();
}
My problem is:
for doing the calculations all the InvariantsTypeX and StepX objects need the input parameters (and these are not just three).
the three objects s1, s2 and s3 need the data of the invA and invB objects.
all the classes use several other classes through composition to do their job, and all those classes also need the input and the invariants (by example, s1 has a member object theta of class ThetaMatrix that needs x, z and invB to get constructed).
I cannot rewrite the algorithm to reduce the global values, because it follows several high energy physics formulas, and those formulas are just like that.
Is there a good pattern to share the input parameters and the invariants to all the objects used to calculate the result?
Should I use singletons? (but the calculateFactor function is evaluated around a million of times)
Or should I pass all the required data as arguments to the objects when they are created?(but if I do that then the data will be passed everywhere in every member object of every class, creating a mess)
Thanks.
Well, in C++ the most suitable solution, given your constraints and conditions, is represented by pointers. Many developers told you to use boost::shared_ptr. Well it is not necessary, although it provides a better performance especially when considering portability and robustness to system faults.
It is not necessary for you to bind to boost. It is true that they are not compiled and that now standardization processes will lead to c++ with boost directly integrated as a standard library, but if you do not want to use an external library you obviously can.
So let's go and try to solve your problem using just C++ and what it provides actually.
You'll probably have a main method and there, you told before, initialize all invariants elements... so you basically have constants and they can be every possible type. no need to make them constant if you want, however, in main you instantiate your invariant elements and point them for all those components requiring their usage. First in a separate file called "common_components.hpp" consider the following (I assume that you need some types for your invariant variables):
typedef struct {
Type1 invariant_var1;
Type2 invariant_var2;
...
TypeN invariant_varN;
} InvariantType; // Contains the variables I need, it is a type, instantiating it will generate a set of global variables.
typedef InvariantType* InvariantPtr; // Will point to a set of invariants
In your "main.cpp" file you'll have:
#include "common_components.hpp"
// Functions declaration
int main(int, char**);
MyType1 CalculateValues1(InvariantPtr); /* Your functions have as imput param the pointer to globals */
MyType2 CalculateValues2(InvariantPtr); /* Your functions have as imput param the pointer to globals */
...
MyType3 CalculateValuesN(InvariantPtr); /* Your functions have as imput param the pointer to globals */
// Main implementation
int main(int argc, char** argv) {
InvariantType invariants = {
value1,
value2,
...
valueN
}; // Instantiating all invariants I need.
InvariantPtr global = &invariants;
// Now I have my variable global being a pointer to global.
// Here I have to call the functions
CalculateValue1(global);
CalculateValue2(global);
...
CalculateValueN(global);
}
If you have functions returning or using the global variable use the pointer to the struct modifying you methods' interface. By doing so all changes will be flooded to all using thoss variables.
Why not passing the invariants as a function parameter or to the constructor of the class having the calculateFactor method ?
Also try to gather parameters together if you have too many params for a single function (for instance, instead of (x, y, z) pass a 3D point, you have then only 1 parameter instead of 3).
three logical steps, represented by three different classes
This may not have been the best approach.
A single class can have a large number of "global" variables, shared by all methods of the class.
What I've done when converting old codes (C or Fortran) to new OO structures is to try to create a single class which represents a more complete "thing".
In some case, well-structured FORTRAN would use "Named COMMON Blocks" to cluster things into meaningful groups. This is a hint as to what the "thing" really was.
Also, FORTRAN will have lots of parallel arrays which aren't really separate things, they're separate attributes of a common thing.
DOUBLE X(200)
DOUBLE Y(200)
Is really a small class with two attributes that you would put into a collection.
Finally, you can easily create large classes with nothing but data, separate from the the class that contains the functions that do the work. This is kind of creepy, but it allows you to finesse the common issue by translating a COMMON block into a class and simply passing an instance of that class to every function that uses the COMMON.
There is a very simple template class to share data between objects in C++ and it is called shared_ptr. It is in the new STL and in boost.
If two objects both have a shared_ptr to the same object they get shared access to whatever data it holds.
In your particular case you probably don't want this but want a simple class that holds the data.
class FactorCalculator
{
InvariantsType invA;
InvariantsType invB;
public:
FactorCalculator() // calculate the invariants once per calculator
{
invA.CalculateValues();
invB.CalculateValues();
}
// call multiple times with different values of x, y, z
double calculateFactor( double x, double y, double z ) /*const*/
{
// calculate using pre-calculated values in invA and invB
}
};
Instead of passing each parameter individually, create another class to store them all and pass an instance of that class:
// Before
void f1(int a, int b, int c) {
cout << a << b << c << endl;
}
// After
void f2(const HighEnergyParams& x) {
cout << x.a << x.b << x.c << endl;
}
First point: globals aren't nearly as bad (in themselves) as many (most?) programmers claim. In fact, in themselves, they aren't really bad at all. They're primarily a symptom of other problems, primarily 1) logically separate pieces of code that have been unnecessarily intermixed, and 2) code that has unnecessary data dependencies.
In your case, it sounds like already eliminated (or at least minimized) the real problems (being invariants, not really variables eliminates one major source of problems all by itself). You've already stated that you can't eliminate the data dependencies, and you've apparently un-mingled the code to the point that you have at least two distinct sets of invariants. Without seeing the code, that may be coarser granularity than really needed, and maybe upon closer inspection, some of those dependencies can be eliminated completely.
If you can reduce or eliminate the dependencies, that's a worthwhile pursuit -- but eliminating the globals, in itself, is rarely worthwhile or useful. In fact, I'd say within the last decade or so, I've seen fewer problems caused by globals, than by people who didn't really understand their problems attempting to eliminate what were (or should have been) perfectly fine as globals.
Given that they are intended to be invariant, what you probably should do is enforce that explicitly. For example, have a factory class (or function) that creates an invariant class. The invariant class makes the factory its friend, but that's the only way members of the invariant class can change. The factory class, in turn, has (for example) a static bool, and executes an assert if you attempt to run it more than once. This gives (a reasonable level of) assurance that the invariants really are invariant (yes, a reinterpret_cast will let you modify the data anyway, but not by accident).
The one real question I'd have is whether there's a real point in separating your invariants into two "chunks" if all the calculations really depend on both. If there's a clear, logical separation between the two, that's great (even if they do get used together). If you have what's logically a single block of data, however, trying to break it into pieces may be counterproductive.
Bottom line: globals are (at worst) a symptom, not a disease. Insisting that you're going to get the patient's temperature down to 98.6 degrees may be counterproductive -- especially if the patient is an animal whose normal body temperature is actually 102 degrees.
uhm. Cpp is not necessarily object oriented. It is the GTA of programming! You are free to be a Object obscessed freak, a relax C programmer, a functional programmer, what ever; a mix martial artist.
My point, if Global variables worked in your fortran compile, just copy and paste to Cpp. No need to avoid global variables. It follows the principle of, dont touch legacy code.
Lets understand why global variables may cause problem. As you know, variables is the programs`s state and state is the soul of the program. Bad or invalid state causes runtime and logic errors. The problem with global variables/ global state, is that any part of our code has access to it; thus in case of invalid state, their are many bad guys or culprits to consider, meaning functions and operators. However this is only applicable if you really used so many functions on your global variable. I mean you are the only one working on your lonely program. Global variables are only a real problem if you are doing a team project. In that case many people have access to it, writing different functions that may or may not be accessing that variable.

Changing behavior of an object at runtime

How can be changed the behavior of an object at runtime? (using C++)
I will give a simple example. I have a class Operator that contains a method operate. Let’s suppose it looks like this:
double operate(double a, double b){
return 0.0;
}
The user will give some input values for a and b, and will choose what operation to perform let’s say that he can choose to compute addition or multiplication. Given it’s input all I am allowed to do is instantiate Operator and call operate(a, b), which is written exactly how I mentioned before.
The methods that compute multiplication or addition will be implemented somewhere (no idea where).
In conclusion I have to change the behavior of my Operator object depending on the user's input.
The standard pattern for this is to make the outer class have a pointer to an "implementation" class.
// derive multiple implementations from this:
class Implementation
{
virtual ~Implementation() {} // probably essential!
virtual void foo() = 0;
};
class Switcheroo
{
Implementation *impl_;
public:
// constructor, destructor, copy constructor, assignment
// must all be properly defined (any that you can't define,
// make private)
void foo()
{
impl_->foo();
}
};
By forwarding all the member functions of Switcheroo to the impl_ member, you get the ability to switch in a different implementation whenever you need to.
There are various names for this pattern: Pimpl (short for "private implementation"), Smart Reference (as opposed to Smart Pointer, due to the fowarding member functions), and it has something in common with the Proxy and Bridge patterns.
I'm mentioning this only as trivia and can't unrecommend it more, but here we go...
WARNING DANGER!!!
A stupid trick I've seen is called clutching, I think, but it's only for the truely foolish. Basically you swap the virtualtable pointer to that of another class, it works, but it could theoretically destroy the world or cause some other undefined behavior :)
Anyways instead of this just use dynamic classing and kosher C++, but as an experiment the above is kind of fun...
Coplien's Envelope/Letter Pattern (in his must read book Advanced C++ Programming Styles and Idioms) is the classic way to do this.
Briefly, an Envelope and a Letter are both subclasses of an abstract base class/interfcae that defines the public interface for all subclasses.
An Envelope holds (and hides the true type of) a Letter.
A variety of Letter classes have different implementations of the abstract class's public interface.
An Envelope has no real implementation; it just forards (delegates) to its Letter. It holds a pointer to the abstract base class, and points that at a concrete Letter class instance. As the implementation needs to be changed, the type of Letter subclass pointer to is changed.
As users only have a reference to the Envelope, this change is invisible to them except in that the Envelope's behavior changes.
Coplien's examples are particularly clean, because it's the Letters, not the envelope that cause the change.
One example is of a Number class hierarchy. The abstract base declares certain operations over all Numbers, e.g, addition. Integer and a Complex are examples of concrete subclasses.
Adding an Integer and an Integer results in an Integer, but adding a Interget and a Complex results in a Complex.
Here's what the Envelope looks like for addition:
public class Number {
Number* add( const Number* const n ) ; // abstract, deriveds override
}
public class Envelope : public Number {
private Number* letter;
...
Number* add( const Number& rhs) { // add a number to this
// if letter and rhs are both Integers, letter->add returns an Integer
// if letter is a a Complex, or rhs is, what comes back is a Complex
//
letter = letter->add( rhs ) ) ;
return this;
}
}
Now in the client's pointer never changes, and they never ever need to know what the Envelop is holding. Here's the client code:
int main() {
// makeInteger news up the Envelope, and returns a pointer to it
Number* i = makeInteger( 1 ) ;
// makeComplex is similar, both return Envelopes.
Number* c = makeComplex( 1, 1 ) ;
// add c to i
i->add(c) ;
// to this code, i is now, for all intents and purposes, a Complex!
// even though i still points to the same Envelope, because
// the envelope internally points to a Complex.
}
In his book, Coplien goes into greater depth -- you'll note that the add method requires multi-dispatch of some form --, and adds syntactic sugar. But this is the gist of how you can get what's called "runtime polymorphism".
You can achieve it through dynamic binding (polymorphism)... but it all depends on what you are actually trying to achieve.
You can't change the behavior of arbitrary objects using any sane way unless the object was intended to use 'plugin' behaviour through some technique (composition, callbacks etc).
(Insane ways might be overwriting process memory where the function code lies...)
However, you can overwrite an object's behavior that lies in virtual methods by overwriting the vtable (An approach can be found in this article ) without overwriting memory in executable pages. But this still is not a very sane way to do it and it bears multiple security risks.
The safest thing to do is to change the behavior of objects that were designed to be changed by providing the appropriate hooks (callbacks, composition ...).
Objects always have the behaviour that's defined by their class.
If you need different behaviour, you need a different class...
You could also consider the Role Pattern with dynamic binding..i'm struggling with the same thing that you do..I read about the Strategy pattern but the role one sounds like a good solution also...
There are many ways to do this proxying, pImpl idiom, polymorphism, all with pros and cons. The solution that is best for you will depend on exactly which problem you are trying to solve.
Many many ways:
Try if at first. You can always change the behavior with if statement. Then you probably find the 'polymorphism' way more accurate, but it depends on your task.
Create a abstract class, declaring the methods, which behavior must be variable, as virtual.
Create concrete classes, that will implement the virtual methods. There are many ways to achieve this, using design patterns.
You can change the object behavior using dynamic binding. The design patterns like Decorator, Strategy would actually help you to realize the same.