How to install protobuf on windows? (Win7x64/MinGW) - c++

C++-Protobuf does not compile in VS2012. Now I want to use MinGW to compile it on windows. Can someone please give me some brief headwords on how to compile protobuf on Win7 x64. I already installed MinGW with the GUI installer. Google writes as MinGW setup notice that I should refer to the Unix installation notes. But I cant figure out how to use the auto tools on windows.
Edit
Okay this is what I've done until now:
$ mount C:/ WinDir
$ cd ./[...]/protobuf.2.4.1
$ ./configure
$ minGW32-make.exe
$ minGW32-make.exe check
minGW32-make.exe runs without errors, but no tests are running and I cant find libprotobuf.lib. There are some libprotobuf.dll but I need the lib, dont I?.

You should have an MSys console together with your MinGW instalation. This console provides an linux-like environment in which you should be able to use autotools normally.
If MSys is not installed, you can grab it from the MinGW site too.
cd to your directory with sources and try the usual:
$ ./configure
$ make
Some libraries cause problems on Windows but most compile well with MinGW and MSys. Come back and add more info to your question if you run into specific problems.
Edit:
minGW32-make.exe runs without errors, but no tests are running and I cant find libprotobuf.lib. There are some libprotobuf.dll but I need the lib, dont I?.
Usually for a dynamic library you'd get protobuf.dll (the dynamic library) and libprotobuf.a (the static wrapper library).
When linking, just pass -lprotobuf to the linker - it will look for both libprotobuf.a and protobuf.lib.
(.lib is another static library format, which is partially handled by MinGW but not native here.)

You will not work with a .lib file when using the MinGW toolchain. Instead, you are able to link against the dll directly. The MinGW Wiki explains this.

I could get dll and lib both. This is when you do not want static lib file and want to use dll and lib file.
You need to make following changes in Protobuf code:
Open the project in VS. Or any other editor. I use VS2015.
In libProtoBuf project settings, in C/C++ Preprocessor add following flags.
PROTOBUF_USE_DLLS; LIBPROTOBUF_EXPORTS;
Those flags will export information from profobuf using dllexport
in ur client code where you are using Protobuf, define: PROTOBUF_USE_DLLS. Which will make protobuf includes to use dllimport.
Once you do step 2, you will see both dll and lib in your output folder. Otherwise, you will always see just dll and not lib file.
Hope this helps. If not, please write a message here and I can help you getting this sorted out.

Related

wxWidgets jpeg library build issue

I'm trying to build wxWidgets library into a custom path on a Fedora 27 operative system.
I achieved the wx-config file path recognition and works with the cmake execution. Also, I load libraries and include dirs based on modified wxWidgets finder cmake file that sets thewx-config custom path successfully.
But cmake does not load my wxWidgets configuration. I mean, wx_gtk2u_jpeg-3.1 builded lib could not be founded (suposed to be /usr/lib/libwx_gtk2u_jpeg-3.1.so). I need jpeg dependency from wxWidgets for my project.
I'm sure that problem is not about cmake files. However, the problem is wxWidgets compilation because cmake can found the other builded dependencies into /usr/lib/
I actually installed the libjpeg-turbo-devel package that includes the libjpeg.h needed for wxWidgets building without success of libwx_gtk2u_jpeg-3.1.so creation.
The weirdest part is that $ wx-config --libs shows the wx_gtk2u_jpeg-3.1 lib to be linked and the hint paths that it should be founded.
wxWidgets commands for building:
$ ./configure --with-libjpeg=builtin --with-libpng=builtin --with-libtiff=builtin --with-zlib=builtin --with-expat=builtin --enable-webviewwebkit=no --prefix=/opt/cpp_dependencies/2018Q1/usr'
$ make -j 4
$ make install
You can check out my cmake files, the cmake output and wxWidgets building output in order to reproducing it: https://gist.github.com/jjalvarezl/b70accae269ef56c56010bedf157c27f
You can see line 1543 of wxWidgets building output file that jpeg library is buildin, and, 1564 of same file, the make install command that installs all libwx_<lib_name>.so libraries into final /usr/lib path. Anyway, no one contains the needed library.
Please show the exact error message, as it's not clear what the actual problem is. What I can say, is that the different built-in versions of 3rd party libraries, such as libjpeg, are always static libraries, even when wxWidgets themselves are shared. I.e. you're never going to have libwx_gtk2u_jpeg-3.1.so, only .a.
I'd also strongly recommend using system versions of the 3rd party libraries under Unix systems. This means that your wxWidgets applications will get security updates from your OS vendor and you don't risk running into any incompatibilities due to using 2 different versions of the same library in your application.

How to compile Quantlib via Xcode?

I am trying to install QuantLib on my Mac running OSX 10.11.6. Installed Boost 1.59 via MacPorts and then followed these instructions.
I used these additional environment variables
./configure --with-boost-include=/opt/local/include/ \
--with-boost-lib=/opt/local/lib/ --prefix=/opt/local/ \
CXXFLAGS='-O2 -stdlib=libstdc++ -mmacosx-version-min=10.6' \
LDFLAGS='-stdlib=libstdc++ -mmacosx-version-min=10.6'
and then make && sudo make install.
However when I run the Bermuda Swaption test it gave me the same error described here.
Little premise: I don't know anything about C++. I need QuantLib to work on Python. So I read carefully the answer by SmallChess and tried to solve it by myself. As I read in his answer
You can't just compile BermudanSwaption.cpp and hope everything would be fine. You have to compile the entire QuantLib library and link with the generated library files. Please google "compiling and linking C++" for more information.
By far, the easiest way to make it happen on Mac is to do it with Xcode. You will need to create a new Xcode project, and import the entire Quantlib project files into it. Next, you will need to create a main() function. Xcode does the compiling and linking for your automatically.
This is what I exactly did:
created a new project in Xcode (version 8.2.1)(file/new project/Command Line Tool/"HelloWorld"/Documents/create)
selected Targets, Build Phases and Link Binary With Library. Added libQuantLib.0.dylib
set libstdc++(GNUC++ standard library) as C++ Standard Library in Build Settings
Modified Header Search Paths to include: /opt/local/include/, and Library Search Paths to include: /opt/local/lib
C++ Language Dialect is set on Compiler Default.
Dragged the ql folder onto the left window of the Xcode
Now, I managed to copy a simple code which includes the library and even if there are many warnings, it runs. Still when I run on the Terminal the command for the Bermuda Swaption test I get the same error. What am I doing wrong?
Additional info (may or may not be useful): if I change the C++ Standard Library setting on Xcode to libc++, I get on Xcode the same error I get when i try the Bermuda Swaption test (ld: symbol(s) not found for architecture x86_64).
Any help would be very much appreciated
Regards
EDIT: you can find a picture of the code at https://i.stack.imgur.com/1zhjO.png

How to build Crypto++ library on Linux with MinGW?

im trying to port a c++ project from visual studio 2013 to netbeans on ubuntu. The target is a windows executable, so far im able to compile windows exe files from netbeans using mingw as compiler.
The project needs the Crypto++ library and i only have the .lib version for visual studio. To include the library in netbeans i first need to build the Crypto++ library in the .a format.
Its not clear to me how should i do that.
Ive found informations on how to build the library for linux with mingw but not for cross compilation with mingw. The provided GNUmakefile does not work.
Should i set up a vm with windows and mingw and compile the library that way? Or maybe use the qmake "hack" as suggested here http://www.qtcentre.org/threads/28809-Compiling-amp-using-Crypto-with-mingw-version-of-Qt ? The last good Crypto++ version suggested there is quite old. This is confusing, porting the whole project is easier than having the required library.
Im open to any suggestion.
tldr: how to build libcryptopp.a on linux for the cross compilation of a windows exe project
edit:
for example if i cross compile something there are windows libraries in the /usr/i686-w64-mingw32/lib/ folder like libuser32.a. i need to make the equivalend libcryptopp.a.. sorry if is a bit unclear.
if i simply build using the steps in answer (and in the wiki) i end up with a libcryptopp.a file but i suspect is linux-only, cause if i link that library in netbeans in the .exe file im cross compiling i end up with undefined references to cryptopp stuff everywere. the paths are correct, i suspect the library needs to be replaced with the equivalent libcryptopp.a compatible with crosscompiling.
edit2: im trying to follow the answer down here, now im stuck here. after this command to build cryptopp.
make CXX=/usr/bin/i686-w64-mingw32-gcc INCLUDES="-I /usr/i686-w64-mingw32/include" LIBS="-L /usr/i686-w64-mingw32/lib" CXXFLAGS="-std=c++0x"
and many variations of it i always end up with this error
trap.h:26:25: fatal error: Windows.h: No such file or directory
# include
which makes me think its using the right compiler to make a .a lib file for cross compiling the windows .exe with the lib.
however i dont understand whats going on now with the missing header..:(
Also if i try to link the lib file (used with visual studio) i get a lot of linking errors, undefined reference to cryptopp stuff.
ill offer a symbolic beer (a couple of $ of Bitcoins) if someone finds out how to do it.
Inspired by http://wiki.amule.org/wiki/Cross-compilation_for_windows_with_mingw:
sudo apt-get install mingw-w64
git clone https://github.com/weidai11/cryptopp
cd cryptopp
export TARGET=i686-w64-mingw32
CXX=$TARGET-g++ RANLIB=$TARGET-ranlib AR=$TARGET-ar LDLIBS=-lws2_32 make -f GNUmakefile
I've found informations on how to build the library for linux with mingw but not for cross compilation with mingw.
Its relatively easy...
Get Crypto++ ZIP into MinGW.
Unpack Crypto++ ZIP.
Change directories.
Build the library.
Verify All tests passed.
(1) and (2) can be tricky because Cygwin and MinGW are missing a lot of tools. So curl https://www.cryptopp.com/cryptopp563.zip -o cryptopp563.zip may not work.
For (2), I seem to recall ZIP is missing, so unzip -aoq cryptopp563.zip -d cryptopp-5.6.3 may not work.
At step (4), just perform make static dynamic test and be sure it finished with All tests passed.
I do a lot of testing with Cygwin and MinGW. I have a script that copies Crypto++ into the environments from my Desktop. I have not been able to figure out a way to automate it. A recent question on automating it was closed, so no one can supply an answer (see How to automate software testing for Cygwin and MinGW).

How to package C++ with dlls and libraries

I'm wondering how to "package" a C++ project for release. It uses various libraries, and I don't want a user to have to go through the same setup I did, with putting the right files in the right place and such. I had difficulty researching this, because I'm not sure the technical term for this issue. If I'm using command line compiling on Linux, is there an easy way to do this?
Your approach to this will differ on Windows and Linux because each OS handles this a different way. I'm more familiar with Linux so I'll restrict my answer to just the Linux side of things.
When you link your executable with a library using -l flag the linker defaults to looking in the normal system library directories so there are four approaches here.
Require the user to properly install the libraries themselves. However, it sounds like you don't want to do that.
Have the user add the library location to LD_LIBRARY_PATH variable.
Your third option is force the linker to look in a certain path for the libraries using the -rpath flag. For example, to have the application look in its working directory for a shared library you can compile with: g++ -rpath ./ -l SomeLib -o MyApp myapp.cpp
One other option is to static link your code with their library that way you only have to distribute one executable. If a static library exists you can use g++ -static -l SomeLib -o MyApp myapp.cpp to tell gcc to link statically.
On windows I would recommand wix http://wix.sourceforge.net/ to create the .msi installer
I would like to point out, the lookup path for .dlls I recommand putting all .dll in the same folder as your .exe since this has the highest priority
However, the vc crt (the c/c++ runtime library) should be installed using the redistributional package from microsoft -> updates automatically http://www.microsoft.com/de-de/download/details.aspx?id=5555
Wix can include the redistributional package into the same .msi therefore you have only to deploy a single installer file.
You mean an installer?
On Windows the program that you run to install a new app which outs everything in the correct directory, creates the start menu and lets you un-install it?
There is an installer builder in Visual Studio (might not be in the free express version) which makes .msi installer files. It's fairly easy to use for simple tasks but becomes complicated to do anything more.
Alternatively, to create traditional setup.exe type installs I use the excellent free Innosetup
On linux you would generally create a package using whatever format your distribution uses (.deb / .rpm ). There are lots of instructions on the specifics of each one and the tools to do so will probably already be installed in your Linux system

Using boost-python with C++ in Linux

My development shop has put together a fairly useful Python-based test suite, and we'd like to test some Linux-based C++ code with it. We've gotten the test project they ship with Boost to compile (type 'bjam' in the directory and it works), but we're having issues with our actual project.
Building the boost libraries and bjam from source (v1.35.0), when I run bjam I get a .so in the bin/gcc-4.1.2/debug directory. I run python and "import " and I get:
ImportError: libboost_python-gcc41-d-1_35.so.1.35.0: cannot open shared object file: No such file or directory
Looking in the library directory, I have the following:
libboost_python-gcc41-mt-1_35.so libboost_python-gcc41-mt-1_35.so.1.35.0 libboost_python-gcc41-mt.so
Obviously I need the -d instead of the -mt libraries, or to point at the -mt libraries instead of -d, but I can't figure out how to make my Jamroot file do that.
When I install Debian Etch's versions of the libraries, I get "No Jamfile in /usr/include" - and there's a debian bug that says they left out the system-level jamfile.
I'm more hopeful about getting it working from source, so if anyone has any suggestions to resolve the library issues, I'd like to hear them.
Response to answer 1: Thanks for the tip. So, do you know how I'd go about getting it to use the MT libraries instead? It appears to be more of a problem with bjam or the Jamfile I am using thinking I am in debug mode, even though I can't find any flags for that. While I know how to include specific libraries in a call to GCC, I don't see a way to configure that from the Boost end.
If you want to build the debug variants of the boost libraries as well, you have to invoke bjam with the option --build-type=complete.
On Debian, you get the debug Python interpreter in the python2.x-dbg packages. Debug builds of the Boost libraries are in libboost1.xy-dbg, if you want to use the system Boost.
Found the solution! Boost builds a debug build by default. Typing "bjam release" builds the release configuration. (This isn't listed in any documentation anywhere, as far as I can tell.) Note that this is not the same as changing your build-type to release, as that doesn't build a release configuration. Doing a 'complete' build as Torsten suggests also does not stop it from building only a debug version.
It's also worth noting that the -d libraries were in <boost-version>/bin.v2/libs/python/build/<gcc version>/debug/ and the release libraries were in <gcc-version>/release, and not installed into the top-level 'libs' directory.
Thanks for the other suggestions!
One important Point: -d means debug of course, and should only be linked to a debug build of your project and can only be used with a debug build of python (OR NOT, SEE BELOW). If you try to link a debug lib to a non-debug build, or you try to import a debug pyd into a non-debug python, bad things will happen.
mt means multi-threaded and is orthogonal to d. You probably want to use a mt non-d for your project.
I am afraid I don't know how to tell gcc what to link against (I have been using Visual Studio). One thing to try:
man gcc
Somewhere that should tell you how to force specific libs on the linker.
EDIT: Actually you can import a debug version of you project into a non-debug build of python. Wherever you included python.h, include boost/python/detail/wrap_python.hpp instead.