I wrote the following code to take in many inputs and then output them in a specific order.
#DEFINE cases 100
struct job
{
int w;
};
class compjob
{
public:
bool operator()( job j1,job j2)
{
if(j2.w>j1.w)
return true;
return false;
}
};
int main()
{
priority_queue< job, vector<job>, compjob > jobs;
int weight;
for(int i=1;i<=cases;i++)
{
cin>>weight;
job job1;
job1.w=weight;
jobs.push(job1);
} //for loop ends here
for(int i=1;i<=cases;i++)
{
job job1= jobs.pop(); ////////////ERROR!!!!!/////////
cout<<job1.w<<endl;
}
return 0;;
}
But when I compile the code, a compile error is displayed on the line marked above:
Invalid conversion from 'void' to non scalar 'job'.
I think that I didn't declare jobs priority_queue correctly. Also, please explain the significance of second argument in the declaration(i.e. vector, I don't really know its use)
pop does not return anything, use top first to get the element and then pop it.
I'll recommend you to see the help page C++ reference: priority_queue , everytime you're using a library.
Some guy might say cpluplus contains some errors, so you can try this as an alternative.
Related
I have a big problem..I'm beginner with programming and I try to make a program in C++ for a football league ranking which have to sort the teams depending on their points.
Can someone help with an idea, please?
I created a struct for the teams with the name and the number of points.
How can I sort the teams?P.S. Sorry for my bad English.
This is my code:
#include <iostream>
#include <algorithm>
using namespace std;
//I created a struct for the team.
struct team
{
char name;
int pct;
}v[20];
int main()
{ int i,sw,aux;
for(i=1;i<=4;i++)//read the names
{
cout<<"Team "<<i<<endl;
cin>>v[i].name;
}
for(i=1;i<=4;i++)//get the points
{
cout<<"Team "<<v[i].name<<" points"<<endl;
cin>>v[i].pct;
}
//bubble sort(not working)
do
{
sw=0;
for(i=1;i<=4;i++)
{
if(v[i].pct<v[i+1].pct)
aux=v[i].pct;
v[i].pct=v[i+1].pct;
v[i+1].pct=aux;
sw=1;
}
}while(sw==1);
for(i=1;i<=4;i++)
{
cout<<v[i].pct<<endl;
}
return 0;
}
You need to modify your sort part like this. Assuming you are sorting in desc order.
do
{
sw=0;
for(i=1;i<4;i++) //< not <= ,because in case of the last element you wont have any other element after it to compare
{
if(v[i].pct<v[i+1].pct) // use curly brace as you want all 4 following lines to be executed when its true
{
aux=v[i]; //swap entire struct not just one variable
v[i]=v[i+1];
v[i+1]=aux;
sw=1;
}
}
}while(sw==1);
Also you might need to edit variable type of team name as it can be string.
As you are using C++ there is a one liner function that you can use to sort
//#include<algorithm>
//define comparator function
bool cmp(team a, team b)
{
return a.pct < b.pct;
}
sort(v+1,v+4+1,cmp);
Also you can simply write the comparator inside the struct and then use the sort function:
struct team
{
char name;
int pct;
bool operator<(team other) const
{
return pct > other.pct;
}
}v[20];
sort(v+1,v+4+1);
I'm curious about why you include algorithm but do not use any of it. Do you know STL? Since you include algorithm, I guess you may know some simple functions such as swap, sort and copy. They are easy to use, you just need to type one line instead of writing a bubble sort by yourself. Before you use the sort function, you should define which order can take effect on these teams. Just like this:
bool compareTeams(const Team &t1, const Team &t2) {
if (t1.getScore() == t2.getScore()) {
return t1.getName() < t2.getName();
}
else {
return t1.getScore() < t2.getScore();
}
}
The code above defines a direction we consider to sort the teams, first we sort them by scores, if both of the scores are equal, then we sort them by their names.
Finally We can use the sort function which is ready-made in STL. Now the order we defined can be used. (I guess the array v[] stands for the teams. Am I right?)
std::sort(v, v + 20, compareTeams);
Hoping for some clarification here. The code below executes fine, but when I uncomment that else statement a compilation error occurs. It's because in main I'm specifying a type int event though there's the possibility of type string. I've simplified my actual code to what's below to narrow down on the problem, what can I do to make it so that vector data in main can be of whatever type getNextLineOfData returns?
#include <vector>
using namespace std;
template< typename T>
std::vector<T> getNextLineOfData(bool someBoolean)
{
std::vector<T> data;
if (someBoolean)
{
data.push_back(1);
data.push_back(2);
data.push_back(3);
}
/*
else
{
data.push_back("1");
data.push_back("2");
data.push_back("3");
}
*/
return data;
};
int main()
{
vector<int> data = getNextLineOfData<int>(true);
return 0;
}
You are confusing compile time operations with runtime operations in your code snippet. When you template the function getNextLineOfData and instantiate it with getNextLineOfData<int>, the compiler goes ahead and generates a function that returns a vector for you. The if statement however is only evaluated at run time. So when the compiler tries to build your code it sees that you are adding both 1 and "1" to your vector<int> container based on the conditional. This is not allowed.
You could solve your problem with template specialization.
#include <vector>
using namespace std;
template<typename T>
std::vector<T> getNextLineOfData() {
// default
}
template<>
std::vector<int> getNextLineOfData()
{
std::vector<int> data;
data.push_back(1);
data.push_back(2);
data.push_back(3);
return data;
};
template<>
std::vector<std::string> getNextLineOfData()
{
std::vector<std::string> data;
data.push_back("1");
data.push_back("2");
data.push_back("3");
return data;
};
int main()
{
vector<int> data = getNextLineOfData<int>();
return 0;
}
EDIT: As #BobTFish points out, it might be better to overload the function rather than template specialize it. The solution above solves the problem the way you had it initially set up.
Reading from extra information in comments, I would suggest something like:
void getNextLine(std::vector<std::string>& output)
{
output.push_back("string data as you please");
}
void getNextLine(std::vector<int>& output)
{
output.push_back(1);
}
bool nextLineIsIntData()
{
// somehow determine if the coming data is strings or ints
return false;
}
int main()
{
std::vector<std::string> stringData;
std::vector<int> intData;
if (nextLineIsIntData())
getNextLine(intData);
else
getNextLine(stringData);
// do whatever you want
}
Well what you are doing is simply illegal. When you look at the if-else statement you say, well if some condition is true than this will execute but this won't, so it stands too reason that the compiler will ignore the part that is not executed. This is flat out wrong. What you need to do, which is layed out in previous answers is too overload or specialize the function for the different data types.
I should also mention that what you are trying to do is bad style. You are essentially relying on the user too pass the correct bool value, which influences the types you push_back() into the vector. Why do this when you have the power of template pattern matching at your disposal which completely removes the need to rely on correct user input.
In this case and any similar ones you come across it's much better to let the compiler decide
I'm currently trying to work with vectors / deques of structures. Simple example of the structure...
struct job {
int id;
int time;
}
I want to be able to search through the structure to find the job that matches the time, remove it from the structure and continue to check for other ids in that structure. Sample code...
<vector> jobs;
<deque> started;
for (unsigned int i = 0; i < jobs.size(); i++)
{
if (jobs.at(i).time == time)
{
started.push_back(jobs.at(i));
jobs.erase(jobs.begin() + i);
i--;
}
}
time++;
This works how I want it to but it also seems very hacky since I'm adjusting the index whenever I delete and I think it's simply because I'm not as knowledgeable as should be with data structures. Anyone able to give me some advice?
NOTE - I don't think this is a duplicate to what this post has been tagged to as I'm not looking to do something efficiently with what I already have. To me, it seems efficient enough considering I'm reducing the size of the deque each time I get what I need from it. What I was hoping for, is some advice on figuring out what is the best data structure for what I'm attempting to do with deques, which are likely not meant to be handled as I'm handling them.
I could also be wrong and my usage is fine but just seems off to me to.
Well, I always knew that this talk would come in handy! The message here is "know your STL algorithms". With that, let me introduce you to std::stable_partition.
One thing you can do is use just one single vector, as follows:
using namespace std;
vector<job> jobs;
// fill the vector with jobs
auto startedJobsIter = stable_partition(begin(jobs), end(jobs),
[=time](job const &_job) { return _job.time == time; });
Now, everything between begin(jobs) and startedJobsIter satisfy the condition, while everything from startedJobsIter and end(jobs) does not.
Edit
If you don't care about the relative ordering of the items, then you could just use std::partition, which could be even more performant, because it would not preserve the relative ordering of the elements in the original vector, but will still divide it into the two parts.
Edit 2
Here's an adaptation for older C++ standards:
struct job_time_predicate {
public:
job_time_predicate(int time) : time_(time) { }
bool operator()(job const &the_job) { return the_job.time == time_; }
private:
int time_;
};
int main()
{
using namespace std;
int time = 10;
vector<job> jobs;
// fill that vector
vector<job>::iterator startedJobsIter =
stable_partition(jobs.begin(), jobs.end(), job_time_predicate(time));
}
I'm relatively new to programming and I did really well in my introductory class. However, as we are starting to get into the more advanced concepts of C++, I'm becoming more and more lost. I'm having a problem with a lab assignment, I hope you guys can help!
Write a generic list class called GenericList. The class should use a vector and be able to >be created with any type name. The class should have the following members:
A simple constructor
add(item) - add the item to the list
grabSmallest() - find, return and remove the smallest item in the list
Here is what I have so far, I believe it is at least set up correctly:
EDIT
This is what I have after the corrections that have been suggested, I've ran into a different problem now, though. Here is the revised code:
#include <iostream>
#include <vector>
#include <string>
using namespace std;
template<typename T>
class GenericList
{
public:
GenericList();
void add(T value);
T grabSmallest();
private:
vector<T> listVector;
};
template<typename T>
GenericList<T>::GenericList()
{
}
template<typename T>
void GenericList<T>::add(T value)
{
listVector.push_back(value);
}
template<typename T>
T GenericList<T>::grabSmallest()
{
int smallest = listVector[0];
for (int i = 0; i < listVector.size(); i++)
{
if (listVector[i] < smallest)
{
smallest = listVector[i];
}
}
}
int main (){
GenericList<int> myList;
myList.add(10);
myList.add(5);
myList.add(20);
myList.add(15);
for(int i=0;i<4;i++)
cout << myList.grabSmallest() << " ";
}
I'm now having problems with my for loop in the grab function. Apparently, the compiler is putting random numbers into the vector.
Where is the last?
Even you have the last,
template<typename T>
void GenericList<T>::add(const T &value)
{
listVector[last++] = value; // <- should it be last++ or ++last?
}
or do you mean:
template<typename T>
void GenericList<T>::add(const T &value)
{
listVector.push_back(value)
}
BTW, With vector, you dont need the last field. It's kept in the vector: ` vector.size(). But why wrap vector when you could just use vector directly?
if you want the just want the smallest, priority_queue will do.
As gongzhitaao said, that line is not liking you because you never declare last and thus the compiler doesn't know what to do with it. as they said, you need to use push_back to solve that problem.
But you also need to solve another problem: what happens if they don't use int as their type? What if they want the "least" member of a custom class? You need to change this:
vector<int> listVector;
to this
vector<T> listVector;
So that the vector picks up the custom type that the template parameter T is specifying.
For grabSmallest I suggest you use some type of search to determine which element is the smallest, such as picking the first element, then looping through after that to see if each subsequent one is smaller or not. If it is, take that as your value, and loop. If not, just keep going. Whichever is left over at the end is smallest. But remember to use T as your type all the way through. Sorting it on every insert isn't necessary with this method.
As this is homework I didn't want to give you 100% of the answer with code, but hopefully the preceding paragraph is enough to get you going.
Edit: figured it out. Try www.codepad.org and run your code through it.
Basically, two errors in your grabSmallest() method.
It should be T smallest = listVector[0] not int. You should also have a "guard" that returns a default value (or throws an exception) if the list is empty.
grabSmallest() is supposed to return a value, but you forgot to. So your compiler is apparently way too forgiving, and didn't flag that as an error. Put return smallest as the last line of the method, just after the for loop.
This is my first time using this site so sorry for any bad formatting or weird formulations, I'll try my best to conform to the rules on this site but I might do some misstakes in the beginning.
I'm right now working on an implementation of some different bin packing algorithms in C++ using the STL containers. In the current code I still have some logical faults that needs to be fixed but this question is more about the structure of the program. I would wan't some second opinion on how you should structure the program to minimize the number of logical faults and make it as easy to read as possible. In it's current state I just feel that this isn't the best way to do it but I don't really see any other way to write my code right now.
The problem is a dynamic online bin packing problem. It is dynamic in the sense that items have an arbitrary time before they will leave the bin they've been assigned to.
In short my questions are:
How would the structure of a Bin packing algorithm look in C++?
Is STL containers a good tool to make the implementation be able to handle inputs of arbitrary lenght?
How should I handle the containers in a good, easy to read and implement way?
Some thoughts about my own code:
Using classes to make a good distinction between handling the list of the different bins and the list of items in those bins.
Getting the implementation as effective as possible.
Being easy to run with a lot of different data lengths and files for benchmarking.
#include <iostream>
#include <fstream>
#include <list>
#include <queue>
#include <string>
#include <vector>
using namespace std;
struct type_item {
int size;
int life;
bool operator < (const type_item& input)
{
return size < input.size;
}
};
class Class_bin {
double load;
list<type_item> contents;
list<type_item>::iterator i;
public:
Class_bin ();
bool operator < (Class_bin);
bool full (type_item);
void push_bin (type_item);
double check_load ();
void check_dead ();
void print_bin ();
};
Class_bin::Class_bin () {
load=0.0;
}
bool Class_bin::operator < (Class_bin input){
return load < input.load;
}
bool Class_bin::full (type_item input) {
if (load+(1.0/(double) input.size)>1) {
return false;
}
else {
return true;
}
}
void Class_bin::push_bin (type_item input) {
int sum=0;
contents.push_back(input);
for (i=contents.begin(); i!=contents.end(); ++i) {
sum+=i->size;
}
load+=1.0/(double) sum;
}
double Class_bin::check_load () {
return load;
}
void Class_bin::check_dead () {
for (i=contents.begin(); i!=contents.end(); ++i) {
i->life--;
if (i->life==0) {
contents.erase(i);
}
}
}
void Class_bin::print_bin () {
for (i=contents.begin (); i!=contents.end (); ++i) {
cout << i->size << " ";
}
}
class Class_list_of_bins {
list<Class_bin> list_of_bins;
list<Class_bin>::iterator i;
public:
void push_list (type_item);
void sort_list ();
void check_dead ();
void print_list ();
private:
Class_bin new_bin (type_item);
bool comparator (type_item, type_item);
};
Class_bin Class_list_of_bins::new_bin (type_item input) {
Class_bin temp;
temp.push_bin (input);
return temp;
}
void Class_list_of_bins::push_list (type_item input) {
if (list_of_bins.empty ()) {
list_of_bins.push_front (new_bin(input));
return;
}
for (i=list_of_bins.begin (); i!=list_of_bins.end (); ++i) {
if (!i->full (input)) {
i->push_bin (input);
return;
}
}
list_of_bins.push_front (new_bin(input));
}
void Class_list_of_bins::sort_list () {
list_of_bins.sort();
}
void Class_list_of_bins::check_dead () {
for (i=list_of_bins.begin (); i !=list_of_bins.end (); ++i) {
i->check_dead ();
}
}
void Class_list_of_bins::print_list () {
for (i=list_of_bins.begin (); i!=list_of_bins.end (); ++i) {
i->print_bin ();
cout << "\n";
}
}
int main () {
int i, number_of_items;
type_item buffer;
Class_list_of_bins bins;
queue<type_item> input;
string filename;
fstream file;
cout << "Input file name: ";
cin >> filename;
cout << endl;
file.open (filename.c_str(), ios::in);
file >> number_of_items;
for (i=0; i<number_of_items; ++i) {
file >> buffer.size;
file >> buffer.life;
input.push (buffer);
}
file.close ();
while (!input.empty ()) {
buffer=input.front ();
input.pop ();
bins.push_list (buffer);
}
bins.print_list ();
return 0;
}
Note that this is just a snapshot of my code and is not yet running properly
Don't wan't to clutter this with unrelated chatter just want to thank the people who contributed, I will review my code and hopefully be able to structure my programming a bit better
How would the structure of a Bin packing algorithm look in C++?
Well, ideally you would have several bin-packing algorithms, separated into different functions, which differ only by the logic of the algorithm. That algorithm should be largely independent from the representation of your data, so you can change your algorithm with only a single function call.
You can look at what the STL Algorithms have in common. Mainly, they operate on iterators instead of containers, but as I detail below, I wouldn't suggest this for you initially. You should get a feel for what algorithms are available and leverage them in your implementation.
Is STL containers a good tool to make the implementation be able to handle inputs of arbitrary length?
It usually works like this: create a container, fill the container, apply an algorithm to the container.
Judging from the description of your requirements, that is how you'll use this, so I think it'll be fine. There's one important difference between your bin packing algorithm and most STL algorithms.
The STL algorithms are either non-modifying or are inserting elements to a destination. bin-packing, on the other hand, is "here's a list of bins, use them or add a new bin". It's not impossible to do this with iterators, but probably not worth the effort. I'd start by operating on the container, get a working program, back it up, then see if you can make it work for only iterators.
How should I handle the containers in a good, easy to read and implement way?
I'd take this approach, characterize your inputs and outputs:
Input: Collection of items, arbitrary length, arbitrary order.
Output: Collection of bins determined by algorithm. Each bin contains a collection of items.
Then I'd worry about "what does my algorithm need to do?"
Constantly check bins for "does this item fit?"
Your Class_bin is a good encapsulation of what is needed.
Avoid cluttering your code with unrelated stuff like "print()" - use non-member help functions.
type_item
struct type_item {
int size;
int life;
bool operator < (const type_item& input)
{
return size < input.size;
}
};
It's unclear what life (or death) is used for. I can't imagine that concept being relevant to implementing a bin-packing algorithm. Maybe it should be left out?
This is personal preference, but I don't like giving operator< to my objects. Objects are usually non-trivial and have many meanings of less-than. For example, one algorithm might want all the alive items sorted before the dead items. I typically wrap that in another struct for clarity:
struct type_item {
int size;
int life;
struct SizeIsLess {
// Note this becomes a function object, which makes it easy to use with
// STL algorithms.
bool operator() (const type_item& lhs, const type_item& rhs)
{
return lhs.size < rhs.size;
}
}
};
vector<type_item> items;
std::sort(items.begin, items.end(), type_item::SizeIsLess);
Class_bin
class Class_bin {
double load;
list<type_item> contents;
list<type_item>::iterator i;
public:
Class_bin ();
bool operator < (Class_bin);
bool full (type_item);
void push_bin (type_item);
double check_load ();
void check_dead ();
void print_bin ();
};
I would skip the Class_ prefix on all your types - it's just a bit excessive, and it should be clear from the code. (This is a variant of hungarian notation. Programmers tend to be hostile towards it.)
You should not have a class member i (the iterator). It's not part of class state. If you need it in all the members, that's ok, just redeclare it there. If it's too long to type, use a typedef.
It's difficult to quantify "bin1 is less than bin2", so I'd suggest removing the operator<.
bool full(type_item) is a little misleading. I'd probably use bool can_hold(type_item). To me, bool full() would return true if there is zero space remaining.
check_load() would seem more clearly named load().
Again, it's unclear what check_dead() is supposed to accomplish.
I think you can remove print_bin and write that as a non-member function, to keep your objects cleaner.
Some people on StackOverflow would shoot me, but I'd consider just making this a struct, and leaving load and item list public. It doesn't seem like you care much about encapsulation here (you're only need to create this object so you don't need do recalculate load each time).
Class_list_of_bins
class Class_list_of_bins {
list<Class_bin> list_of_bins;
list<Class_bin>::iterator i;
public:
void push_list (type_item);
void sort_list ();
void check_dead ();
void print_list ();
private:
Class_bin new_bin (type_item);
bool comparator (type_item, type_item);
};
I think you can do without this class entirely.
Conceptually, it represents a container, so just use an STL container. You can implement the methods as non-member functions. Note that sort_list can be replaced with std::sort.
comparator is too generic a name, it gives no indication of what it compares or why, so consider being more clear.
Overall Comments
Overall, I think the classes you've picked adequately model the space you're trying to represent, so you'll be fine.
I might structure my project like this:
struct bin {
double load; // sum of item sizes.
std::list<type_item> items;
bin() : load(0) { }
};
// Returns true if the bin can fit the item passed to the constructor.
struct bin_can_fit {
bin_can_fit(type_item &item) : item_(item) { }
bool operator()(const bin &b) {
return item_.size < b.free_space;
}
private:
type_item item_;
};
// ItemIter is an iterator over the items.
// BinOutputIter is an output iterator we can use to put bins.
template <ItemIter, BinOutputIter>
void bin_pack_first_fit(ItemIter curr, ItemIter end, BinOutputIter output_bins) {
std::vector<bin> bins; // Create a local bin container, to simplify life.
for (; curr != end; ++curr) {
// Use a helper predicate to check whether the bin can fit this item.
// This is untested, but just for an idea.
std::vector<bin>::iterator bin_it =
std::find_if(bins.begin(), bins.end(), bin_can_fit(*curr));
if (bin_it == bins.end()) {
// Did not find a bin with enough space, add a new bin.
bins.push_back(bin);
// push_back invalidates iterators, so reassign bin_it to the last item.
bin_it = std::advance(bins.begin(), bins.size() - 1);
}
// bin_it now points to the bin to put the item in.
bin_it->items.push_back(*curr);
bin_it->load += curr.size();
}
std::copy(bins.begin(), bins.end(), output_bins); // Apply our bins to the destination.
}
void main(int argc, char** argv) {
std::vector<type_item> items;
// ... fill items
std::vector<bin> bins;
bin_pack_first_fit(items.begin(), items.end(), std::back_inserter(bins));
}
Some thoughts:
Your names are kinda messed up in places.
You have a lot of parameters named input, thats just meaningless
I'd expect full() to check whether it is full, not whether it can fit something else
I don't think push_bin pushes a bin
check_dead modifies the object (I'd expect something named check_*, to just tell me something about the object)
Don't put things like Class and type in the names of classes and types.
class_list_of_bins seems to describe what's inside rather then what the object is.
push_list doesn't push a list
Don't append stuff like _list to every method in a list class, if its a list object, we already know its a list method
I'm confused given the parameters of life and load as to what you are doing. The bin packing problem I'm familiar with just has sizes. I'm guessing that overtime some of the objects are taken out of bins and thus go away?
Some further thoughts on your classes
Class_list_of_bins is exposing too much of itself to the outside world. Why would the outside world want to check_dead or sort_list? That's nobodies business but the object itself. The public method you should have on that class really should be something like
* Add an item to the collection of bins
* Print solution
* Step one timestep into the future
list<Class_bin>::iterator i;
Bad, bad, bad! Don't put member variables on your unless they are actually member states. You should define that iterator where it is used. If you want to save some typing add this: typedef list::iterator bin_iterator and then you use bin_iterator as the type instead.
EXPANDED ANSWER
Here is my psuedocode:
class Item
{
Item(Istream & input)
{
read input description of item
}
double size_needed() { return actual size required (out of 1) for this item)
bool alive() { return true if object is still alive}
void do_timestep() { decrement life }
void print() { print something }
}
class Bin
{
vector of Items
double remaining_space
bool can_add(Item item) { return true if we have enough space}
void add(Item item) {add item to vector of items, update remaining space}
void do_timestep() {call do_timestep() and all Items, remove all items which indicate they are dead, updating remaining_space as you go}
void print { print all the contents }
}
class BinCollection
{
void do_timestep { call do_timestep on all of the bins }
void add(item item) { find first bin for which can_add return true, then add it, create a new bin if neccessary }
void print() { print all the bins }
}
Some quick notes:
In your code, you converted the int size to a float repeatedly, that's not a good idea. In my design that is localized to one place
You'll note that the logic relating to a single item is now contained inside the item itself. Other objects only can see whats important to them, size_required and whether the object is still alive
I've not included anything about sorting stuff because I'm not clear what that is for in a first-fit algorithm.
This interview gives some great insight into the rationale behind the STL. This may give you some inspiration on how to implement your algorithms the STL-way.