Class private data - on stack or heap - c++

In the following code:
class Array {
public:
int& operator[] (unsigned i) { if (i > 99) error(); return data[i]; }
private:
int data[100];
};
int main()
{
Array a;
a[10] = 42;
a[12] += a[13];
...
}
(Correct me if I'm wrong) The variable a of type Array is on the stack since new was not used to allocate it. The Array class has int data[100], and the operator overload returns reference to particular index in data.
Referring question.
My question is whether int data[100] is on the stack or heap ? I think it shouldn't be the stack, otherwise how can a reference return like the one above still work.
Thanks.

It's on the stack, since as you've noted a was allocated on the stack.
The stack is memory just like the heap; you can return a reference to part of it just like memory allocated on the heap. The only difference is in how the memory is managed.
The only thing you need to be careful of is not to access memory that's been deallocated; in the case of the stack, this happens at the end of a's scope, while heap-allocated data has to be explicitly deleted.
In the question you refer to, a reference to a variable declared on the stack is returned from a function; in that case, the variable is destroyed when the function exits, which is why that code is wrong. In your case, however, you're returning a reference to part of data whose lifetime matches that of the Array object; so as long as a has not been destroyed, it's safe to access it's data in this manner.

As you say, "The variable a of type Array is on the stack". Technically, the object named a is on the stack. This means that all of the member variables of the object a are on the stack.
This means that return a reference to an element in the member array named data is very dangerous. The compiler will allow it, but if you try to access this reference when the variable a is out of scope, then you will encounter undefined behavior.
In the case of your example, all calls to operator[]() are within the same method, so everything is fine.

It's on the stack. Why would the reference return be a problem? You can create and use references to things on the stack without a problem.
void foo(void)
{
int i;
int& j = i; // reference to variable on the stack
j = 2;
}
What issue do you think there might be here?

My question is whether int data[100] is on the stack or heap ? I think it shouldn't be the stack, otherwise how can a reference return like the one above still work.
It is allocated with automatic storage duration, i.e., the stack, not the heap. You have not allocated anything dynamically, so no dynamic (heap) allocation occurs. That would be a horrible thing to allow and C++ is all about not paying for what you don't use.
A reference to an element of data or to data itself will be invalid if data has left its declaring scope, i.e., the scope of the instance of Array. Now, should an Array type use dynamic allocation? Almost certainly, yes, for a general purpose container. It's your responsibility to make sure you're not keeping references or pointers to bad data.

It will be on the stack. If you try to use that reference after "a" has gone out of scope, you will get undefined behaviour. Hopefully it will crash soon.

Related

Where are pointers in C++ stored, on the stack or in the heap?

I am trying to understand the difference between the stack and heap memory, and this question on SO as well as this explanation did a pretty good job explaining the basics.
In the second explanation however, I came across an example to which I have a specific question, the example is this:
It is explained that the object m is allocated on the heap, I am just wondering if this is the full story. According to my understanding, the object itself indeed is allocated on the heap as the new keyword has been used for its instantiation.
However, isn't it that the pointer to object m is on the same time allocated on the stack? Otherwise, how would the object itself, which of course is sitting in the heap be accessed. I feel like for the sake of completeness, this should have been mentioned in this tutorial, leaving it out causes a bit of confusion to me, so I hope someone can clear this up and tell me that I am right with my understanding that this example should have basically two statements that would have to say:
1. a pointer to object m has been allocated on the stack
2. the object m itself (so the data that it carries, as well as access to its methods) has been allocated on the heap
Your understanding may be correct, but the statements are wrong:
A pointer to object m has been allocated on the stack.
m is the pointer. It is on the stack. Perhaps you meant pointer to a Member object.
The object m itself (the data that it carries, as well as access to its methods) has been allocated on the heap.
Correct would be to say the object pointed by m is created on the heap
In general, any function/method local object and function parameters are created on the stack. Since m is a function local object, it is on the stack, but the object pointed to by m is on the heap.
"stack" and "heap" are general programming jargon. In particular , no storage is required to be managed internally via a stack or a heap data structure.
C++ has the following storage classes
static
automatic
dynamic
thread
Roughly, dynamic corresponds to "heap", and automatic corresponds to "stack".
Moving onto your question: a pointer can be created in any of these four storage classes; and objects being pointed to can also be in any of these storage classes. Some examples:
void func()
{
int *p = new int; // automatic pointer to dynamic object
int q; // automatic object
int *r = &q; // automatic pointer to automatic object
static int *s = p; // static pointer to dynamic object
static int *s = r; // static pointer to automatic object (bad idea)
thread_local int **t = &s; // thread pointer to static object
}
Named variables declared with no specifier are automatic if within a function, or static otherwise.
When you declare a variable in a function, it always goes on the stack. So your variable Member* m is created on the stack. Note that by itself, m is just a pointer; it doesn't point to anything. You can use it to point to an object on either the stack or heap, or to nothing at all.
Declaring a variable in a class or struct is different -- those go where ever the class or struct is instantiated.
To create something on the heap, you use new or std::malloc (or their variants). In your example, you create an object on the heap using new and assign its address to m. Objects on the heap need to be released to avoid memory leaks. If allocated using new, you need to use delete; if allocated using std::malloc, you need to use std::free. The better approach is usually to use a "smart pointer", which is an object that holds a pointer and has a destructor that releases it.
Yes, the pointer is allocated on the stack but the object that pointer points to is allocated on the heap. You're correct.
However, isn't it that the pointer to object m is on the same time
allocated on the stack?
I suppose you meant the Member object. The pointer is allocated on the stack and will last there for the entire duration of the function (or its scope). After that, the code might still work:
#include <iostream>
using namespace std;
struct Object {
int somedata;
};
Object** globalPtrToPtr; // This is into another area called
// "data segment", could be heap or stack
void function() {
Object* pointerOnTheStack = new Object;
globalPtrToPtr = &pointerOnTheStack;
cout << "*globalPtrToPtr = " << *globalPtrToPtr << endl;
} // pointerOnTheStack is NO LONGER valid after the function exits
int main() {
// This can give an access violation,
// a different value after the pointer destruction
// or even the same value as before, randomly - Undefined Behavior
cout << "*globalPtrToPtr = " << *globalPtrToPtr << endl;
return 0;
}
http://ideone.com/BwUVgm
The above code stores the address of a pointer residing on the stack (and leaks memory too because it doesn't free Object's allocated memory with delete).
Since after exiting the function the pointer is "destroyed" (i.e. its memory can be used for whatever pleases the program), you can no longer safely access it.
The above program can either: run properly, crash or give you a different result. Accessing freed or deallocated memory is called undefined behavior.

Temporary variables created when using const reference

I am making some matrix class and I was wondering when a temporary object is created it is local to the function right? so it should get out of scope when function return but I don't know why that don't happen in this case I can use it after the function have returned.
Here is an example, this is the constructor:
int *data; //member of class
Matrix3(const int (&ar)[N*N])
{
data = const_cast<int*>(ar);
}
and here is how I use it:
Matrix3 m = { {1,2,3,4,5,6,6,6,6} };
Now I can still access that object from the destructor through the data pointer is this normal? the temporary variable is created on the heap then?!
The lifetime of a temporary ends at the semicolon of the statement or declaration that introduced it, not at the end of the function. (Otherwise, an innocuous loop could easily cause a stack overflow.)
If you use a reference to an object after its lifetime has ended (such as the array here), then you get undefined behavior. C++ does not keep track of dead objects in order to tell you when you are using one. You happen to find the information from the dead array. But something else could have reused the memory, or it could have been returned to the system and you could get a segfault.
Avoid dangling references and pointers. Do not suppose that if it works in a test-case, that it works in the field.
After your line executes, the temporary array is destroyed and the data pointer becomes invalid.
int *data; // is a member, so it goes out of scope when the object is destroyed
However, if you declared it in a function like this:
void someFunction() {
int *data;
}
// pointer is lost now and is inaccessible

Creating variable on heap and return the same variable

Hi i have few doubt related to heap variable...
I want to write a function as below ->
struct test
{
int x;
int y;
};
test* fun()
{
test *ptr = new test;
return ptr;
}
My doubt is returning a heap variable once it will go out of scope it will lost its value.
There is definitely a memory leak.(As heap variable is not deleted.)
So how can i design such kind of function.
Dynamically allocated objects (what you call heap variables) do not get destroyed at the end of the scope in which they were created. That's the whole point of dynamic allocation. While the test object is dynamically allocated, the pointer ptr is not - it will be destroyed when it goes out of scope. But that's okay! You copy the value of the pointer out of the function and this copy still points at the test object. The test object is still there. The function you've written is fine, but it isn't exactly good style.
Yes, there is a memory leak if nobody ever does delete on a pointer to the test object you created. That's a problem with returning raw pointers like this. You have to trust the caller to delete the object you're creating:
void caller()
{
test* p = fun();
// Caller must remember to do this:
delete p;
}
A common C-style way of doing this (which is definitely not recommended in C++) is to have a create_test and destroy_test pair of functions. This still puts the same responsibility on the caller:
void caller()
{
test* p = create_test();
// Caller must remember to do this:
destroy_test(p);
}
The best way to get around this is to not use dynamic allocation. Just create a test object on the stack and copy it (or move it) out of the function:
test fun()
{
test t;
return t;
}
If you need dynamic allocation, then you should use a smart pointer. Specifically, the unique_ptr type is what you want here:
std::unique_ptr<test> fun()
{
return std::unique_ptr<test>(new test());
}
The calling function can then handle the unique_ptr without having to worry about doing delete on it. When the unique_ptr goes out of scope, it will automatically delete the test object you created. The caller can however pass it elsewhere if it wants some other function to have the object.
You are not returning a heap variable, you are returning a value of a stack variable that holds a pointer to the heap. The stack variable goes out of scope; the memory pointed to by the pointer is in the heap - it never goes out of scope.
There will be a memory leak unless you release the memory in the caller.
My doubt is [that] returning a heap variable once it will go out of scope it will lo[se] its value.
No worry, because since you're returing the pointer by value; so the pointer will go out of scope, but since you're returning the memory that it points to, there is no memory leak (only if we can rely on the caller to delete it).
However, if we had returned the pointer by reference then we would have a problem:
test*& fun() // note the & (reference)
{
test *ptr = new test;
return ptr;
}
Here you're returning a reference to a temporary. When the variable goes out of scope you will be using an object that doesn't exist. This is why you can't return temporaries by reference.
My doubt is returning a heap variable once it will go out of scope it will lost its value.
No heap variable does not go out of scope as do go stack variables...
There is definitely a memory leak.(As heap variable is not deleted.)
Yes we have to free memory allocated on heap by ourself, otherwise there is memory leak...
I would suggest to read some tutorial related to it.

the scope of a pointer?

Ok, so I did find some questions that were almost similar but they actually confused me even more about pointers.
C++ Pointer Objects vs. Non Pointer Objects
In the link above, they say that if you declare a pointer it is actually saved on the heap and not on the stack, regardless of where it was declared at. Is this true ?? Or am I misunderstanding ??? I thought that regardless of a pointer or non pointer, if its a global variable, it lives as long as the application. If its a local variable or declared within a loop or function, its life is only as long as the code within it.
The variable itself is stored on the stack or DATA segment, but the memory it points to after being allocated with new is within the heap.
void main()
{
int* p; // p is stored on stack
p = new int[20]; // 20 ints are stored on heap
}
// p no longer exists, but the 20 ints DO EXSIST!
Hope that helps.
void func()
{
int x = 1;
int *p = &x;
}
// p goes out of scope, so does the memory it points to
void func()
{
int *p = new int;
}
// p goes out of scope, the memory it points to DOES NOT
void func()
{
int x = 1;
int **pp = new int*;
*pp = &x;
}
// pp goes out of scope, the pointer it points to does not, the memory it points to does
And so forth. A pointer is a variable that contains a memory location. Like all variables, it can be on the heap or the stack, depending on how it's declared. It's value -- the memory location -- can also exist on the heap or the stack.
Typically, if you statically allocate something, it's on the stack. If you dynamically allocate something (using either new or malloc) then it's on the heap. Generally speaking you can only access dynamically allocated memory using a pointer. This is probably where the confusion arises.
It is necessary to distinguish between the pointer (a variable that holds a memory location) and the object to which the pointer points (the object at the memory address held by the pointer). A pointer can point to objects on the stack or on the heap. If you use new to allocate the object, it will be on the heap. The pointer can, likewise, live on the heap. If you declare it in the body of a function, then it will be a local variable and live in local storage (i.e. on the stack), whereas if it is a global variable, it will live somewhere in your application's data section. You can also have pointers to pointers, and similarly one can allocate a pointer on the heap (and have a pointer-to-a-pointer pointing to that), etc. Note that while I have referenced the heap and stack, the C++ only mentions local/automatic storage and dynamic storage... it does not speak to the implementation. In practice, though, local=stack and dynamic=heap.
A pointer is a variable containing the address of some other object in memory. The pointer variable can be allocated:
on the stack (as a local auto variable in a function or statement block)
statically (as a global variable or static class member)
on the heap (as a new object or as a class object member)
The object that the pointer points to (references) can likewise be allocated in these three places as well. Generally speaking, though, a pointed-to object is allocated using the new operator.
Local variables go out of scope when the program flow leaves the block (or function) that they are declared within, i.e., their presence on the stack disappears. Similarly, member variables of an object disappear when their parent object goes out of scope or is deleted from the heap.
If a pointer goes out of scope or its parent object is deleted, the object that the pointer references still exists in memory. Thus the rule of thumb that any code that allocates (news) an object owns the object and should also delete that object when it's no longer needed.
Auto-pointers take some of the drudgery out of the management of the pointed-to object. An object that has been allocated through an auto_ptr is deleted when that pointer goes out of scope. The object can be assigned from its owning auto_ptr to another auto_ptr, which transfers object ownership to the second pointer.
References are essentially pointers in disguise, but that's a topic for another discussion.
I thought that regardless of a pointer
or non pointer, if its a global
variable, it lives as long as the
application. If its a local variable
or declared within a loop or function,
its life is only as long as the code
within it.
That's true.
they say that if you declare a pointer
it is actually saved on the heap and
not on the stack
That's wrong, partially. You can have a pointer on the heap or the stack. It's a matter of where and how you declare it.
void main()
{
char c = 0x25;
char *p_stack = &c; // pointer on stack
StructWithPointer struct_stack; // stack
StructWithPointer *struct_heap = new StructWithPointer(); // heap, thus its pointer member "p" (see next line) is also on the heap.
struct_heap->p = &c; // pointer on heap points to a stack
}
... and, a compiler might decide to use a register for a pointer!
Looks like you need to grab the classic K&R C book and read through chapters 4 & 5 for thorough understanding of the differences between declaration and definition, scope of a variable and about pointers.

Storing a pointer to an object created in a method

Using C++:
I currently have a method in which if an event occurs an object is created, and a pointer to that object is stored in a vector of pointers to objects of that class. However, since objects are destroyed once the local scope ends, does this mean that the pointer I stored to the object in the vector is now null or undefined? If so, are there any general ways to get around this - I'm assuming the best way would be to allocate on the heap.
I ask this because when I try to access the vector and do operations on the contents I am getting odd behavior, and I'm not sure if this could be the cause or if it's something totally unrelated.
It depends on how you allocate the object. If you allocate the object as an auto variable, (i.e. on the stack), then any pointer to that object will become invalid once the object goes out of scope, and so dereferencing the pointer will lead to undefined behavior.
For example:
Object* pointer;
{
Object myobject;
pointer = &myobject;
}
pointer->doSomething(); // <--- INVALID! myobject is now out of scope
If, however, you allocate the object on the Heap, using the new operator, then the object will remain valid even after you exit the local scope. However, remember that there is no automatic garbage collection in C++, and so you must remember to delete the object or you will have a memory leak.
So if I understand correctly you have described the following scenario:
class MyClass
{
public:
int a;
SomeOtherClass b;
};
void Test()
{
std::vector<MyClass*> v;
for (int i=0; i < 10; ++i)
{
MyClass b;
v.push_back(&b);
}
// now v holds 10 items pointers to strange and scary places.
}
This is definitely bad.
There are two primary alternatives:
allocate the objects on the heap using new.
make the vector hold instances of MyClass (i.e. std::vector<MyClass>)
I generally prefer the second option when possible. This is because I don't have to worry about manually deallocating memory, the vector does it for me. It is also often more efficient. The only problem, is that I would have to be sure to create a copy constructor for MyClass. That means a constructor of the form MyClass(const MyClass& other) { ... }.
If you store a pointer to an object, and that object is destroyed (e.g. goes out of scope), that pointer will not be null, but if you try to use it you will get undefined behavior. So if one of the pointers in your vector points to a stack-allocated object, and that object goes out of scope, that pointer will become impossible to use safely. In particular, there's no way to tell whether a pointer points to a valid object or not; you just have to write your program in such a way that pointers never ever ever point to destroyed objects.
To get around this, you can use new to allocate space for your object on the heap. Then it won't be destroyed until you delete it. However, this takes a little care to get right as you have to make sure that your object isn't destroyed too early (leaving another 'dangling pointer' problem like the one you have now) or too late (creating a memory leak).
To get around that, the common approach in C++ is to use what's called (with varying degrees of accuracy) a smart pointer. If you're new to C++ you probably shouldn't worry about these yet, but if you're feeling ambitious (or frustrated with memory corruption bugs), check out shared_ptr from the Boost library.
If you have a local variable, such as an int counter, then it will be out of scope when you exit the function, but, unless you have a C++ with a garbage collector, then your pointer will be in scope, as you have some global vector that points to your object, as long as you did a new for the pointer.
I haven't seen a situation where I have done new and my memory was freed without me doing anything.
To check (in no particular order):
Did you hit an exception during construction of member objects whose pointers you store?
Do you have a null-pointer in the container that you dereference?
Are you using the vector object after it goes out of scope? (Looks unlikely, but I still have to ask.)
Are you cleaning up properly?
Here's a sample to help you along:
void SomeClass::Erase(std::vector<YourType*> &a)
{
for( size_t i = 0; i < a.size(); i++ ) delete a[i];
a.clear();
}