id of "main" thread in c++ - c++

Is there a way in c++ to get the id of the "main" program thread?
I see that std::this_thread::get_id() gets the id of the currently executing thread but I need the id of the main, original program thread. I don't see any function to get this.
The reason is that I have some non thread safe internal functions that must only be called on the original thread of the application so to be safe I want to do :-
assert(std::this_thread::get_id() == std::main_thread::get_id());
But there of course isn't a function to do that, and I can't see any way to get that information.

You could save it while this_thread is still the original thread:
std::thread::id main_thread_id;
int main() {
main_thread_id = std::this_thread::get_id(); // gotcha!
/* go on */
}

This topic seems to be discussed quite a few times here, like in this topic:
Getting a handle to the process main thread
You can find some solutions, but I'd just think the other way round... When starting the new threads, just supply the id of the main thread to them, and store that in a field in the other threads. If that is not going to change throughout the threads' life, you're good to go, you can reference the "main" thread by those handles.

Related

Is there a reliable way to force a thread to stop in C++? (especially detached ones)

I am recently working with threads in C++11. now I am thinking about how to force stop a thread. I couldn't find it on stackoverflow, and also tried these.
One variable each thread : not so reliable
return in the main thread : I have to force quit only one not all
and I have no more ideas. I have heard about WinAPI, but I want a portable solution. (that also means I wont use fork())
Can you please give me a solution of this? I really want to do it.
One of the biggest problems with force closing a thread in C++ is the RAII violation.
When a function (and subsequently, a thread), gracefully finishes, everything it held is gracefully cleaned up by the destructors of the objects the functions/threads created.
Memory gets freed,
OS resources (handles, file descriptors etc.) are closed and returned to the OS
Locks are getting unlocked so other threads can use the shared resources they protect.
other important tasks are preformed (such as updating counters, logging, etc.).
If you brutally kill a thread (aka by TerminateThread on Windows, for example), non of these actually happen, and the program is left in a very dangerous state.
A (not-so) common pattern that can be used is to register a "cancellation token" on which you can monitor and gracefully shut the thread if other thread asks so (a la TPL/PPL). something like
auto cancellationToken = std::make_shared<std::atomic_bool>();
cancellationToken->store(false);
class ThreadTerminator : public std::exception{/*...*/};
std::thread thread([cancellationToken]{
try{
//... do things
if (cancellationToken->load()){
//somone asked the thred to close
throw ThreadTerminator ();
}
//do other things...
if (cancellationToken->load()){
//somone asked the thred to close
throw ThreadTerminator ();
}
//...
}catch(ThreadTerminator){
return;
}
});
Usually, one doesn't even open a new thread for a small task, it's better to think of a multi threaded application as a collection of concurrent tasks and parallel algorithms. one opens a new thread for some long ongoing background task which is usually performed in some sort of a loop (such as, accepting incoming connections).
So, anyway, the cases for asking a small task to be cancelled are rare anyway.
tldr:
Is there a reliable way to force a thread to stop in C++?
No.
Here is my approach for most of my designs:
Think of 2 kinds of Threads:
1) primary - I call main.
2) subsequent - any thread launched by main or any subsequent thread
When I launch std::thread's in C++ (or posix threads in C++):
a) I provide all subsequent threads access to a boolean "done", initialized to false. This bool can be directly passed from main (or indirectly through other mechanisms).
b) All my threads have a regular 'heartbeat', typically with a posix semaphore or std::mutex, sometimes with just a timer, and sometimes simply during normal thread operation.
Note that a 'heartbeat' is not polling.
Also note that checking a boolean is really cheap.
Thus, whenever main wants to shut down, it merely sets done to true and 'join's with the subsequent threads.
On occasion main will also signal any semaphore (prior to join) that a subsequent thread might be waiting on.
And sometimes, a subsequent thread has to let its own subsequent thread know it is time to end.
Here is an example -
main launching a subsequent thread:
std::thread* thrd =
new std::thread(&MyClass_t::threadStart, this, id);
assert(nullptr != thrd);
Note that I pass the this pointer to this launch ... within this class instance is a boolean m_done.
Main Commanding shutdown:
In main thread, of course, all I do is
m_done = true;
In a subsequent thread (and in this design, all are using the same critical section):
void threadStart(uint id) {
std::cout << id << " " << std::flush; // thread announce
do {
doOnce(id); // the critical section is in this method
}while(!m_done); // exit when done
}
And finally, at an outer scope, main invokes the join.
Perhaps the take away is - when designing a threaded system, you should also design the system shut down, not just add it on.

C++ Referencing a boost::thread from its thread function

I'm working with boost threads and I need to reference a thread from its thread function so I can store it in a map with its corresponding thread id. The main idea is that I will be using another thread to gather thread stats by querying the proc table, so I cant use boost::this_thread::get_id(). I need to store the thread so I can call interrupts and joins on specific threads.
The following insert statement doesn't work, but I would have expected this or &this to reference the thread.
Thread function:
workerFunc(){
std::string tid;
tid=boost::lexical_cast<string>(syscall(SYS_gettid));
threadMap.insert(pair<std::string,boost::thread>(tid,this));
}
Currently I have the parent make the insert but wait for the thread to get its thread id, but that is not what a want.
How can I store the thread/a pointer to the thread without using the parent?
By using a functor instead of a function, you can add state to it.
No, you can't directly pass thread object to the function (or functor) that you pass to thread's constructor. It kind of "the egg or the chicken".
The entity that should fill this map is the manager, which creates these thread objects. And why do you have to "wait for the thread to get its thread id"? I don't see such a requirement in the documentation - get_id() is applicable to any "thread of execution", i.e. non-detached thread.

std::thread detect main thread

is thre any relieable way in c++11 to detect if the current thread is the main thread? Or would I have to manually save the main threads thread id with std::this_thread::get_id() and then have a routine like this:
bool isMainThread()
{
return theMainThreadIdISavedOnProgramStart == std::this_thread::get_id();
}
Is there a common way to do this? Would the above solution work?
Thanks
What do you mean by main thread? If you mean, the thread which executes main(), then there is no way you can know if a thread is a main thread or not. You've to save its ID and later on you can use the saved ID to know if a current thread is a main thread or not, by comparing its ID with the saved ID (as you guessed in your question).
To explain it a bit more, threads do not have hierarchy, there is no parent thread, no child thread even if one thread creates the other threads. The OS doesn't remember which threads created by which thread. Therefore, all threads are same to the OS, and to your program. So you cannot infer a main thread, by detecting if the current thread is the parent of all other threads in your application.

Check if thread is a boost thread

For purposes of thread local cleanup I need to create an assertion that checks if the current thread was created via boost::thread. How can I can check if this was the case? That is, how can I check if the current thread is handled by boost::thread?
I simply need this to do a cleanup of thread local storage when the thread exits. Boost's thread_local_ptr appears to only work if the thread itself is a boost thread.
Note that I'm not doing the check at cleanup time, but sometime during the life of the thread. Some function calls one of our API/callbacks (indirectly) causing me to allocate thread-local storage. Only boost threads are allowed to do this, so I need to detect at that moment if the thread is not a boost thread.
Refer to Destruction of static class members in Thread local storage for the problem of not having a generic cleanup handler. I answered that and realized pthread_clenaup_push won't actually work: it isn't called on a clean exit form the thread.
While I don't have answer to detect a boost thread the chosen answer does solve the root of my problem. Boost thread_specific_ptr's will call their cleanup in any pthread. It must have been something else causing it not to work for me, as an isolated test shows that it does work.
The premise for your question is mistaken :) boost::thread_specific_ptr works even if the thread is not a boost thread. Think about it -- how would thread specific storage for the main thread work, seeing as it's impossible for it to be created by boost? I have used boost::thread_specific_ptr from the main thread fine, and although I haven't examined boost::thread_specific_ptr's implementation, the most obvious way of implementing it would work even for non-boost threads. Most operating systems let you get a unique ID number for the current thread, which you can then use as an index into a map/array/hashtable.
More likely you have a different bug that prevents the behavior you're expecting to see from happening. You should open a separate question with a small compilable code sample illustrating the unexpected behavior.
You can't do this with a static assertion: That would mean you could detect it at compile time, and that's impossible.
Assuming you mean a runtime check though:
If you don't mix boost::thread with other methods, then the problem just goes away. Any libraries that are creating threads should already be dealing with their own threads automatically (or per a shutdown function the API documents that you must call).
Otherwise you can keep, for example, a container of all pthread_ts you create not using boost::thread and check if the thread is in the container when shutting down. If it's not in the container then it was created using boost::thread.
EDIT: Instead of trying to detect if it was created with boost::thread, have you considered setting up your application so that the API callback can only occur in threads created with boost::thread? This way you prevent the problem up front and eliminate the need for a check that, if it even exists, would be painful to implement.
Each time a boost thread ends, all the Thread Specific Data gets cleaned. TSD is a pointer, calling delete p* at destruction/reset.
Optionally, instead of delete p*, a cleanup handler can get called for each item. That handler is specified on the TLS constructor, and you can use the cleanup function to do the one time cleaning.
#include <iostream>
#include <boost/thread/thread.hpp>
#include <boost/thread/tss.hpp>
void cleanup(int* _ignored) {
std::cout << "TLS cleanup" << std::endl;
}
void thread_func() {
boost::thread_specific_ptr<int> x(cleanup);
x.reset((int*)1); // Force cleanup to be called on this thread
std::cout << "Thread begin" << std::endl;
}
int main(int argc, char** argv) {
boost::thread::thread t(thread_func);
t.join();
return 0;
}

How to tell the parent that the thread is done in C++ using pthreads?

I have a TCP Server application that serves each client in a new thread using POSIX Threads and C++.
The server calls "listen" on its socket and when a client connects, it makes a new object of class Client. The new object runs in its own thread and processes the client's requests.
When a client disconnects, i want some way to tell my main() thread that this thread is done, and main() can delete this object and log something like "Client disconnected".
My question is, how do i tell to the main thread, that a thread is done ?
The most straightforward way that I can see, is to join the threads. See here. The idea is that on a join call, a command thread will then wait until worker threads exit, and then resume.
Alternatively, you could roll something up with some shared variables and mutexes.
If the child thread is really exiting when it is done (rather than waiting for more work), the parent thread can call pthread_join on it which will block until the child thread exits.
Obviously, if the parent thread is doing other things, it can't constantly be blocking on pthread_join, so you need a way to send a message to the main thread to tell it to call pthread_join. There are a number of IPC mechanisms that you could use for this, but in your particular case (a TCP server), I suspect the main thread is probably a select loop, right? If that's the case, I would recommend using pipe to create a logical pipe, and have the read descriptor for the pipe be one of the descriptors that the main thread selects from.
When a child thread is done, it would then write some sort of message to the pipe saying "I'm Done!" and then the server would know to call pthread_join on that thread and then do whatever else it needs to do when a connection finishes.
Note that you don't have to call pthread_join on a finished child thread, unless you need its return value. However, it is generally a good idea to do so if the child thread has any access to shared resources, since when pthread_join returns without error, it assures you that the child thread is really gone and not in some intermediate state between having sent the "I'm Done!" message and actually having exited.
pthreads return 0 if everything went okay or they return errno if something didn't work.
int ret, joined;
ret = pthread_create(&thread, NULL, connect, (void*) args);
joined = pthread_join(&thread, NULL);
If joined is zero, the thread is done. Clean up that thread's object.
While it is possible to implement IPC mechanisms to notify a main thread when other threads are about to terminate, if you want to do something when a thread terminates you should try to let the terminating thread do it itself.
You might look into using pthread_cleanup_push() to establish a routine to be called when the thread is cancelled or exits. Another option might be to use pthread_key_create() to create a thread-specific data key and associated destructor function.
If you don't want to call pthread_join() from the main thread due to blocking, you should detach the client threads by either setting it as option when creating the thread or calling pthread_detach().
You could use a queue of "thread objects to be deleted", protect access to the queue with a mutex, and then signal a pthread condition variable to indicate that something was available on the queue.
But do you really want to do that? A better model is for each thread to just clean up after itself, and not worry about synchronizing with the main thread in the first place.
Calling pthread_join will block execution of the main thread. Given the description of the problem I don't think it will provide the desired solution.
My preferred solution, in most cases, would be to have the thread perform its own cleanup. If that isn't possible you'll either have to use some kind of polling scheme with shared variables (just remember to make them thread safe, hint:volatile), or perhaps some sort of OS dependant callback mechanism. Remember, you want to be blocked on the call to listen, so really consider having the thread clean itself up.
As others have mentioned, it's easy to handle termination of a given thread with pthread_join. But a weak spot of pthreads is funneling information from several sources into a synchronous stream. (Alternately, you could say its strong spot is performance.)
By far the easiest solution for you would be to handle cleanup in the worker thread. Log the disconnection (add a mutex to the log), delete resources as appropriate, and exit the worker thread without signaling the parent.
Adding mutexes to allow manipulation of shared resources is a tough problem, so be flexible and creative. Always err on caution when synchronizing, and profile before optimizing.
I had exactly the same problem as you described. After ~300 opened client connections my Linux application was not able to create new thread because pthread_join was never called. For me, usage of pthread_tryjoin_np helped.
Briefly:
have a map that holds all opened thread descriptors
from the main thread before new client thread is opened I iterate through map and call pthread_tryjoin_np for each thread recorded in map. If thread is done the result of call is zero meaning that I can clean up resources from that thread. At the same time pthread_tryjoin_np takes care about releasing thread resources. If pthread_tryjoin_np call returns number different from 0 this means that thread is still running and I simply do nothing.
Potential problem with this is that I do not see pthread_tryjoin_np as part official POSIX standard so this solution might not be portable.