When i create a class I would like to be able to store an array in that class. Is this possible?
For example. If i have a class called array to store an array from my main function
int main()
{
double nums[3] = {1 2 3}
array Vnums(nums)
return 0
}
class array
{
public
//constructor
array(double nums[])
{
double vector[] = nums;
}// end constructor
}// end array
Thank you!
use a std::array instead of a raw array. It's just like a raw array, but copiable, and has useful member functions.
class array
{
std::array<double, 3> classArray;
public:
//constructor
explicit array(const std::array<double, 3>& rhs)
:classArray(rhs)
{}// end constructor
}// end array
int main()
{
std::array<double, 3> nums = {{1 2 3}};
array Vnums(nums)
return 0
}
or maybe a std::vector if you want to be able to change the size at will
class array
{
std::vector<double> classArray;
public:
//constructor
explicit array(const std::vector<double>& rhs)
:classArray(rhs)
{}// end constructor
}// end array
int main()
{
std::vector<double> nums{1 2 3}; //C++11 feature
array Vnums(nums)
return 0
}
I'm not sure what you're doing, so it's hard to give solid advice. You can pass a raw array by reference, a pointer and a count, an iterator pair...
Yes, but you must either allocate the array dynamically upon class creation, or the array must always be the same size.
Option A:
class array{
private:
double* data;
unsigned size;
public:
array(double* d, unsigned s){
size = s;
data = new double[size];
for(unsigned i = 0; i < s; i++)
data[i]=d[i];
}
array(const array& copy){
double* temp = new double[copy.size];
delete [] data;
data = temp;
size = copy.size;
for(unsigned i = 0; i < size; i++)
temp[i]=copy.data[i];
}
array& operator= (const array& copy){
double* temp = new double[copy.size];
delete [] data;
data = temp;
size = copy.size;
for(unsigned i = 0; i < size; i++) data[i]=copy.data[i];
}
~array(){
delete[] data; // Don't forget the destructor!
}
};
This is probably the way you need, but note that you will almost certainly need the custom copy constructor and assignment operator so that you don't share any memory between multiple instances of this class. A better way might be to make a copy function that both can use.
Option B:
class array{
private:
double data[3];
public:
array(double* d){ //or "double(&d)[3]" to be safer, but less flexible
for(unsigned i = 0; i < 3; i++){
data[i] = d[i]; // If d is not at least size 3, your program will crash here (or later on, or maybe just act in an undefined way)
}
}
}
Haven't tested this, but it should be an ok starting point.
Related
I have a C++ class with a member that is supposed to be a two dimensional array. I want to declare my array as a member in the header file of the class. Then in the constructor of my class I want to initialize my array with a size (given to the constructor) and fill it with zeros.
I have a working example of what I want in java:
class Obj {
int[][] array;
public Obj(int sizex, int sizey) {
array = new int[sizex][sizey];
}
}
public class Main
{
public static void main(String[] args) {
Obj o = new Obj(12,20);
}
}
I do not want to mess with pointers or alloc() and free(). As my class is supposed to be basically a wrapper for this array, I want to keep it simple.
I have thought about using std::vector, but as the array is never being resized after its initialization, I feel like vector is a little overpowered... Is there a better way than this: ?
#include<vector>
class Obj {
std::vector<std::vector<int>> array;
public:
Obj(int xsize, int ysize) {
std::vector<std::vector<int>> newArray(xsize, std::vector<int>(ysize, 0));
array = newArray;
}
};
int main()
{
Obj o(12,20);
}
std::vector is the best match here. (As you said, in most cases raw arrays and pointers could be avoided. Also see How can I efficiently select a Standard Library container in C++11?)
And you can initialize the data member directly in member initializer list instead of assigning in the constructor body after default-initialization, e.g.
Obj(int xsize, int ysize) : array(xsize, std::vector<int>(ysize, 0)) {
}
Other than using std::vector you can just allocate memory of the required size from the heap.
class Obj {
int** arr;
int x, y;
public:
Obj(int sizex, int sizey) : x(sizex), y(sizey) {
arr = new int*[sizex];
for (unsigned i = 0; i < sizex; i++) {
arr[i] = new int[sizey];
}
}
//IMPORTANT TO DELETE, OTHERWISE YOU'LL GET A MEMORY LEAK
~Obj() {
for (unsigned i = 0; i < x; i++) {
delete[] arr[i];
}
delete[] arr;
}
}
I have the following class which simply wraps an array and adds with the constructor some elements to it:
class myArray {
public:
myArray();
myArray(int a, int b);
myArray(int a, int b, int c);
myArray(myArray&& emplace);
~myArray();
int& operator [](int id);
private:
int *data;
};
myArray::myArray() {
data = new int[1];
data[0] = 0;
}
myArray::myArray(int a, int b) {
data = new int[3];
data[0] = 0;
data[1] = a;
data[2] = b;
}
myArray::myArray(int a, int b, int c) {
data = new int[4];
data[0] = 0;
data[1] = a;
data[2] = b;
data[3] = c;
}
myArray::~myArray() {
std::cout << "Destructor"<<std::endl;
delete[] data;
}
int& myArray::operator [](int id) {
return data[id];
}
myArray::myArray(myArray&& emplace) : data(std::move(emplace.data)) {}
Furthermore I have a second class which contains a vector of elements of the first class (myArray).
class Queue {
public:
Queue();
private:
std::vector<myArray> _queue;
};
Queue::Queue {
_queue.reserve(1000);
for(int a = 0; a < 10; a++)
for(int b = 0; b < 10; b++)
for(int c = 0; c < 10; c++)
_queue.emplace_back(a,b,c);
}
My question here is: Why is the destructor called for the myArray elements at the end of the Queue constructor? The Queue object is still alive in my main program but the destructor of myArray frees the allocated memory and I consequently get a segmentation fault.
Is there a way to avoid the call of the destructor or rather call it not until at the end of the Queue objects lifetime?
Your move constructor doesn't set data to null on the moved from object so when the moved from object is destructed it will try to free data.
If you have c++14 you can use std::exchange to implement this:
myArray::myArray(myArray&& emplace)
: data{std::exchange(emplace.data, nullptr)})
{}
Otherwise you need to do:
myArray::myArray(myArray&& emplace)
: data{emplace.data)
{
emplace.data = nullptr;
}
The move constructor will be invoked by std::vector as it reallocates to increase its capacity when you call emplace_back. Something like the following steps are performed:
Allocate new memory to hold the elements
Move construct using placement new elements in the new memory from the elements in the previous memory
Destruct the elements in the previous memory
Deallocate the previous memory
I got stuck with deleting an dynamically allocated array of int.
I've got a destructor, where I'm trying to use a loop for to delete all elements of array and finally delete it.
I have code on http://rextester.com/OTPPRQ8349
Thanks!
class MyClass
{
public:
int _a;
int* c;
int fRozmiar;
static int fIlosc;
MyClass() //default constructor
{
_a=0;
c = new int [9];
for(int i = 0; i<=9; i++)
{
c[i] = 1;
}
fIlosc++;
}
MyClass(int a1, int c1) // parametrized constructor
{
_a=a1;
c = new int [c1];
for(int i = 0; i<=c1; i++)
{
c[i] = rand();
}
fIlosc++;
}
MyClass(const MyClass &p2) // copy constructor
{
_a =p2._a;
c = p2.c;
fRozmiar = p2.fRozmiar;
fIlosc = fIlosc;
fIlosc++;
}
~MyClass(); // destructor
static int getCount() {
return fIlosc;
}
};
//Initialize static member of class
int MyClass::fIlosc = 0;
MyClass::~MyClass()
{
for(int i = 0; i<sizeof(c); ++i)
{
delete[] c[i];
}
delete[] c;
fIlosc--;
}
int main()
{
}
Remove the for-loop, but keep the delete[] c after it.
Each int doesn't need to be deleted because they're not dynamically allocated. If you needed to delete them, then the for-loop wouldn't work becuase: sizeof(c) is not the size of the array, and delete[] should have been delete instead.
There are several problems in the code.
First, that loop in the destructor must go. If you didn’t new it, don’t delete it.
Second, a loop through an array of N elements should be for (int i = 0; i < N; ++i). Note that the test is i < N, not i <= N. The loops as currently written go off the end of the array. That’s not good.
Third, the copy constructor copies the pointer. When the first object goes out of scope its destructor deletes the array; when the copy goes out of scope its destructor also deletes the array. Again, not good. The copy constructor has to make a copy of the array. In order to do that the class needs to also store the number of elements the array.
Background: I'm stuck to arm-arago-linux-gnueabi-g++ (GCC) 4.3.3. Although answers that requires C++11 or later is also appreciated, please explicitly express any language requirement later than C++03.
The object's constructor fills values into tables to be used by the algorithm.
As those table does not change and are not supposed to be changed, I want the them to be const, how do I do that?
Difficulty #1, the values are computationally generated, and I don't want to hard code them in a source file.
Difficulty #2, the computing sometimes depends on inputs that are only available at runtime.
Difficulty #3, I don't know why but I don't want the array to be static, even though the values might be the same for all objects(cases where the values does not depend on runtime input).
Difficulty #4, it's an array, so initializer list in C++03 won't work.
Edit1:
A few weeks after this post, I found both std::array and std::vector are very good alternative to C-style array when std::array is not available.
You can encapsulate the tables in a private type, with a single const instance of that type in your object, then forward the relevant constructor parameters to the private object; this works because even a const object is non-const during its construction.
For example:
class MyClass {
const struct Tables {
double x[1000];
double y[200];
Tables(int i, double d) {
x[i] = d;
y[200 - i] = -d;
}
} tables;
public:
MyClass(int i, double d) : tables(i, d) {}
};
MyClass c(20, 5.5);
Another technique is to build the tables in an ephemeral mutable array whose lifetime is bounded by the lifetime of the constructor, then initialize the const array from those mutable arrays.
Using C++11 std::array (since array types can't be copy-initialized):
class MyClass {
static std::array<double, 1000> buildArray(...) {
std::array<double, 1000> array;
... // fill array
return array;
}
const std::array<double, 1000> mArray;
public:
MyClass(...) : mArray(buildArray(...)) {}
};
Note that std::array is easy to express in C++03; it doesn't depend on any C++11 language features.
If you're worried about the overhead of returning a large array, instrument it - even C++03 compilers are capable of optimising large array returns.
I think you could implement a class containing the actual non const array. That way you can easily compute the values in a constructor.
Then this class would only have to implement the operator[] to be usable as an array. Or it could also simply return a const reference to the array.
Implementation example :
#include <iostream>
using namespace std;
class const_array {
int *arr;
size_t size;
public:
const_array(size_t size, int typ): size(size) {
arr = new int[size];
size_t i;
int val = 0;
for (i=0; i<size; i++) {
val += typ;
arr[i] = val;
}
}
const_array(const const_array & src): size(src.size) {
arr = new int[size];
size_t i;
for (i=0; i<size; i++) {
arr[i] = src.arr[i];
}
}
~const_array() {
delete[] arr;
}
const int * const getArray() const {
return arr;
}
int getSize() const {
return size;
}
const int& operator[](int i) {
return arr[i];
}
};
int main() {
const_array a(16, 4);
// int *arr = a.getArray(); error
const int *arr = a.getArray();
int j = a[2];
int k = arr[2];
// int * pj = &(a[2]); error
const int * pj = &(a[2]);
const int * pk = &(arr[2]);
cout << "a[2]=" << j << " (" << pj << ") - a.getArray[2]="
<< j << " (" << pj << ")" << endl;
return 0;
}
I'm trying to create my own version of an array called a safearray, to test my knowledge of operator overloading and creating proper class's and such.
I'm encountering two errors.
SafeArray.h:11:15: error: ‘const int SafeArray::operator’ cannot be overloaded
SafeArray.h:10:10: error: with ‘int& SafeArray::operator’
My code is split between three files.
Main.cpp
#include <cstdlib>
#include <iostream>
#include "SafeArray.h"
using namespace std;
int main(int argc, char** argv) {
SafeArray a(10); // 10 integer elements
for (int i = 0; i < a.length(); i++) {
cout << i << " " << a[i] << "s" << endl; // values initialise to 0
}
cout << endl << a[1]; // Program exits here.
a[3] = 42;
cout << a[3];
a[10] = 10;
cout << a[10];
a[-1] = -1; // out-of-bounds is "safe"?
SafeArray b(20); // another array
b = a; // array assignment
for (int i = 0; i < b.length(); i++) {
cout << b[i] << endl; // values copied from a
}
return 0;
}
SafeArray.h
#ifndef SAFEARRAY_H
#define SAFEARRAY_H
class SafeArray {
public:
SafeArray(int); // int variable will be the array size
int length();
int boundsCheck(int y); // constructor will call this function
// const SafeArray operator= (const SafeArray&);
int& operator[] (int y);
const int operator [] (const int y); // you need this one too.
SafeArray &operator=(SafeArray rhs) {
std::swap(array, rhs.array);
std::swap(length_, rhs.length_);
}
SafeArray(SafeArray const &other);
~SafeArray();
private:
int length_;
int *array;
//int array[];
};
#endif /* SAFEARRAY_H */
SafeArray.cpp
#include "SafeArray.h"
#include <iostream>
SafeArray::SafeArray(int x) {
length_ = x;
array = new int[length];
for (int i = 0; i < length_; i++) {
array[i] = 0;
}
}
int SafeArray::length() {
return this->length_;
}
int SafeArray::boundsCheck(int y) {
}
int& SafeArray::operator[] (int y) {
return array[y];
}
SafeArray::~SafeArray() {
delete [] array;
}
SafeArray::SafeArray(SafeArray const &other) {
int *temp = new int[rhs.size_];
for (int i=0; i<rhs.size_; i++)
temp[i] = rhs.array[i];
std::swap(temp, array);
delete [] temp;
return *this;
}
Your class definition isn't valid. int array[] is an incomplete type, which must not appear as a (non-static) class member. Some compilers accept this as a synonym for int array[0], but zero-sized arrays are not valid in C++, either (only in C99).
In short, you cannot write your code the way you do. You need to learn about dynamic allocation and manage your own memory. Check out how std::vector is implemented.
In C++11, I might recommend a std::unique_ptr<int[]> array as a quick-fix approach, to be initialized as array(new int[x]).
Actually int array[] is valid, and may appear as a class member. The following compiles with strict C++11 conformance:
class foo
{
public:
foo() {}
int length;
int A[];
};
void ralph()
{
foo *bar = (foo *)new int[ 21 ];
bar->length = 20;
bar->A[0] = 1;
}
This is legal, and has its advantages (occasionally). Although it is not commonly used.
However, I suspect that the OP wanted something more along the lines of
class SafeArray {
public:
SafeArray(int); // int variable will be the array size
int length();
int boundsCheck(int y); // constructor will call this function
int& operator[] (int y);
const int operator [] (const int y) // you need this one too.
private:
int length_;
int *array;
};
along with
SafeArray::SafeArray(int x) {
length_ = x;
array = new int[length];
for (int i = 0; i < length_; i++) {
array[i] = 0;
}
}
As #Kerrek already pointed out, your class definition is clearly wrong (shouldn't compile).
To fix it, you want to change the definition to something like:
int *array;
Then in your default ctor you could use something like this:
SafeArray::SafeArray(unsigned size = 0)
: array(new int[size])
{
for (unsigned i=0; i<size; i++)
array[i] = 0;
}
Then, yes, you'll need to write an assignment operator. The usual way is called the copy and swap idiom. You create a copy, then swap the contents of the current one with those of the copy:
SafeArray &operator=(SafeArray rhs) {
std::swap(array, rhs.array);
std::swap(length_, rhs.length_);
}
Along with that, you'll need a copy constructor that makes a copy of the data as well:
SafeArray::SafeArray(SafeArray const &other) {
int *temp = new int[rhs.size_];
for (int i=0; i<rhs.size_; i++)
temp[i] = rhs.array[i];
std::swap(temp, array);
delete [] temp;
return *this;
}
Finally, you'll need a destructor to destroy an object and (particularly) delete the memory it holds:
SafeArray::~SafeArray() {
delete [] array;
}
Then realize that all of that is an ugly mess that will never really work well. In particular, the basic methodology is restricted to an array that's basically fixed in size. As long as you only store ints, it's fairly easy to overlook the problems, and make a dynamic array that (sort of) works. When/if you want to store some other type, however, you just about need to separate allocating memory from initializing objects in that memory, which means throwing away essentially all the code above, and replacing it with something that:
keeps track of the array size and allocation size separately
allocates memory with ::operator new, an Allocator object, or something else similar
uses placement new to initialize objects in the memory when needed.
uses explicit destructor calls to destroy the objects
uses ::operator delete to release memory
and so on. To summarize, std::vector is not a trivial piece of work.
The error message refers to these two lines:
int& operator[] (int y);
const int operator [] (const int y); // you need this one too.
Your error message says that (int y) and (const int y) are too similar to be two different overloads of the [] operator. You cannot overload on (int y) and (const int y) because the calls would all be ambiguous.
You probably meant to return a const int if your SafeArray is const, but return an int& if your SafeArray is not const. In that case, you declare the second function to apply to const SafeArray, by putting the word const after the parameter list. This is what you should write in SafeArray.h:
int& operator[] (int y);
const int operator [] (int y) const; // you need this one too.
You would then have to write both of these functions in SafeArray.cpp:
int& SafeArray::operator[] (int y) {
return array[y];
}
const int SafeArray::operator[] (int y) const { // you need this one too.
return array[y];
}