I'm trying to learn more about templates and have come across a problem I can't seem to solve. At the moment the class below works fine.
#include <iostream>
#include <vector>
#include <cstring>
using namespace std;
template <class T, int s>
class myArray{
public:
T* data;
inline T& operator[](const int i){return data[i];}
myArray(){
data=new T[s];
}
myArray(const myArray& other){
data=new T[s];
copy(other.data,other.data+s,data);
}
myArray& operator=(const myArray& other){
data=new T[s];
copy(other.data,other.data+s,data);
return *this;
}
~myArray(){delete [] data;}
};
If I use it:
myArray<myArray<myArray<int,10>,20>,30> a;
a is now 30x20x10 array that I can access with the normal array brackets e.g. a[5][5][5]. I wish to add a feature so that I could write:
myArray<myArray<myArray<int,10>,20>,30> a(10);
and initialise all of the entries to 10 for example. I can't work out how to do this. As I understand, each layer of myArray is constructed using the default constructor. If I changed this to something like:
myArray(int n=0){
data=new T[s];
fill(data,data+s,n); //T might not be of type int so this could fail.
}
I think this should fail when data is not of type int (i.e. on any array on dimensions > 1), however it doesn't. It works when the array is square, but if not then some of the entries aren't set to 10. Does anyone have an idea how the standard vectors class achieves this? Any help would be amazing. Thanks!
Well, try something like this:
myArray()
: data(new T[s]()) // value-initialization!
{
}
myArray(T const & val)
: data(new T[s]) // default-initialization suffices
{
std::fill(data, data + s, val);
}
If you're into variadic templates, you might cook up something even more grotesque involving variadically filled initializer lists, but I think we've done enough learning for one week.
Note the fundamental flaw in using new: Either version requires that your class T can be instantiated in some "default" state, and that it be assignable, even though we never require the default state in the second version. That's why "real" libraries separate memory allocation and object construction, and you never see a new expression unless its the placement version.
std::vector uses placement new on memory blocks. It constructs the data.after allocating the memory in a second line of code.
This technique would work for you as well. Be careful with placement new as it requires you to call destructors manually as well.
Here is a half-assed route without placement new:
template<typename U>
explicit MyArray( U const& constructFromAnythingElse )
{
AllocateSpace(N); // write this, just allocates space
for (int i = 0; i < N; ++i)
{
Element(i) = T( constructFromAnythingElse );
}
}
with placement new, you have to allocate the memory first, then construct in-place, and then remember to destroy each element at the end.
The above is half-assed compared to a placement new route, because we first construct each element, then build another one, and use operator= to overwrite it.
By making it a template constructor on an arbitrary type, we don't rely on multiple conversion to get multiple levels down into the array. The naive version (where you take a T const&) doesn't work because to construct an array of arrays of arrays of T, the outermost one expects an array of arrays of T as an argument, which expects an array of T as an argument, which expects a T -- there are too many levels of user defined construction going on there.
With the above template constructor, the array of array of array of T accepts any type as a constructor. As does the array of array of T, as does the array of T. Finally, the T is passed in whatever you constructed the outermost array of array of array of T, and if it doesn't like it, you get a compiler error message that is nearly completely unreadable.
Make specialization for arrays containing other arrays. To do this you need some common implementation class to be used in general and specialized MyArray:
Common implementation (I made some fixes for you - see !!! comments):
template <class T, int s>
class myArrayImpl {
public:
T* data;
T& operator[](int i){return data[i];} //!!! const before int not needed
const T& operator[](int i) const {return data[i];} //!!! was missing
myArrayImpl(){
data=new T[s]();
}
myArrayImpl(const myArrayImpl & other){
data=new T[s];
copy(other.data,other.data+s,data);
}
myArrayImpl& operator=(const myArrayImpl& other){
T* olddata = data; // !!! need to store old data
data=new T[s];
copy(other.data,other.data+s,data);
delete [] olddata; //!!! to delete it after copying
return *this;
}
~myArrayImpl(){delete [] data;}
};
Then make general implementation - note the definition of value_type and setAll:
template <class T, int s>
class myArray : private myArrayImpl<T,s> {
typedef myArrayImpl<T,s> Impl;
public:
using Impl::operator[];
myArray() : Impl() {}
typedef T value_type; // !!!
explicit myArray(const value_type& value) {
setAll(value);
}
void setAll(const value_type& value) {
fill(this->data, this->data + s, value);
}
};
And the specialized version for myArray of myArray - see also differences in value_type and setAll:
template <class T, int s1, int s2>
class myArray<myArray<T,s2>,s1> : private myArrayImpl<myArray<T,s2>,s1> {
typedef myArrayImpl<myArray<T,s2>,s1> Impl;
public:
using Impl::operator[];
myArray() : Impl() {}
typedef typename myArray<T,s2>::value_type value_type; // !!!
explicit myArray(const value_type& value) {
setAll(value);
}
void setAll(const value_type& value) {
for_each(this->data, this->data + s1, [value](myArray<T,s2>& v) { v.setAll(value); });
}
};
And usage:
int main() {
myArray<myArray<myArray<int,7>,8>,9> a(7);
std::cout << a[0][0][0] << std::endl;
std::cout << a[8][7][6] << std::endl;
}
Full example here: http://ideone.com/0wdT9D
Related
for an embedded system we need a custom vector class, where the capacity is set during compile-time through a template parameter.
Until now we had an array of objects as a member variable.
template<class T, size_t SIZE>
class Vector {
...
T data[SIZE];
}
The problem here of course is that if T isn't a POD, the default constructors of T are called. Is there any way to let data be uninitialized until a corresponding push() call (with placement new inside)? Just using
uint8_t data[SIZE * sizeof(T)];
possibly breaks the alignment of T. We absolutely cannot use dynamic memory, the total container size always needs to be known at compile-time. We also cannot use C++'s alignas specifier since the compiler does not support C++11 yet :(
First I would check if the compiler has support for alignment, ie gcc has __attribute__(aligned(x)), there is likely something similar.
Then if you absolutely have to have aligned uninitialized data without such support, you will have to waste some space
// Align must be power of 2
template<size_t Len, size_t Align>
class aligned_memory
{
public:
aligned_memory()
: data((void*)(((std::uintptr_t)mem + Align - 1) & -Align)) {}
void* get() const {return data;}
private:
char mem[Len + Align - 1];
void* data;
};
And you'd use placement new with it
template<typename T, size_t N>
class Array
{
public:
Array() : sz(0) {}
void push_back(const T& t)
{
new ((T*)data.get() + sz++) T(t);
}
private:
aligned_memory<N * sizeof(T), /* alignment */> data;
size_t sz;
};
Live
The alignment of T can be found with C++11 alignof, check your compiler to see if it supports anything that can be used to find out its alignment. You can also just take a guess from printed pointer values and hope that's enough.
Another way is to use std::vector<> with a custom allocator that allocates on the stack.
This way you would create an empty vector, reserve the required space, which should be equal to the space your allocator allocates for you on the stack, and then populate the vector using vector<>::emplace_back. Your element type can be non-copyable but must be movable in this case.
E.g.:
#include <vector>
struct X {
X(int, int);
// Non-copyable.
X(X const&) = delete;
X& operator=(X const&) = delete;
// But movable.
X(X&&);
X& operator=(X&&);
};
template<class T, std::size_t N>
struct MyStackAllocator; // Implement me.
int main() {
std::vector<X, MyStackAllocator<X, 10>> v;
v.reserve(10);
v.emplace_back(1, 2);
v.emplace_back(3, 4);
}
Information about how to implement an allocator is widely available, for example, search YouTube for "c++ allocator".
You are going to have to use placement new along with a union trick to get the alignment properly set.
// use `std::max_align_t` and `std::aligned_storage` when you have it
// since don't have access to alignof(), use the presumably max
// alignment value
using MaxAlign = long;
template <typename T, int size>
class UninitializedArray {
union Node {
char data[sizeof(T)];
MaxAlign alignment;
};
Node aligned_data[size];
bool initialized;
public:
UninitializedArray() : initialized(false) {}
void initialize() {
for (int i = 0; i < static_cast<int>(size); ++i) {
new (&this->aligned_data[i].data) T();
}
this->initialized = true;
}
~UninitializedArray() {
if (this->initialized) {
for (int i = 0; i < static_cast<int>(size); ++i) {
T* ptr = reinterpret_cast<T*>(&this->aligned_data[i].data);
ptr->~T();
}
}
}
T& operator[](int index) {
if (!this->initialized) {
this->initialize();
}
T* ptr = reinterpret_cast<T*>(&this->aligned_data[i].data);
return *ptr;
}
};
And then use it like this
UninitializedArray<Something, 5> arr;
arr[0].do_something();
If you ever get C++17 working, then you can use std::array and std::optional to make this easy
std::optional<std::array<T, N>> optional_array;
// construct the optional, this will construct all your elements
optional_array.emplace();
// then use the value in the optional by "treating" the optional like
// a pointer
optional_array->at(0); // returns the 0th object
There is a simple example of the class Test
#include <algorithm>
#include <iterator>
#include <vector>
template <typename T>
struct MinMax { T min, max; };
template <typename T>
using TList = std::vector<T>;
template <typename T>
class Test
{
private:
const T a, b;
const MinMax <T> m;
public:
Test() : a(0), m{ 0, 0 }, b(0.0) {};
public:
T getA() const { return a; }
MinMax <T> & getMinMax() const { return m; }
T getB() const { return b; }
Test(const Test &t) : a(t.a), b(t.b), m(t.m ) {}
};
with the constant data members. Instead of the constructor, the data are not changed. I would like to copy the vector of Test objects to another vector using std::inserter. I am surprised that the copy constructor is not sufficient
int main()
{
TList <Test <double> > t1;
TList <Test <double> > t2;
Test<double> t;
t1.push_back(t);
std::copy(t2.begin(), t2.end(), std::inserter(t1, t1.begin()));
return 0;
}
and the following compiler error appears (VS2015):
Error C2280 'Test<double> &Test<double>::operator =(const Test<double> &)': attempting to reference a deleted function Const
Is it possible to let the data members const and perform a copy in a different way (some hack :-))? Or an operator = must be defined, so the data members cannot be const (it is imppossible to assign to an object with const data members)?
Thanks for your help.
An insert to a vector reassigns all elements after the inserted element and assigns the inserted element to the freed up slot.
In other words, you can't because the Standard requires the elements of standard containers to be Asssignable (have a = b defined) to offer full functionality.
Apart from the obvious solution of writing your own operator= you can also add elements with const members to a vector by pushing back:
std::copy(t2.begin(), t2.end(), std::back_inserter(t1));
but that's kind of working against the Standard; push_back doesn't happen to need assignability but other functions may.
Or, you can use a container that doesn't require assignability to insert, e.g.:
template <typename T>
using TList = std::list<T>;
trading off all the benefits of contiguous memory cache locality of a vector.
On a closing note, I tend to avoid declaring data members of my structures const because of such problems with generic containers that require assignability under the hood. Notice that in your example removing const from private members would leave you with good-enough read-only fields (that can be accessed only via getters from outside).
well i cant find how do this, basically its a variable union with params, basic idea, (writed as function)
Ex1
union Some (int le)
{
int i[le];
float f[le];
};
Ex2
union Some
{
int le;
int i[le];
float f[le];
};
obs this don't works D:
maybe a way to use an internal variable to set the lenght but don't works too.
Thx.
No, this is not possible: le would need to be known at compile-time.
One solution would be to use a templated union:
template <int N> union Some
{
int i[N];
float f[N];
};
N, of course, is compile-time evaluable.
Another solution is the arguably more succinct
typedef std::vector<std::pair<int, float>> Some;
or a similar solution based on std::array.
Depending on your use case you could try to simulate a union.
struct Some
{
//Order is important
private:
char* pData;
public:
int* const i;
float* const f;
public:
Some(size_t len)
:pData(new char[sizeof(int) < sizeof(float) ? sizeof(float) : sizeof(int)])
,i ((int*)pData)
,f ((float*)pData)
{
}
~Some()
{
delete[] pData;
}
Some(const Some&) = delete;
Some& operator=(const Some&) = delete;
};
Alternative solution using templates, unique_ptr and explicit casts:
//max_size_of<>: a recursive template struct to evaluate the
// maximum value of the sizeof function of all types passed as
// parameter
//The recursion is done by using the "value" of another
// specialization of max_size_of<> with less parameter types
template <typename T, typename...Args>
struct max_size_of
{
static const std::size_t value = std::max(sizeof(T), max_size_of<Args...>::value);
};
//Specialication for max_size_of<> as recursion stop
template <typename T>
struct max_size_of<T>
{
static const std::size_t value = sizeof(T);
};
//dataptr_auto_cast<>: a recursive template struct that
// introduces a virtual function "char* const data_ptr()"
// and an additional explicit cast operator for a pointer
// of the first type. Due to the recursion a cast operator
// for every type passed to the struct is created.
//Attention: types are not allowed to be duplicate
//The recursion is done by inheriting from of another
// specialization of dataptr_auto_cast<> with less parameter types
template <typename T, typename...Args>
struct dataptr_auto_cast : public dataptr_auto_cast<Args...>
{
virtual char* const data_ptr() const = 0; //This is needed by the cast operator
explicit operator T* const() const { return (T*)data_ptr(); } //make it explicit to avoid unwanted side effects (manual cast needed)
};
//Specialization of dataptr_auto_cast<> as recursion stop
template <typename T>
struct dataptr_auto_cast<T>
{
virtual char* const data_ptr() const = 0;
explicit operator T* const() const { return (T*)data_ptr(); }
};
//union_array<>: inherits from dataptr_auto_cast<> with the same
// template parameters. Also has a static const member "blockSize"
// that indicates the size of the largest datatype passed as parameter
// "blockSize" is used to determine the space needed to store "size"
// elements.
template <typename...Args>
struct union_array : public dataptr_auto_cast<Args...>
{
static const size_t blockSize = max_size_of<Args...>::value;
private:
std::unique_ptr<char[]> m_pData; //std::unique_ptr automatically deletes the memory it points to on destruction
size_t m_size; //The size/no. of elements
public:
//Create a new array to store "size" elements
union_array(size_t size)
:m_pData(new char[size*blockSize])
,m_size(size)
{
}
//Copy constructor
union_array(const union_array<Args...>& other)
:m_pData(new char[other.m_size*blockSize])
,m_size(other.m_size)
{
memcpy(m_pData.get(), other.m_pData.get(), other.m_size);
}
//Move constructor
union_array(union_array<Args...>&& other)
:m_pData(std::move(other.m_pData))
,m_size(std::move(other.m_size))
{
}
union_array& operator=(const union_array<Args...>& other)
{
m_pData = new char[other.m_size*blockSize];
m_size = other.m_size;
memcpy(m_pData.get(), other.m_pData.get(), other.m_size);
}
union_array& operator=(union_array<Args...>&& other)
{
m_pData = std::move(other.m_pData);
m_size = std::move(other.m_size);
}
~union_array() = default;
size_t size() const
{
return m_size;
}
//Implementation of dataptr_auto_cast<>::data_ptr
virtual char* const data_ptr() const override
{
return m_pData.get();
}
};
int main()
{
auto a = union_array<int, char, float, double>(5); //Create a new union_array object with enough space to store either 5 int, 5 char, 5 float or 5 double values.
((int*)a)[3] = 3; //Use as int array
auto b = a; //copy
((int*)b)[3] = 1; //Change a value
auto c = std::move(a);// move a to c, a is invalid beyond this point
// std::cout << ((int*)a)[3] << std::endl; //This will crash as a is invalid due to the move
std::cout << ((int*)b)[3] << std::endl; //prints "1"
std::cout << ((int*)c)[3] << std::endl; //prints "3"
}
Explanation
template <typename T, typename...Args>
struct max_size_of
{
static const std::size_t value = std::max(sizeof(T), max_size_of<Args...>::value);
};
template <typename T>
struct max_size_of<T>
{
static const std::size_t value = sizeof(T);
};
max_size_of<> is used to get the largest sizeof() value of all types passed as template paremeters.
Let's have a look at the simple case first.
- max_size_of<char>::value: value will be set to sizeof(char).
- max_size_of<int>::value: value will be set to sizeof(int).
- and so on
If you put in more than one type it will evaluate to the maximum of the sizeof of these types.
For 2 types this would look like this: max_size_of<char, int>::value: value will be set to std::max(sizeof(char), max_size_of<int>::value).
As described above max_size_of<int>::value is the same as sizeof(int), so max_size_of<char, int>::value is the same as std::max(sizeof(char), sizeof(int)) which is the same as sizeof(int).
template <typename T, typename...Args>
struct dataptr_auto_cast : public dataptr_auto_cast<Args...>
{
virtual char* const data_ptr() const = 0;
explicit operator T* const() const { return (T*)data_ptr(); }
};
template <typename T>
struct dataptr_auto_cast<T>
{
virtual char* const data_ptr() const = 0;
explicit operator T* const() const { return (T*)data_ptr(); }
};
dataptr_auto_cast<> is what we use as a simple abstract base class.
It forces us to implement a function char* const data_ptr() const in the final class (which will be union_array).
Let's just assume that the class is not abstract and use the simple version dataptr_auto_cast<T>:
The class implements a operator function that returns a pointer of the type of the passed template parameter.
dataptr_auto_cast<int> has a function explicit operator int* const() const;
The function provides access to data provided by the derived class through the data_ptr()function and casts it to type T* const.
The const is so that the pointer isn't altered accidentially and the explicit keyword is used to avoid unwanted implicit casts.
As you can see there are 2 versions of dataptr_auto_cast<>. One with 1 template paremeter (which we just looked at) and one with multiple template paremeters.
The definition is quite similar with the exception that the multiple parameters one inherits dataptr_auto_cast with one (the first) template parameter less.
So dataptr_auto_cast<int, char> has a function explicit operator int* const() const; and inherits dataptr_auto_cast<char> which has a function explicit operator char* const() const;.
As you can see there is one cast operator function implemented with each type you pass.
There is only one exception and that is passing the same template parameter twice.
This would lead in the same operator function being defined twice within the same class which doesn't work.
For this use case, using this as a base class for the union_array, this shouldn't matter.
Now that these two are clear let's look at the actual code for union_array:
template <typename...Args>
struct union_array : public dataptr_auto_cast<Args...>
{
static const size_t blockSize = max_size_of<Args...>::value;
private:
std::unique_ptr<char[]> m_pData;
size_t m_size;
public:
//Create a new array to store "size" elements
union_array(size_t size)
:m_pData(new char[size*blockSize])
,m_size(size)
{
}
//Copy constructor
union_array(const union_array<Args...>& other)
:m_pData(new char[other.m_size*blockSize])
,m_size(other.m_size)
{
memcpy(m_pData.get(), other.m_pData.get(), other.m_size);
}
//Move constructor
union_array(union_array<Args...>&& other)
:m_pData(std::move(other.m_pData))
,m_size(std::move(other.m_size))
{
}
union_array& operator=(const union_array<Args...>& other)
{
m_pData = new char[other.m_size*blockSize];
m_size = other.m_size;
memcpy(m_pData.get(), other.m_pData.get(), other.m_size);
}
union_array& operator=(union_array<Args...>&& other)
{
m_pData = std::move(other.m_pData);
m_size = std::move(other.m_size);
}
~union_array() = default;
size_t size() const
{
return m_size;
}
virtual char* const data_ptr() const override
{
return m_pData.get();
}
};
As you can see union_array<> inherits from dataptr_auto_cast<> using the same template arguments.
So this gives us a cast operator for every type passed as template paremeter to union_array<>.
Also at the end of union_array<> you can see that the char* const data_ptr() const function is implemented (the abstract function from dataptr_auto_cast<>).
The next interesting thing to see is static const size_t blockSize which is initilialized with the maximum sizeof value of the template paremeters to union_array<>.
To get this value the max_size_of is used as described above.
The class uses std::unique_ptr<char[]> as data storage, as std::unique_ptr automatically will delete the space for us, once the class is destroyed.
Also std::unique_ptr is capable of move semantics, which is used in the move assign operator function and the move constructor.
A "normal" copy assign operator function and a copy constructor are also included and copy the memory accordingly.
The class has a constructor union_array(size_t size) which takes the number of elements the union_array should be able to hold.
Multiplying this value with blockSize gives us the space needed to store exactly size elements of the largest template type.
Last but not least there is an access method to ask for the size() if needed.
C++ requires that the size of a type be known at compile time.
The size of a block of data need not be known, but all types have known sizes.
There are three ways around it.
I'll ignore the union part for now. Imagine if you wanted:
struct some (int how_many) {
int data[how_many];
};
as the union part adds complexity which can be dealt with separately.
First, instead of storing the data as part of the type, you can store pointers/references/etc to the data.
struct some {
std::vector<int> data;
explicit some( size_t how_many ):data(how_many) {};
some( some&& ) = default;
some& operator=( some&& ) = default;
some( some const& ) = default;
some& operator=( some const& ) = default;
some() = default;
~some() = default;
};
here we store the data in a std::vector -- a dynamic array. We default copy/move/construct/destruct operations (explicitly -- because it makes it clearer), and the right thing happens.
Instead of a vector we can use a unique_ptr:
struct some {
std::unique_ptr<int[]> data;
explicit some( size_t how_many ):data(new int[how_many]) {};
some( some&& ) = default;
some& operator=( some&& ) = default;
some() = default;
~some() = default;
};
this blocks copying of the structure, but the structure goes from being size of 3 pointers to being size of 1 in a typical std implementation. We lose the ability to easily resize after the fact, and copy without writing the code ourselves.
The next approach is to template it.
template<std::size_t N>
struct some {
int data[N];
};
this, however, requires that the size of the structure be known at compile-time, and some<2> and some<3> are 'unrelated types' (barring template pattern matching). So it has downsides.
A final approach is C-like. Here we rely on the fact that data can be variable in size, even if types are not.
struct some {
int data[1]; // or `0` in some compilers as an extension
};
some* make_some( std::size_t n ) {
Assert(n >= 1); // unless we did `data[0]` above
char* buff = new some[(n-1)*sizeof(int) + sizeof(some)]; // note: alignment issues on some platforms?
return new(buff) some(); // placement new
};
where we allocate a buffer for some of variable size. Access to the buffer via data[13] is practically legal, and probably actually so as well.
This technique is used in C to create structures of variable size.
For the union part, you'll want to create a buffer of char with the right size std::max(sizeof(float), sizeof(int))*N, and expose functions:
char* data(); // returns a pointer to the start of the buffer
int* i() { return reinterpret_cast<int*>(data()); }
float* f() { return reinterpret_cast<float*>(data()); }
you may also need to properly initialize the data as the proper type; in theory, a char buffer of '\0's may not correspond to defined float values or ints that are zero.
I would like to suggest a different approach: Instead of tying the number of elements to the union, tie it outside:
union Some
{
int i;
float f;
};
Some *get_Some(int le) { return new Some[le]; }
Don't forget to delete[] the return value of get_Some... Or use smart pointers:
std::unique_ptr<Some[]> get_Some(int le)
{ return std::make_unique<Some[]>(le); }
You can even create a Some_Manager:
struct Some_Manager
{
union Some
{
int i;
float f;
};
Some_Manager(int le) :
m_le{le},
m_some{std::make_unique<Some[]>(le)}
{}
// ... getters and setters...
int count() const { return m_le; }
Some &operator[](int le) { return m_some[le]; }
private:
int m_le{};
std::unique_ptr<Some[]> m_some;
};
Take a look at the Live example.
It's not possible to declare a structure with dynamic sizes as you are trying to do, the size must be specified at run time or you will have to use higher-level abstractions to manage a dynamic pool of memory at run time.
Also, in your second example, you include le in the union. If what you were trying to do were possible, it would cause le to overlap with the first value of i and f.
As was mentioned before, you could do this with templating if the size is known at compile time:
#include <cstdlib>
template<size_t Sz>
union U {
int i[Sz];
float f[Sz];
};
int main() {
U<30> u;
u.i[0] = 0;
u.f[1] = 1.0;
}
http://ideone.com/gG9egD
If you want dynamic size, you're beginning to reach the realm where it would be better to use something like std::vector.
#include <vector>
#include <iostream>
union U {
int i;
float f;
};
int main() {
std::vector<U> vec;
vec.resize(32);
vec[0].i = 0;
vec[1].f = 42.0;
// But there is no way to tell whether a given element is
// supposed to be an int or a float:
// vec[1] was populated via the 'f' option of the union:
std::cout << "vec[1].i = " << vec[1].i << '\n';
}
http://ideone.com/gjTCuZ
I need to create a template because I don't know what it's an array of. And it needs to be of the size that's passed in the constructor. So here is what I got and I got all sorts of errors. I am a beginner to C++ so any help is appreciated :)
template <typename T, int N>
class Array
{
public:
T& operator[](int index)
{
return data[index];
}
private:
int size;
T *data[N];
};
I think you understand what I'm trying to do. I also need to overload the subscript operator, as you can see. Not sure if I need a reference or a pointer or what. I did have a constructor but it wasn't working properly.
Here's a corrected version with a sample main as well:
#include <iostream>
using namespace std;
template <typename T, int N>
class Array
{
public:
T& operator[](int index)
{
// add check for array index out of bounds i.e. access within 0 to N-1
return data[index];
}
Array() {
data = new T[size = N];
}
~Array() {
if (data)
delete [] data;
}
private:
int size;
T *data;
};
int main(void) {
Array<int, 4> a;
a[0] = 5;
cout << a[0] << endl;
return 0;
}
From what I can see your template is containing an array of pointers, which from what I read and from your [] operator implementation is not what you intend to do. So first you should remove the * from :
T *data[N];
You should probably initialize the size of your template from your constructor, thus you should change :
T *data[N];
to :
T* data;
and :
template <typename T, int N>
to :
template<typename T>
Now that changes the implementation a bit, you should now write a constructor like that :
template<typename T>
Array(int n) {
data = new T[n];
}
and now you should also add a destructor like that :
~Array() {
delete[] data;
}
and there you go :)
However if you want to keep the size as an argument of the template your constructor go like :
template<typename T, int N>
Array() {
}
and the declaration of data :
T data[N];
As said in comments, you may want to use std::array in "real life" conditions, but as a training, implementing your own Array is a good thing to do, that's a training most computer schools do after all.
I am writing a vector class and I would like it to have the following characteristics:
Use static allocation on the stack whenever possible (to avoid calling new for efficiency).
Be able to be instantiated from a pointer if the user prefers to provide a previously allocated array.
The class needs to be easily converted to a simple pointer. This allows to use previously written routines in C.
Find below this simple test problem with the solution I came up with. I use inheritance so Vector inherits from Vector_base which provides a common interface (pure virtual) for all vectors.
Then I define an empty class Vector that allows me then using partial specialization to have different storage schemes; static or dynamic.
The idea behind this is that I just want vector to be a C++ wrapper to the old-fashioned static array.
I like the implementation below. I'd like to keep the interface I came up with in main.
What I don't like is that sizeof(Vector3) = 32 when in C a vector of three doubles is 24 bytes. The reason for this is the extra 8 bytes of the virtual table.
My question: can I somehow come up with another design that would provide me with the same interface but the vector only has 24 bytes?
Summarizing:
I'd like have a Vector3 of 24 bytes, as in C.
I still want to have arbitrarily large vectors though (with <double,n>)
I'd like to keep the interface used in main().
Could I use a programming idiom like traits or polices for this? I am very new to those and I don't know if they could provide a solution.
Find my little test code below:
#include <iostream>
using namespace std;
#define TRACE0(a) cout << #a << endl; a;
#define TRACE1(a) cout << #a "=[" << a << "]" << endl;
enum alloc_type {Static,Dynamic};
template <class T>
class Vector_base{
public:
Vector_base(){}
virtual operator T*() = 0;
virtual T operator[](int i)const = 0;
virtual T& operator[](int i) = 0;
virtual int size() const = 0;
friend ostream& operator<<(ostream &os,const Vector_base& v){
for (int i=0; i<v.size(); i++)
cout << v[i] << endl;
return os;
}
};
// base template must be defined first
template <class T, int n,alloc_type flg=Static>
class Vector{};
//Specialization for static memory allocation.
template <class T, int n>
class Vector<T,n,Static>: public Vector_base<T>{
public:
T a[n];
public:
Vector() {
for (int i=0; i<n; i++) a[i] = 0;
}
int size()const{return n;}
operator T*(){return a;}
T operator[](int i)const {return a[i];}
T& operator[](int i){return a[i];}
};
//Specialization for dynamic memory allocation
template <class T,int n>
class Vector<T,n,Dynamic>: public Vector_base<T>{ //change for enum. flg=0 for static. flg=1 for dynamic. Static by default
public:
T* a;
public:
Vector():a(NULL){
}
Vector(T* data){ //uses data as its storage
a = data;
}
int size()const{return n;}
operator T*(){return a;}
T operator[](int i)const {return a[i];}
T& operator[](int i){return a[i];}
};
//C++11 typedefs to create more specialized three-dimensional vectors.
#if (__cplusplus>=201103L)
template <typename Scalar,alloc_type flg=Static>
using Vector3 = Vector<Scalar,3,flg>;
#else
#error A compiler with the C++2011 standard is required!
#endif
int main(){
cout << "Testing Vector3: " << endl;
//Vector<double,3> v3;
Vector3<double> v3;
TRACE0(cout << v3 << endl;);
TRACE1(sizeof(v3));
//Vector<double,3,Dynamic> v0(v3);
Vector3<double,Dynamic> v0(v3); //calls Vector<double,3,Dynamic>::Vector(double*) and uses the conversion operator on v3.
TRACE1(sizeof(v0));
TRACE1(sizeof(double*));
TRACE0(v3[1] = 2.1;);
TRACE0(cout << v0 << endl;);
return 0;
}
All the features you want are offered as Standard or can be plugged in to existing Standard extension points.
Use static allocation on the stack whenever possible (to avoid calling new for efficiency).
Meet std::array<T, N>. It's a C++ wrapper on a C array and presents all the same characteristics.
Be able to be instantiated from a pointer if the user prefers to provide a previously allocated array.
Meet Allocators. You can code an allocator that meets the requirement that gives back already allocated memory, then simply use std::vector. Such an allocator is under consideration for future Standards along with other allocator enhancements like polymorphic allocators.
The class needs to be easily converted to a simple pointer. This allows to use previously written routines in C.
Both std::vector and std::array offer this as a triviality.
If you want to offer this choice at runtime, consider boost::variant. Rolling your own discriminated union- not advised.
If I understand you correctly, something like LLVM's SmallVector seems to fit the bill. It has a template parameter declaring the maximum size you want allocated on the stack, and switches to heap memory only when it grows outside that range.
If it doesn't fit your interface directly, I'm sure looking at the implementation will be very useful towards writing something similar yourself.
You are talking about two policies for locating the data: either inline as a small-array optimization, or via indirection with a pointer to a dynamically allocated buffer.
There are two ways to make that policy choice: With static type information, or dynamically. The dynamic choice requires storage to indicate whether any particular vector uses the static or dynamic policy.
For a vector of doubles, you can perhaps use an illegal value in the first element (a NaN encoding) to indicate that the dynamic policy is in effect (the pointer needs to be stored overlapping the remaining elements, use a union for this).
But in other data types, all possible bit patterns are valid. For those you will require additional storage to select the policy. You might know for a particular problem that a particular bit isn't needed for the range of values, and can be used as a flag. But there's no general solution applicable to all data types.
You probably want to look at implementations of the "small string optimization". They are making the same tradeoff for improved locality of reference when the data is small enough to store directly inside the object, and also generally trying to avoid using mode space than necessary.
One thing is for sure. In order to avoid significantly increase in space requirements, you're going to need close coupling. No specialization, no inheritance, just one monolithic class that implements both policies.
Ok guys. It took me all day but this is the solution I came up with and it does exactly what I want. Please share your comments and suggestions to this solution.
Of course I didn't implement all methods I want. I only implemented two fake dot products to show how specific C implementations are chosen at compile time by use of templates.
The scheme is quite more complex than what I thought it would be. The basic concepts I'm using to accomplish my design requirements are:
the curiously recurring template pattern.
Partial specialization
Traits
Compile-time selection with templates (see how I decide what dot product implementation to use).
Again, thanks and please comment!! See code below
#include <iostream>
using namespace std;
#include <type_traits>
//C++11 typedefs to create more specialized three-dimensional vectors.
#if (__cplusplus<201103L)
#error A compiler with the C++2011 standard is required!
#endif
template<class T>
struct traits{};
#define TRACE0(a) cout << #a << endl; a;
#define TRACE1(a) cout << #a "=[" << a << "]" << endl;
enum {Dynamic = -1};
template<typename T,int n>
struct mem_model{
typedef T array_model[n];
};
//Specialization to Dynamic
template<typename T>
struct mem_model<T,Dynamic>{
typedef T* array_model;
};
template<class derived_vector>
struct Vector_base: public traits<derived_vector>{ //With traits<derived_vector> you can derive the compile time specifications for 'derived_vector'
typedef traits<derived_vector> derived;
typedef typename traits<derived_vector>::Scalar Scalar;
public:
inline int size()const{ //Calling derived class size in case a resize is done over a dynamic vector
return static_cast<const derived_vector*>(this)->size(); //derived_vector MUST have a member method size().
}
inline operator Scalar*(){return a;} //All vectors reduce to a Scalar*
inline bool IsStatic()const{return (n==Dynamic)? false: true;}
inline int SizeAtCompileTime()const{return n;} //-1 for dynamic vectors
protected:
using derived::n; //compile time size. n = Dynamic if vector is requested to be so by the user.
typename mem_model<Scalar,n>::array_model a; //All vectors have a Scalar* a. Either static or dynamic.
};
//Default static
template<typename Scalar,int n>
class Vector:public Vector_base<Vector<Scalar,n> >{ //Vector inherits main interface from Vector_base
public:
//Constructors
Vector(){
//do nothing for fast instantiation
}
Vector(const Scalar& x,const Scalar& y,const Scalar& z){
a[0] = x; a[1] = y; a[2] = z;
}
//
inline int size()const{return n;}
private:
using Vector_base<Vector<Scalar,n> >::a;
};
//Traits specialization for Vector. Put in an inner_implementation namespace
template<typename _Scalar,int _n>
struct traits<Vector<_Scalar,_n> >{
typedef _Scalar Scalar;
enum{
n = _n
};
};
double clib_dot_product_d(const int n,double* a,double* b){
double dot = 0.0;
for(int i=0;i<n;i++)
dot += a[i]*b[i];
return dot;
}
float clib_dot_product_f(const int n,float* a,float* b){
cout << "clib_dot_product_f" << endl;
return 1.0;
}
template<typename Scalar>
struct dot_product_selector{};
template<>
struct dot_product_selector<double>{
template<class derived1,class derived2>
static double dot_product(Vector_base<derived1> &a,Vector_base<derived2> &b){
return clib_dot_product_d(a.size(),a,b);
}
};
template<>
struct dot_product_selector<float>{
template<class derived1,class derived2>
static float dot_product(Vector_base<derived1> &a,Vector_base<derived2> &b){
return clib_dot_product_f(a.size(),a,b);
}
};
template<class derived1,class derived2>
typename Vector_base<derived1>::Scalar dot_product(Vector_base<derived1> &a,Vector_base<derived2> &b){
//run time assert checking the two sizes are the same!!
//Compile time (templates) check for the same Scalar type
static_assert( std::is_same<typename Vector_base<derived1>::Scalar,typename Vector_base<derived2>::Scalar>::value,"dot product requires both vectors to have the same Scalar type");
return dot_product_selector<typename Vector_base<derived1>::Scalar>::dot_product(a,b);
}
#if 0
template <typename Scalar,alloc_type flg=Static>
using Vector3 = Vector<Scalar,3,flg>;
#endif
int main(){
cout << "Testing Vector3: " << endl;
Vector<double,3> as;
Vector<double,Dynamic> ad;
TRACE1(sizeof(as));
TRACE1(sizeof(ad));
TRACE1(as.SizeAtCompileTime());
TRACE1(ad.SizeAtCompileTime());
Vector<double,3> u(1,2,3),v(-1,1,5);
Vector<float,3> uf,vf;
TRACE1(dot_product(u,v));
dot_product(uf,vf);
//dot_product(u,vf); //this triggers a compile time assertion using static_assert
return 0;
}
You could simplify the Vector template specialization to...
template <class T, std::size_t Size = -1>
class Vector {
// The statically allocated implementation
};
template <class T>
class Vector<T, -1> {
// The dynamically allocated implementation
};
The implementations could possibly be thin wrappers around std::vector and std::array.
EDIT: This avoid the magic constant...
template<typename T = void>
class Structure {};
template<typename T, std::size_t Size>
class Structure<T[Size]> {
T data[Size];
// The statically allocated implementation
};
template<typename T>
class Structure<T[]> {
T * pData;
public:
Structure(std::size_t size) : pData(new T[size]) {}
~Structure() { delete[] pData; }
// The dynamically allocated implementation
};
Instantiated like this...
Structure<int[]> heap(3);
Structure<int[3]> stack;
EDIT: Or use policies like so...
class AllocationPolicy {
protected:
static const std::size_t Size = 0;
};
template<std::size_t Size_>
class Static : AllocationPolicy {
protected:
static const std::size_t Size = Size_;
};
class Dynamic : AllocationPolicy {
protected:
static const std::size_t Size = 0;
};
template <typename T, typename TAllocationPolicy = Dynamic>
class Vector : TAllocationPolicy {
static_assert(!std::is_same<typename std::remove_cv<TAllocationPolicy>::type, AllocationPolicy>::value && std::is_base_of<AllocationPolicy, TAllocationPolicy>::value, "TAllocationPolicy must inherit from AllocationPolicy");
using TAllocationPolicy::Size;
public:
T data[Size];
};
template <typename T>
class Vector<T, Dynamic> : private Dynamic {
T * data;
public:
Vector(std::size_t size) : data(new T[size]) {}
~Vector() { delete [] data; }
};