Binary Search Tree - Deleting Node with no pointer to predecessor - c++

I have following implementation of BST:
struct BstNode
{
int value;
BstNode* leftSubnode;
BstNode* rightSubnode;
BstNode(int value)
{
this->value = value;
this->leftSubnode = this->rightSubnode = nullptr;
}
};
struct BstTree
{
BstNode* root;
};
and you can see, that I have no pointer to predecessor (the parent of current node). I have no problem with implementing adding/displaying methods, but I can't figure out how to remove a node from my structure. Is there any possibility to do it when you have only pointers to left and right node? Please notice, that all methods should be implemented for the BstTree structure, not for the BstNode one (because of the task that I received from my teacher).

Something like this, adapt to your particular requirements and fill in the blanks
void remove(BstTree& tree, int value)
{
BstNode* parent = nullptr;
BstNode* node = tree.root;
while (node)
{
if (node->value == value)
{
if (parent)
{
// remove node using the parent pointer
}
else
{
// remove the root node
}
return;
}
if (value < node->value)
{
// go down left branch
parent = node;
node = node->leftSubNode;
}
else
{
// go down right branch
parent = node;
node = node->rightSubNode;
}
}
}

Related

Implementation of BST C++ Segmentation Fault

I have implemented binary search tree in C++ and for some reason I am not seeing where the segmentation fault occurs. But I do notice that when I comment out root = node in the first conditional statement in addNode the error goes away. What exactly is a segmentation fault and how does it related to pointers?
#include <iostream>
#include <iomanip>
using namespace std;
class bstNode
{
public:
int value;
bstNode *left;
bstNode *right;
bstNode(){};
~bstNode(){};
bstNode(int value)
{
this->value = value;
this->left = NULL;
this->right = NULL;
}
bstNode(int value, bstNode *left, bstNode *right)
{
this->value = value;
this->left = left;
this->right = right;
}
bstNode *root;
void addNode(int value)
{
if (root == NULL)
{
bstNode *node = new bstNode(value);
root = node;
}
else
{
bstNode *focusNode = root;
bstNode *parent;
while (focusNode != NULL)
{
if (value > focusNode->value)
{
focusNode = focusNode->right;
if (focusNode == NULL)
{
focusNode->right = new bstNode(value);
}
}
else
{
focusNode = focusNode->left;
if (focusNode == NULL)
{
focusNode->left = new bstNode(value);
}
}
}
}
}
static void printBST(bstNode *node)
{
while (node != NULL)
{
printBST(node->left);
cout << node->value;
printBST(node->right);
}
}
};
int main()
{
bstNode *node = new bstNode();
node->addNode(7);
node->addNode(2);
node->addNode(18);
node->addNode(6);
node->addNode(4);
node->addNode(23);
bstNode::printBST(node->root);
return 0;
}
The immediate error is this
if (focusNode == NULL) {
focusNode->left = new bstNode(value);
}
this is clearly wrong, if a pointer is null you cannot use it. You have this in multiple places. Fix that and then update the question once you have got past that. How did I know this? I ran your code under my debugger and it told me immediatley, you should learn how to get the most out of your debugger.
Next
void addNode(int value)
as a method for a class defined as
class bstNode {
public:
int value;
is very bad practice. In that method what does value refer to? The argument or the member variable. Get into the habit of giving member variables specific names like this
class bstNode {
public:
int value_;
Also minor nits. The accepted style for naming classes is with leading Caps like this
class BstNode {
public:
int value_;
or even
class BSTNode
class bstNode {
public:
int value_;
using namespace std;
I'd advise against doing this in general. It's hard to be sure what's in namespace std, but the short summary is "a lot, and more all the time", so making all of it visible directly can lead to problems.
bstNode(){};
~bstNode(){};
These don't really accomplish anything useful. The point of a constructor is to initialize the object, but these just leave the object uninitialized, which can lead to problems--especially segmentation faults when/if you try to dereference an uninitialized pointer.
bstNode(int value){
this->value = value;
this->left = NULL;
this->right = NULL;
}
This is better, but I'd prefer to use a member initializer list instead of assignments inside the body of the ctor, and I'd prefer nullptr over NULL:
bstNode(int value)
: value(value)
, left(nullptr)
, right(nullptr) {}
This next one:
bstNode(int value, bstNode* left, bstNode* right){
this->value = value;
this->left = left;
this->right = right;
}
...is pretty nicely written (though it could also use a member initializer list, which is usually preferable), but only rarely useful when building a binary search tree, because in normal use you only ever insert new leaf nodes, not new internal nodes.
void addNode(int value){
if (root == NULL){
bstNode* node = new bstNode(value);
root = node;
}
else{
bstNode* focusNode = root;
bstNode* parent;
while(focusNode != NULL){
if(value > focusNode->value){
focusNode = focusNode->right;
if(focusNode == NULL){
focusNode->right = new bstNode(value);
}
}
else{
focusNode = focusNode->left;
if(focusNode == NULL){
focusNode->left = new bstNode(value);
}
}
}
}
}
This is at least one obvious source of a segmentation fault--you dereference a pointer immediately after verifying that it's null.
At least for a first attempt, I think I'd use a recursive implementation, which tends to be simpler:
void addNode(int value, bstNode *&node = root) {
if (node == nullptr) {
node = new node(value);
} else if (value < node->value) {
addNode(value, node->left);
} else if (value > node->value) {
addNode(value, node->right);
} else {
// attempt at inserting duplicate value
}
}
Note that this passes a reference to a pointer, so we can modify the "current" pointer, rather than having to track the parent pointer while traversing the tree.
static void printBST(bstNode* node){
while(node != NULL){
printBST(node->left);
cout << node->value;
printBST(node->right);
}
}
Since we're doing this recursively, we don't need (or even want) a loop. Traversing the left sub-tree, the current node, and the right subtree traverses the entire tree, with no iteration needed.
Also note that this doesn't print any delimiter between the numbers in the nodes, so a tree containing 12, 34 and a tree containing 1, 2, 3, 4 will both be printed out as 1234, which probably isn't very useful. Fortunately, adding a delimiter is pretty easy.
static void printBST(bstNode* node){
if (node != nullptr){
printBST(node->left);
cout << node->value << ' ';
printBST(node->right);
}
}
In the the following code...
while(focusNode != NULL){
if(value > focusNode->value){
focusNode = focusNode->right;
if(focusNode == NULL){
focusNode->right = new bstNode(value);
}
}
else{
focusNode = focusNode->left;
if(focusNode == NULL){
focusNode->left = new bstNode(value);
}
}
}
...you are referencing the children of a node that is guaranteed to be NULL because you verified that using the conditional statement. Since the node itself does not exist, it doesn't have properties like children. Imagine you're trying to communicate with the child of a person who has never existed.
The variable focusNode stores an address of a node. What focusNode->value does is that it goes to the node whose address focusNode stores and retrieves the value property from there.
When focusNode is NULL, it doesn't point to any node, thus you can't go there and retrieve its value property.
I wrote the code that you can replace with your while loop. I have tested it and it works:
while(true){
if(value > focusNode->value){
if(focusNode->right == NULL){
focusNode->right = new bstNode(value);
return;
} else focusNode = focusNode->right;
}
else{
if(focusNode->left == NULL){
focusNode->left = new bstNode(value);
return;
} else focusNode = focusNode->left;
}
}
I also fixed your printBST function. In the printBST function use if instead of while, because the the code inside the while loop would be executed an infinite number of times instead of printing the BST once.
static void printBST(bstNode* node){
if(node != NULL){
printBST(node->left);
cout << node->value <<" ";
printBST(node->right);
}
}

void insert(int ) method for BST tree/C++

I have been trying to get this function working for the longest time now. It is part of an assignment for an online course, but it seems no matter what I submit, the function fails for both the empty child test and the left child test. See code below. The main() function is deliberately commented out. Any info./input is much appreciated.
// C++ binary trees and stuff;
//
#include <iostream>
#include <cstdio>
#include <string>
#include <vector>
using namespace std;
class BST
{
public:
int data;
BST *left;
BST *right;
//BST *root;
// BST() constructor
BST (int num)
{
data = num;
left = nullptr;
right = nullptr;
root = nullptr;
}
// constructors for root node(s), initializing as root when no values exist yet;
BST() : root (nullptr){}
BST (BST *rootNode) : root(rootNode){}
void insert (int value)
{
BST *newNode = new BST();
newNode = root;
if (root == nullptr)
{
root = new BST (value);
}
else
{
root->data = value;
}
// check if newNode's value equals the passed-in value:
if (value == root->data)
{
//cout << "\nWarning! Value already exists in tree, so nothing will be done.\n";
return;
}
// check if value is < or > newNode's value:
if (value <= root->data)
{
if (root->left == nullptr)
{
// make a new node as the left child of this node,
root->left = new BST(value);
}
else
{
// recursively call insert() on tree's left side,
root->left->insert(value);
}
}
else
{
if (root->right == nullptr)
{
// make a new node as the right child of this node,
root->right = new BST(value);
}
else
{
// recursively call insert() on tree's right side,
root->right->insert(value);
}
}
}
public:
BST *root;
};
/*
int main (int argc, char *argv[])
{
//...insert code here,
// create nodes,...
BST rootNode(5);
BST leftNode(4);
BST rightNode(6);
// connect the nodes to the tree via rootNode.left and rootNode.right,..
rootNode.left = &leftNode;
rootNode.right = &rightNode;
printf ("\nData (root) value = %i, rootNode.left = %i, and rootNode.right = %i\n",
rootNode.data, rootNode.left->data, rootNode.right->data);
cout << "\n\nHello, Solar System!\n";
return 0;
}
*/
Okay, here's my suggestion. You need to reformat your code. You need two classes. You need a BST, and you need a Node. The various methods to add/remove/traverse are part of the BST class. Nodes are just Nodes.
So:
class BST_Node {
public:
int value;
BST_Node * left = nullptr;
BST_Node * right = nullptr;
// Define constructors, etc.
};
class BST {
public:
BST_Node * root = nullptr;
BST_Node * insert(int value);
void insertNode(BST_Node *node);
void insertNodeBelow(BST_Node *nodeToInsert, BST_Node *startingNode);
};
BST_Node * BST::insert(int value) {
BST_Node * node = new BST_Node(value);
insertNode(node);
return node;
}
void BST::insertNode(BST_Node *node) {
if (node == nullptr) {
return;
}
if (root == nullptr) {
root = node;
}
else {
insertNodeBelow(node, root);
}
}
void BST::insertNodeBelow(BST_Node *node, BST_Node *startingNode) {
if (node == nullptr || startingNode == nullptr) {
return;
}
if (node->value < startingNode->value) {
if (startingNode->left != nullptr) {
insertNodeBelow(node, startingNode->left);
}
else {
startingNode->left = node;
}
}
else {
if (startingNode->right != nullptr) {
insertNodeBelow(node, startingNode->right);
}
else {
startingNode->right = node;
}
}
}
How this works... First, the logic of how to store nodes is in BST. Nodes don't care. Second, I made methods for either inserting a value or a node. Because I think that's handy. That should be fairly easy to understand.
The root node can be null, if so, then your inserted node is now root. Otherwise it calls the recursive insertion function. Now, you could simplify this a little, but I didn't want to get too clever.
So it's simple. We look to see where it belongs relative to the point we're at (initially the root). Either we go into the left branch or the right branch. But that branch could be empty, so you just plop it right in. If it's not empty, then you recurse.
I didn't test it.

c++ - Will this cause any issues? Assigning a var using a function that passes itself as a parameter (hard for me to explain)

So it's very hard to explain so I'll just show it to you. I'm trying to implement a Red-Black tree in C++. Below is the code relevant to the question (complete code at this link)
I'm fairly new so please forgive me if I don't use the right terminology.
My question is about creating the root node. When a new value is added using addValue, it's assigning the new node to the root but at the same time is passing the root in as the parameter. I don't get any errors but it feels like this is not a good way to go about it.
enum colour {RED, BLACK, DOUBLEBLACK};
struct Node{
int data;
int colour;
Node *left, *right, *parent;
explicit Node(int);
};
class Tree{
public:
Tree();
virtual ~Tree(){};
void addValue(int);
Node* insertNode(Node *, Node*);
private:
Node* root;
};
Node::Node(int data) {
this->data = data;
colour = RED;
left = right = parent = nullptr;
}
Tree::Tree() {
root = nullptr;
}
void Tree::addValue(int n) {
Node *node = new Node(n);
root = insertNode(root, node); //*********** this line here
insertFix(node);
}
Node* Tree::insertNode(Node* root, Node* node) {
if (root == nullptr)
return node;
if(node->data < root->data) {
root->left = insertNode(root->left, node);
root->left->parent = root;
} else if (node->data > root->data) {
root->right = insertNode(root->right, node);
root->right->parent = root;
}
return root;
}

C++ binary tree object, "insert" method with 1 parameter

I'm learning binary trees and want to implement with OOP where I have a struct Node and create a BST Object. I'm trying to create an insert function with this approach and am running into the issue where I can't recursively traverse the tree to add a new node - that is, unless I overload the method, essentially copying it, to call the new method with a pointer to left or right. Hard to explain, but right now I have two methods, and I'm not sure if I'm missing something obvious to just have 1 method with 1 parameter int data, or if this approach just isn't correct. I feel like there's something valuable for me to learn here. Many thanks.
#include <iostream>
struct Node
{
Node *right;
Node *left;
int data;
};
class BST
{
public:
Node* root;
public:
BST()
:root(NULL)
{
}
//inserts node taking parameter data
Node* insertNode(int data)
{
//if tree is empty, create root
if (root == NULL)
{
root = newNode(data);
}
//if data is smaller than or equal to root, insert left
else if (data <= root->data)
{
root->left = insertNode(root->left, data);
}
//data is larger than root, insert right
else
{
root->right = insertNode(root->right, data);
}
return root;
}
//inserts new node
Node* insertNode(Node *root, int data)
{
//if tree is empty, create root
if (root == NULL)
{
root = newNode(data);
}
//if data is smaller than or equal to root, insert left
else if (data <= root->data)
{
root->left = insertNode(root->left, data);
}
//data is larger than root, insert right
else
{
root->right = insertNode(root->right, data);
}
return root;
}
Node* newNode(int data)
{
Node *temp = new Node;
temp->data = data;
temp->left = NULL;
temp->right = NULL;
return temp;
}
};
int main() {
BST bst1;
bst1.insertNode(30);
bst1.insertNode(15);
return 0;
}
You can save the redundancy by having one call forward to the other:
Node* insertNode(int data)
{
return insertNode(root, data);
}
Note that having identical names for your class member (Node* root) and the local variable in Node* insertNode(Node *root, int data) is error-prone.
Also please do not forget to delete what you new.

Binary Search Tree Insertion C++ rooted at current node

I need to add an item to a binary tree given only the item to be added.
Here is the code I'm given:
void BinaryTree::add(Data * data) {
if (root == NULL) {
root = new BinaryTreeNode(data);
}
else {
root->add(data);
}
}
where root is a private variable of a BinaryTree defined as a BinaryTreeNode.
I need to implement a method:
void BinaryTreeNode::add(Data * data);
where a BinaryTreeNode is:
class BinaryTreeNode {
public:
Data * nodeData;
BinaryTreeNode * left;
BinaryTreeNode * right;
/**
* Constructor
*/
BinaryTreeNode(
Data * data,
BinaryTreeNode * left = NULL,
BinaryTreeNode *right = NULL
)
: nodeData(data), left(left), right(right)
{ }
// ...
I want to do this recursively, but I'm not positive how when you're only passed the data to be added.
My idea that doesn't work is:
void BinaryTreeNode::add(Data * newData) {
BinaryTreeNode * temp = this;
if (temp == NULL) {
temp->nodeData = newData;
} else {
if (newData->compareTo(nodeData) < 0) {
temp->left->add(newData);
} else {
temp->right->add(newData);
}
}
}
You are setting temp to this and then comparing it to NULL. this should never be NULL. You need to check if the left and right are NULL.
Well a binary tree, atleast how I know how to implement involves something like the following with two objects, one containing the the treenode object, and the other acting as an interface for the whole tree.
class cBinaryTree {
public:
bool insert(int inData);
//Other operations
private:
cBinaryTreeNode* root;
bool leftInsertion;
cBinaryTreeNode* getRoot() { return root; }
As you are comparing the actually value of the input data and placing it accordingly, this qualifies as a binary search tree. Then the insertion function can be written as
bool cBinaryTree::insert(int inData) {
//handle case if its first node.
cBinaryTreeNode *Parent = getInsertionNodePosition(getRoot(), inData);
cBinaryTreeNode *newNode = createNewNode(inData);
if(leftInsertion) //insert into left. add return statement
Parent->setLeftChild() = newNode;
else //insert into right
}
The recursive lookup function will be something like
cBinaryTreeNode* getInsertionNodePosition(cBinaryTreeNode* node,int inData) {
//Check left subtree and proceed from there.
if(inData < node->getData()) {
if(node->getLeftChild() == NULL) {
leftInsertion = true;
return node;
}
else {
node = node->getLeftChild();
return getInsertionNodePosition(node, inData);
}
}
//Similarly Check right subtree.
Hope this helps.