Working over a list of lists in Haskell - list

I'm a bit of a beginner to Haskell so I'm struggling a little with the strict type stuff, just wondering if someone can help me with a function I'm trying to build. Basically, it takes a list of lists, for example:
[[1,2,3], [7,6,8], [0,3,4]]
and adds them together into one list translating the later lists by the number of positions along it is. So working on the example list it would actually be doing something like:
foldl (zipWith +) [] [[1,2,3],[0,7,6,8],[0,0,0,3,4]]
Here's my current function (which gets type errors):
addLists :: [[Integer]] -> [Integer]
addLists [[]] = []
addLists [[x]] = [x]
addLists [x:xs] = zipWith (+) [x] ([0]++ (addLists xs))

Note that ([0]++) is the same as (0:), which will make it look tidier and save us a nanosecond or two.
(I'm joking with the nanosecond thing - no human can tell when something's a nanosecond faster, but it is nicer this way anyway.)
Let's first think about making the lists you need. We want
postponeLists [[1,2,3], [7,6,8], [10,20,30,40]]
= [[1,2,3], [0,7,6,8], [0,0,10,20,30,40]]
= [1,2,3] : ones that should have zero in front of them
That's enough information for a definition:
postponeLists [] = []
postponeLists (l:ls) = l : map (0:) (postponeLists ls)
Now you said
foldl (zipWith +) [] [[1,2,3],[0,7,6,8],[0,0,0,3,4]]
but you mean
foldl (zipWith (+)) [] [[1,2,3],[0,7,6,8],[0,0,0,3,4]]
but unfortunately, that gives you [] because zipWith stops as soon as any of the lists run out of elements.
We need some way of zipping them that doesn't stop.
Solution 1: find the longest one, make them all that maxlength using take maxlength.(++ repeat 0)
Solution 2: write another zipWith function that doesn't stop.
I prefer solution 2. Let's look at the definition of zipWith
zipWith :: (a->b->c) -> [a]->[b]->[c]
zipWith f (a:as) (b:bs) = f a b : zipWith f as bs
zipWith _ _ _ = [] -- here's the problem - it stops as soon as any list is empty
OK, let's not stop then:
zipWithMore :: (a -> a -> a) -> [a] -> [a] -> [a]
zipWithMore f (a:as) (b:bs) = f a b : zipWithMore f as bs
zipWithMore f [] bs = bs -- if there's more in bs, use that
zipWithMore f as [] = as -- if there's more in as, use that
Now you can replace zipWith (+) with zipWithMore (+). I'll leave the punchline to you.

I think this does what you want
import Data.List (transpose)
addLists :: Num a => [[a]] -> [a]
addLists xs = map sum . transpose $ zipWith (\n x -> replicate n 0 ++ x) [0..] xs

Related

Sum corresponding elements of two lists, with the extra elements of the longer list added at the end

I'm trying to add two lists together and keep the extra elements that are unused and add those into the new list e.g.
addLists [1,2,3] [1,3,5,7,9] = [2,5,8,7,9]
I have this so far:
addLists :: Num a => [a] -> [a] -> [a]
addLists xs ys = zipWith (+) xs ys
but unsure of how to get the extra elements into the new list.
and the next step is changing this to a higher order function that takes the combining function
as an argument:
longZip :: (a -> a -> a) -> [a] -> [a] -> [a]
zipWith :: (a -> b -> c) -> [a] -> [b] -> [c] is implemented as [src]:
zipWith :: (a->b->c) -> [a]->[b]->[c]
zipWith f = go
where
go [] _ = []
go _ [] = []
go (x:xs) (y:ys) = f x y : go xs ys
It thus uses explicit recursion where go will check if the two lists are non-empty and in that case yield f x y, otherwise it stops and returns an empty list [].
You can implement a variant of zipWith which will continue, even if one of the lists is empty. THis will look like:
zipLongest :: (a -> a -> a) -> [a] -> [a] -> [a]
zipLongest f = go
where go [] ys = …
go xs [] = …
go (x:xs) (y:ys) = f x y : go xs ys
where you still need to fill in ….
You can do it with higher order functions as simple as
import Data.List (transpose)
addLists :: Num a => [a] -> [a] -> [a]
addLists xs ys = map sum . transpose $ [xs, ys]
because the length of transpose[xs, ys, ...] is the length of the longest list in its argument list, and sum :: (Foldable t, Num a) => t a -> a is already defined to sum the elements of a list (since lists are Foldable).
transpose is used here as a kind of a zip (but cutting on the longest instead of the shortest list), with [] being a default element for the lists addition ++, like 0 is a default element for the numbers addition +:
cutLongest [xs, ys] $
zipWith (++) (map pure xs ++ repeat []) (map pure ys ++ repeat [])
See also:
Zip with default value instead of dropping values?
You're looking for the semialign package. It gives you an operation like zipping, but that keeps going until both lists run out. It also generalizes to types other than lists, such as rose trees. In your case, you'd use it like this:
import Data.Semialign
import Data.These
addLists :: (Semialign f, Num a) => f a -> f a -> f a
addLists = alignWith (mergeThese (+))
longZip :: Semialign f => (a -> a -> a) -> f a -> f a -> f a
longZip = alignWith . mergeThese
The new type signatures are optional. If you want, you can keep using your old ones that restrict them to lists.

Better way to write this function: list to matrix (= list of lists)

Is there a better way to write this function (i.e. in one line via folds)?
-- list -> rowWidth -> list of lists
listToMatrix :: [a] -> Int -> [[a]]
listToMatrix [] _ = []
listToMatrix xs b = [(take b xs)] ++ (listToMatrix (drop b xs) b)
Actually this is a nice case for unfolding. Data.List method unfoldr, unlike folding a list, creates a list to a from a seed value by applying a function to it up until this function returns Nothing. Until we reach the terminating condition that will return Nothing the function returns Just (a,b) where a is the current generated item of the list and b is the next value of the seed. In this particular case our seed value is the given list.
import Data.List
chunk :: Int -> [a] -> [[a]]
chunk n = unfoldr (\xs -> if null xs then Nothing else Just (splitAt n xs))
*Main> chunk 3 [1,2,3,4,5,6,7,8,9]
[[1,2,3],[4,5,6],[7,8,9]]
*Main> chunk 3 [1,2,3,4,5,6,7,8,9,10]
[[1,2,3],[4,5,6],[7,8,9],[10]]
Yes, there is a better way to write this function. But I don't think that making it one line is going to improve anything.
Use the prepending operator (:) instead of list concatenation (++) for single-element prepending
The expression [(take b xs)] ++ (listToMatrix (drop b xs) b) is inefficient. I don't mean inefficient in terms of performances, because the compiler probably optimizes that, but, here, you are constructing a list, and then calling a function on it ((++)) which is going to deconstruct it by pattern matching. You could instead build your list directly using the (:) data constructor, which allows you to prepend a single element to your list. The expression becomes take b xs : listToMatrix (drop b xs) b
Use splitAt to avoid running through the list twice
import Data.List (splitAt)
listToMatrix :: [a] -> Int -> [[a]]
listToMatrix xs b = row : listToMatrix remaining b
where (row, remaining) = splitAt b xs
Ensure the correctness of your data by using Maybe
listToMatrix :: [a] -> Int -> Maybe [[a]]
listToMatrix xs b
| length xs `mod` b /= 0 = Nothing
| null xs = Just []
| otherwise = Just $ row : listToMatrix remaining b
where (row, remaining) = splitAt b xs
You can even avoid checking every time if you have the right number of elements by defining a helper function:
listToMatrix :: [a] -> Int -> Maybe [[a]]
listToMatrix xs b
| length xs `mod` b /= 0 = Nothing
| otherwise = Just (go xs)
where go [] = []
go xs = row : go remaining
where (row, remaining) = splitAt b xs
Ensure the correctness of your data by using safe types
A matrix has te same number of elements in each row, whereas nested lists don't allow to ensure that kind of conditions. To be certain that every row has the same number of elements, you can either use a library such as matrix or hmatrix
No, although I wish chunksOf was in the standard library. You can get that from here if you want: https://hackage.haskell.org/package/split-0.2.3.2/docs/Data-List-Split.html
Note a better definition would be:
listToMatrix xs b = (take b xs) : (listToMatrix (drop b xs) b)
although this might compile to the same core. You could also use splitAt, though again this is likely to perform the same.
listToMatrix xs b = let (xs,xss) = splitAt b xs in xs : listToMatrix xss
You can use this, the idea is to take all the chunks of the main list, it is a different approach but basicly do the same:
Prelude> let list2Matrix n xs = map (\(x ,y)-> (take n) $ (drop (n*x)) y) $ zip [0..] $ replicate (div (length xs) n) xs
Prelude> list2Matrix 10 [1..100]
[[1,2,3,4,5,6,7,8,9,10],[11,12,13,14,15,16,17,18,19,20],[21,22,23,24,25,26,27,28,29,30],[31,32,33,34,35,36,37,38,39,40],[41,42,43,44,45,46,47,48,49,50],[51,52,53,54,55,56,57,58,59,60],[61,62,63,64,65,66,67,68,69,70],[71,72,73,74,75,76,77,78,79,80],[81,82,83,84,85,86,87,88,89,90],[91,92,93,94,95,96,97,98,99,100]]

Generating a list of the gaps in other lists. Type error holding me back,

I'm trying to make a function that lists out the differences of another list. So for [1,3,7,11] it would return [2,4,4]. I'm trying to use list comprehension but I'm running into trouble with the types the functions I wanted to use take. Is it possible to keep this format by converting a [t] to an [int] and back to a [t] again?
{ difflist x y = [ p - q | p<- [x..y],
q<- [ ( [1..(length [x..y]) ] !! [x..y] ): []]] }
<interactive>:200:70: error:
• Couldn't match expected type ‘Int’ with actual type ‘[[Int]]’
• In the second argument of ‘(!!)’, namely ‘[x .. y]’
In the first argument of ‘(:)’, namely
‘([1 .. (length [x .. y])] !! [x .. y])’
In the expression: ([1 .. (length [x .. y])] !! [x .. y]) : []
How about zipWith:
Prelude> let diffList = \x -> zipWith (flip (-)) x (tail x)
Prelude> diffList [1,3,7,11]
[2,4,4]
Edit (due to comments below):
A more specific function declaration could be as follows:
diffList :: Num a => [a] -> [a]
diffList [] = []
diffList l#(_:xs) = zipWith (-) xs l
I guess #Daniel Sanchez's zipWith idea is perfectly fine. I could just do like
diffs :: Num a => [a] -> [a]
diffs [] = []
diffs (x:xs) = zipWith (-) xs (x:xs)
However i guess there is another good option which is the mapAccumL. We can implement it as follows;
diffs :: Num a => [a] -> [a]
diffs [] = []
diffs = tail.snd.mapAccumL (\a x -> (x,x-a)) 0

Zip with default value instead of dropping values?

I'm looking for a function in haskell to zip two lists that may vary in length.
All zip functions I could find just drop all values of a lists that is longer than the other.
For example:
In my exercise I have two example lists.
If the first one is shorter than the second one I have to fill up using 0's. Otherwise I have to use 1's.
I'm not allowed to use any recursion. I just have to use higher order functions.
Is there any function I can use?
I really could not find any solution so far.
There is some structure to this problem, and here it comes. I'll be using this stuff:
import Control.Applicative
import Data.Traversable
import Data.List
First up, lists-with-padding are a useful concept, so let's have a type for them.
data Padme m = (:-) {padded :: [m], padder :: m} deriving (Show, Eq)
Next, I remember that the truncating-zip operation gives rise to an Applicative instance, in the library as newtype ZipList (a popular example of a non-Monad). The Applicative ZipList amounts to a decoration of the monoid given by infinity and minimum. Padme has a similar structure, except that its underlying monoid is positive numbers (with infinity), using one and maximum.
instance Applicative Padme where
pure = ([] :-)
(fs :- f) <*> (ss :- s) = zapp fs ss :- f s where
zapp [] ss = map f ss
zapp fs [] = map ($ s) fs
zapp (f : fs) (s : ss) = f s : zapp fs ss
I am obliged to utter the usual incantation to generate a default Functor instance.
instance Functor Padme where fmap = (<*>) . pure
Thus equipped, we can pad away! For example, the function which takes a ragged list of strings and pads them with spaces becomes a one liner.
deggar :: [String] -> [String]
deggar = transpose . padded . traverse (:- ' ')
See?
*Padme> deggar ["om", "mane", "padme", "hum"]
["om ","mane ","padme","hum "]
This can be expressed using These ("represents values with two non-exclusive possibilities") and Align ("functors supporting a zip operation that takes the union of non-uniform shapes") from the these library:
import Data.Align
import Data.These
zipWithDefault :: Align f => a -> b -> f a -> f b -> f (a, b)
zipWithDefault da db = alignWith (fromThese da db)
salign and the other specialised aligns in Data.Align are also worth having a look at.
Thanks to u/WarDaft, u/gallais and u/sjakobi over at r/haskell for pointing out this answer should exist here.
You can append an inifinte list of 0 or 1 to each list and then take the number you need from the result zipped list:
zipWithDefault :: a -> b -> [a] -> [b] -> [(a,b)]
zipWithDefault da db la lb = let len = max (length la) (length lb)
la' = la ++ (repeat da)
lb' = lb ++ (repeat db)
in take len $ zip la' lb'
This should do the trick:
import Data.Maybe (fromMaybe)
myZip dx dy xl yl =
map (\(x,y) -> (fromMaybe dx x, fromMaybe dy y)) $
takeWhile (/= (Nothing, Nothing)) $
zip ((map Just xl) ++ (repeat Nothing)) ((map Just yl) ++ (repeat Nothing))
main = print $ myZip 0 1 [1..10] [42,43,44]
Basically, append an infinite list of Nothing to the end of both lists, then zip them, and drop the results when both are Nothing. Then replace the Nothings with the appropriate default value, dropping the no longer needed Justs while you're at it.
No length, no counting, no hand-crafted recursions, no cooperating folds. transpose does the trick:
zipLongest :: a -> b -> [a] -> [b] -> [(a,b)]
zipLongest x y xs ys = map head . transpose $ -- longest length;
[ -- view from above:
zip xs
(ys ++ repeat y) -- with length of xs
, zip (xs ++ repeat x)
ys -- with length of ys
]
The result of transpose is as long a list as the longest one in its input list of lists. map head takes the first element in each "column", which is the pair we need, whichever the longest list was.
(update:) For an arbitrary number of lists, efficient padding to the maximal length -- aiming to avoid the potentially quadratic behaviour of other sequentially-combining approaches -- can follow the same idea:
padAll :: a -> [[a]] -> [[a]]
padAll x xss = transpose $
zipWith const
(transpose [xs ++ repeat x | xs <- xss]) -- pad all, and cut
(takeWhile id . map or . transpose $ -- to the longest list
[ (True <$ xs) ++ repeat False | xs <- xss])
> mapM_ print $ padAll '-' ["ommmmmmm", "ommmmmm", "ommmmm", "ommmm", "ommm",
"omm", "om", "o"]
"ommmmmmm"
"ommmmmm-"
"ommmmm--"
"ommmm---"
"ommm----"
"omm-----"
"om------"
"o-------"
You don't have to compare list lengths. Try to think about your zip function as a function taking only one argument xs and returning a function which will take ys and perform the required zip. Then, try to write a recursive function which recurses on xs only, as follows.
type Result = [Int] -> [(Int,Int)]
myZip :: [Int] -> Result
myZip [] = map (\y -> (0,y)) -- :: Result
myZip (x:xs) = f x (myZip xs) -- :: Result
where f x k = ??? -- :: Result
Once you have found f, notice that you can turn the recursion above into a fold!
As you said yourself, the standard zip :: [a] -> [b] -> [(a, b)] drops elements from the longer list. To amend for this fact you can modify your input before giving it to zip. First you will have to find out which list is the shorter one (most likely, using length). E.g.,
zip' x xs y ys | length xs <= length ys = ...
| otherwise = ...
where x is the default value for shorter xs and y the default value for shorter ys.
Then you extend the shorter list with the desired default elements (enough to account for the additional elements of the other list). A neat trick for doing so without having to know the length of the longer list is to use the function repeat :: a -> [a] that repeats its argument infinitely often.
zip' x xs y ys | length xs <= length ys = zip {-do something with xs-} ys
| otherwise = zip xs {-do something with ys-}
Here is another solution, that does work on infinite lists and is a straightforward upgrade of Prelude's zip functions:
zipDefault :: a -> b -> [a] -> [b] -> [(a,b)]
zipDefault _da _db [] [] = []
zipDefault da db (a:as) [] = (a,db) : zipDefault da db as []
zipDefault da db [] (b:bs) = (da,b) : zipDefault da db [] bs
zipDefault da db (a:as) (b:bs) = (a,b) : zipDefault da db as bs
and
zipDefaultWith :: a -> b -> (a->b->c) -> [a] -> [b] -> [c]
zipDefaultWith _da _db _f [] [] = []
zipDefaultWith da db f (a:as) [] = f a db : zipDefaultWith da db f as []
zipDefaultWith da db f [] (b:bs) = f da b : zipDefaultWith da db f [] bs
zipDefaultWith da db f (a:as) (b:bs) = f a b : zipDefaultWith da db f as bs
#pigworker, thank you for your enlightening solution!
Yet another implementation:
zipWithDefault :: a -> b -> (a -> b -> c) -> [a] -> [b] -> [c]
zipWithDefault dx _ f [] ys = zipWith f (repeat dx) ys
zipWithDefault _ dy f xs [] = zipWith f xs (repeat dy)
zipWithDefault dx dy f (x:xs) (y:ys) = f x y : zipWithDefault dx dy f xs ys
And also:
zipDefault :: a -> b -> [a] -> [b] -> [c]
zipDefault dx dy = zipWithDefault dx dy (,)
I would like to address the second part of Will Ness's solution, with its excellent use of known functions, by providing another to the original question.
zipPadWith :: a -> b -> (a -> b -> c) -> [a] -> [b] -> [c]
zipPadWith n _ f [] l = [f n x | x <- l]
zipPadWith _ m f l [] = [f x m | x <- l]
zipPadWith n m f (x:xs) (y:ys) = f x y : zipPadWith n m f xs ys
This function will pad a list with an element of choice. You can use a list of the same element repeated as many times as the number of lists in another like this:
rectangularWith :: a -> [[a]] -> [[a]]
rectangularWith _ [] = []
rectangularWith _ [ms] = [[m] | m <- ms]
rectangularWith n (ms:mss) = zipPadWith n [n | _ <- mss] (:) ms (rectangularWith n mss)
The end result will have been a transposed rectangular list of lists padded by the element that we provided so we only need to import transpose from Data.List and recover the order of the elements.
mapM_ print $ transpose $ rectangularWith 0 [[1,2,3,4],[5,6],[7,8],[9]]
[1,2,3,4]
[5,6,0,0]
[7,8,0,0]
[9,0,0,0]

Replace an element in a list only once - Haskell

I want to replace an element in a list with a new value only at first time occurrence.
I wrote the code below but using it, all the matched elements will change.
replaceX :: [Int] -> Int -> Int -> [Int]
replaceX items old new = map check items where
check item | item == old = new
| otherwise = item
How can I modify the code so that the changing only happen at first matched item?
Thanks for helping!
The point is that map and f (check in your example) only communicate regarding how to transform individual elements. They don't communicate about how far down the list to transform elements: map always carries on all the way to the end.
map :: (a -> b) -> [a] -> [b]
map _ [] = []
map f (x:xs) = f x : map f xs
Let's write a new version of map --- I'll call it mapOnce because I can't think of a better name.
mapOnce :: (a -> Maybe a) -> [a] -> [a]
There are two things to note about this type signature:
Because we may stop applying f part-way down the list, the input list and the output list must have the same type. (With map, because the entire list will always be mapped, the type can change.)
The type of f hasn't changed to a -> a, but to a -> Maybe a.
Nothing will mean "leave this element unchanged, continue down the list"
Just y will mean "change this element, and leave the remaining elements unaltered"
So:
mapOnce _ [] = []
mapOnce f (x:xs) = case f x of
Nothing -> x : mapOnce f xs
Just y -> y : xs
Your example is now:
replaceX :: [Int] -> Int -> Int -> [Int]
replaceX items old new = mapOnce check items where
check item | item == old = Just new
| otherwise = Nothing
You can easily write this as a recursive iteration like so:
rep :: Eq a => [a] -> a -> a -> [a]
rep items old new = rep' items
where rep' (x:xs) | x == old = new : xs
| otherwise = x : rep' xs
rep' [] = []
A direct implementation would be
rep :: Eq a => a -> a -> [a] -> [a]
rep _ _ [] = []
rep a b (x:xs) = if x == a then b:xs else x:rep a b xs
I like list as last argument to do something like
myRep = rep 3 5 . rep 7 8 . rep 9 1
An alternative using the Lens library.
>import Control.Lens
>import Control.Applicative
>_find :: (a -> Bool) -> Simple Traversal [a] a
>_find _ _ [] = pure []
>_find pred f (a:as) = if pred a
> then (: as) <$> f a
> else (a:) <$> (_find pred f as)
This function takes a (a -> Bool) which is a function that should return True on an type 'a' that you wan to modify.
If the first number greater then 5 needs to be doubled then we could write:
>over (_find (>5)) (*2) [4, 5, 3, 2, 20, 0, 8]
[4,5,3,2,40,0,8]
The great thing about lens is that you can combine them together by composing them (.). So if we want to zero the first number <100 in the 2th sub list we could:
>over ((element 1).(_find (<100))) (const 0) [[1,2,99],[101,456,50,80,4],[1,2,3,4]]
[[1,2,99],[101,456,0,80,4],[1,2,3,4]]
To be blunt, I don't like most of the answers so far. dave4420 presents some nice insights on map that I second, but I also don't like his solution.
Why don't I like those answers? Because you should be learning to solve problems like these by breaking them down into smaller problems that can be solved by simpler functions, preferably library functions. In this case, the library is Data.List, and the function is break:
break, applied to a predicate p and a list xs, returns a tuple where first element is longest prefix (possibly empty) of xs of elements that do not satisfy p and second element is the remainder of the list.
Armed with that, we can attack the problem like this:
Split the list into two pieces: all the elements before the first occurence of old, and the rest.
The "rest" list will either be empty, or its first element will be the first occurrence of old. Both of these cases are easy to handle.
So we have this solution:
import Data.List (break)
replaceX :: Eq a => a -> a -> [a] -> [a]
replaceX old new xs = beforeOld ++ replaceFirst oldAndRest
where (beforeOld, oldAndRest) = break (==old) xs
replaceFirst [] = []
replaceFirst (_:rest) = new:rest
Example:
*Main> replaceX 5 7 ([1..7] ++ [1..7])
[1,2,3,4,7,6,7,1,2,3,4,5,6,7]
So my advice to you:
Learn how to import libraries.
Study library documentation and learn standard functions. Data.List is a great place to start.
Try to use those library functions as much as you can.
As a self study exercise, you can pick some of the standard functions from Data.List and write your own versions of them.
When you run into a problem that can't be solved with a combination of library functions, try to invent your own generic function that would be useful.
EDIT: I just realized that break is actually a Prelude function, and doesn't need to be imported. Still, Data.List is one of the best libraries to study.
Maybe not the fastest solution, but easy to understand:
rep xs x y =
let (left, (_ : right)) = break (== x) xs
in left ++ [y] ++ right
[Edit]
As Dave commented, this will fail if x is not in the list. A safe version would be:
rep xs x y =
let (left, right) = break (== x) xs
in left ++ [y] ++ drop 1 right
[Edit]
Arrgh!!!
rep xs x y = left ++ r right where
(left, right) = break (== x) xs
r (_:rs) = y:rs
r [] = []
replaceValue :: Int -> Int -> [Int] -> [Int]
replaceValue a b (x:xs)
|(a == x) = [b] ++ xs
|otherwise = [x] ++ replaceValue a b xs
Here's an imperative way to do it, using State Monad:
import Control.Monad.State
replaceOnce :: Eq a => a -> a -> [a] -> [a]
replaceOnce old new items = flip evalState False $ do
forM items $ \item -> do
replacedBefore <- get
if item == old && not replacedBefore
then do
put True
return new
else
return old