itertools.tee equivalent in Boost::Range? - c++

Python's itertools has tee for n-plicating iterables:
def tee(iterable, n=2):
it = iter(iterable)
deques = [collections.deque() for i in range(n)]
def gen(mydeque):
while True:
if not mydeque: # when the local deque is empty
newval = next(it) # fetch a new value and
for d in deques: # load it to all the deques
d.append(newval)
yield mydeque.popleft()
return tuple(gen(d) for d in deques)
I couldn't find the equivalent in Boost::Range. Am I missing something or should I just roll my own?

itertools.tee is well-suited for single pass iterables which are ubiquitous in Python. For instance Generators are single pass, and they are often used.
But if you already have list/deque you will not use itertools.tee for it, because it would involve superfluous duplication - you can just iterate over original list/deque over and over again.
C++ also has concept of single pass ranges, for instance Input Iterator, but they are not so ubiquitous. It is consequence of another set of aims of typical C++ program - give to user maximum as possible maintaining best performance. It is another mindset if you wish.
To illustrate this let's compare boost::transformed and itertools.imap (or generator expressions):
They both provide view of input sequence via given "prism". itertools.imap returns single pass iterable, while boost::transformed returns range view which has same category as input range - i.e., if you would pass Random Access Range as input you would get Random Access Range as the result.
Another fact is that C++ employs value semantics by default, while python has pointer semantics. It means that if copy iterator in C++, and "bump" it several times - original iterator will not be changed (though it can be invalidated if it is single pass range, but it is not the point).
But, sometimes you do want to accumulate values from single pass range and look at them several times. In such case, most common solution is to accumulate values to some container explicitly, by hands. For instance:
vector<int> cache(first,last);
However, tee-like wrappers are still possible in C++, here is proof-of-concept. Usage is:
auto forward_range = tee_range(first,last);
tee_range takes single pass range as argument and returns forward range (which is multi-pass) (there is also make_tee_iterator, which works at iterator level). So, you can take copies of that range and iterate it several times:
auto r = forward_range;
auto out = ostream_iterator<int>(cout," ");
copy(forward_range,out);
copy(forward_range,out);
copy(r,out);
Therer is also improvenment over itertools.tee - internally, only one deque is used to cache values.
live demo:
#include <boost/range/adaptor/transformed.hpp>
#include <boost/iterator/iterator_facade.hpp>
#include <boost/smart_ptr/make_shared.hpp>
#include <boost/range/iterator_range.hpp>
#include <boost/smart_ptr/shared_ptr.hpp>
#include <boost/container/vector.hpp>
#include <boost/container/deque.hpp>
#include <boost/range/algorithm.hpp>
#include <algorithm>
#include <iterator>
#include <cassert>
#include <limits>
template<typename InputIterator>
class tee_iterator : public boost::iterator_facade
<
tee_iterator<InputIterator>,
const typename std::iterator_traits<InputIterator>::value_type,
boost::forward_traversal_tag
>
{
typedef typename std::iterator_traits<InputIterator>::value_type Value;
typedef unsigned Index;
struct Data
{
boost::container::deque<Value> values;
boost::container::vector<tee_iterator*> iterators;
InputIterator current,end;
Index min_index, current_index;
Index poped_from_front;
//
Data(InputIterator first,InputIterator last)
: current(first), end(last), min_index(0), current_index(0), poped_from_front(0)
{}
~Data()
{
assert(iterators.empty());
}
};
boost::shared_ptr<Data> shared_data;
Index index;
static Index get_index(tee_iterator *p)
{
return p->index;
}
public:
tee_iterator()
: index(std::numeric_limits<Index>::max())
{}
tee_iterator(InputIterator first,InputIterator last)
: shared_data(boost::make_shared<Data>(first,last)), index(0)
{
shared_data->iterators.push_back(this);
}
tee_iterator(const tee_iterator &x)
: shared_data(x.shared_data), index(x.index)
{
if(shared_data)
shared_data->iterators.push_back(this);
}
friend void swap(tee_iterator &l,tee_iterator &r)
{
using std::swap;
*boost::find(l.shared_data->iterators,&l) = &r;
*boost::find(r.shared_data->iterators,&r) = &l;
swap(l.shared_data,r.shared_data);
swap(l.index,r.index);
}
tee_iterator &operator=(tee_iterator x)
{
swap(x,*this);
}
~tee_iterator()
{
if(shared_data)
{
erase_from_iterators();
if(!shared_data->iterators.empty())
{
using boost::adaptors::transformed;
shared_data->min_index = *boost::min_element(shared_data->iterators | transformed(&get_index));
Index to_pop = shared_data->min_index - shared_data->poped_from_front;
if(to_pop>0)
{
shared_data->values.erase(shared_data->values.begin(), shared_data->values.begin()+to_pop);
shared_data->poped_from_front += to_pop;
}
}
}
}
private:
friend class boost::iterator_core_access;
void erase_from_iterators()
{
shared_data->iterators.erase(boost::find(shared_data->iterators,this));
}
bool last_min_index() const
{
return boost::count
(
shared_data->iterators | boost::adaptors::transformed(&get_index),
shared_data->min_index
)==1;
}
Index obtained() const
{
return Index(shared_data->poped_from_front + shared_data->values.size());
}
void increment()
{
if((shared_data->min_index == index) && last_min_index())
{
shared_data->values.pop_front();
++shared_data->min_index;
++shared_data->poped_from_front;
}
++index;
if(obtained() <= index)
{
++shared_data->current;
if(shared_data->current != shared_data->end)
{
shared_data->values.push_back(*shared_data->current);
}
else
{
erase_from_iterators();
index=std::numeric_limits<Index>::max();
shared_data.reset();
}
}
}
bool equal(const tee_iterator& other) const
{
return (shared_data.get()==other.shared_data.get()) && (index == other.index);
}
const Value &dereference() const
{
if((index==0) && (obtained() <= index))
{
shared_data->values.push_back(*(shared_data->current));
}
assert( (index-shared_data->poped_from_front) < shared_data->values.size());
return shared_data->values[index-shared_data->poped_from_front];
}
};
template<typename InputIterator>
tee_iterator<InputIterator> make_tee_iterator(InputIterator first,InputIterator last)
{
return tee_iterator<InputIterator>(first,last);
}
template<typename InputIterator>
boost::iterator_range< tee_iterator<InputIterator> > tee_range(InputIterator first,InputIterator last)
{
return boost::iterator_range< tee_iterator<InputIterator> >
(
tee_iterator<InputIterator>(first,last),
tee_iterator<InputIterator>()
);
}
// _______________________________________________________ //
#include <iostream>
#include <ostream>
#include <sstream>
int main()
{
using namespace std;
stringstream ss;
ss << "1 2 3 4 5";
istream_iterator<int> first(ss /*cin*/ ),last;
typedef boost::iterator_range< tee_iterator< istream_iterator<int> > > Range; // C++98
Range r1 = tee_range(first,last);
Range r2 = r1, r3 = r1;
boost::copy(r1,ostream_iterator<int>(cout," "));
cout << endl;
boost::copy(r2,ostream_iterator<int>(cout," "));
cout << endl;
boost::copy(r2,ostream_iterator<int>(cout," "));
}
Output is:
1 2 3 4 5
1 2 3 4 5
1 2 3 4 5
Boost.Spirit has Multi Pass iterator which has similar aims.
The multi_pass iterator will convert any input iterator into a forward iterator suitable for use with Spirit.Qi. multi_pass will buffer data when needed and will discard the buffer when its contents is not needed anymore. This happens either if only one copy of the iterator exists or if no backtracking can occur.

Related

How to write an infinite sequence compatible with std::ranges?

I would like to write a struct which will generate an infinite sequence of fibonacci numbers in a way compatible with std::ranges and range adaptors.
So if I wanted the first 5 even fibonacci numbers, I would write something like this:
#include <iostream>
#include <ranges>
using namespace std;
int main() {
auto is_even = [](auto a) { return a % 2 == 0; };
for (auto v :
something | ranges::views::filter(is_even) | ranges::views::take(5))
std::cout << v << std::endl;
return 0;
}
What "something" needs to be ?
It seems to me that it has to be a class with a forward iterator, but I can't find any example.
Edit: As it was pointed out by 康桓瑋 in the comments, there has been a better, cleaner solution presented at Cppcon, link, by Tristan Brindle.
I think this could serve as a quick reference to make custom iterator-based generators.
By your requirements, something must be a std::ranges::view, meaning it must be a moveable std::ranges::range deriving from std::ranges::view_interface<something>.
We can tackle all three with the following:
#include <ranges>
template<typename T>
class fib : public std::ranges::view_interface<fib<T>>{
public:
struct iterator;
auto begin() const { return iterator{}; }
auto end() const { return std::unreachable_sentinel; }
};
Notice std::unreachable_sentinel which makes creating sequences without end really simple.
We still have to define the iterator which does the actual work. In your case we want fib to be "the source" of the values, so our iterator should actually be std::input_iterator. There's some boiler plate code needed for that but it's basically just a type which can be incremented and dereferenced to yield its current value.
Something like this will do:
#include <iterator>
template<typename T>
struct fib<T>::iterator {
using iterator_category = std::input_iterator_tag;
using value_type = T;
using difference_type = std::ptrdiff_t;
using pointer = T*;
using reference = T;
constexpr iterator() noexcept = default;
iterator& operator++() {
auto old_next = next;
next = next + current;
current = old_next;
return *this;
}
iterator operator++(int) {
iterator current{*this};
++(*this);
return current;
}
value_type operator*() const {
return current;
}
bool operator==(const iterator& other) const { return current == other.current && next==other.next; }
private:
T current= {};
T next = T{} + 1; // Could perhaps be fancier.
};
The increment operator does the computation itself, it's the simple iterating algorithm.
That's it, here's a working example:
#include <cstdint>
#include <iostream>
int main() {
auto is_even = [](auto a) { return a % 2 == 0; };
for (auto v :
fib<std::uint64_t>{} | std::ranges::views::filter(is_even) | std::ranges::views::take(10))
std::cout << v << std::endl;
return 0;
}
which outputs:
0
2
8
34
144
610
2584
10946
46368
196418
Of course you won't get very far even with std::uint64_t. But T can be anything numeric enough.
One can easily generalize the iterator to hold a stateful functor, likely passed from the range itself, call it during each increment and store the yielded value for dereferencing later. This would be very crude, but simple, way how to at least simulate "yield-based" generators.

How to create a `range`-like iterable object of floats?

I want to create a range-like construct in c++, that will be used like this:
for (auto i: range(5,9))
cout << i << ' '; // prints 5 6 7 8
for (auto i: range(5.1,9.2))
cout << i << ' '; // prints 5.1 6.1 7.1 8.1 9.1
Handling the integer case is relatively easy:
template<typename T>
struct range
{
T from, to;
range(T from, T to) : from(from), to(to) {}
struct iterator
{
T current;
T operator*() { return current; }
iterator& operator++()
{
++current;
return *this;
}
bool operator==(const iterator& other) { return current == other.current; }
bool operator!=(const iterator& other) { return current != other.current; }
};
iterator begin() const { return iterator{ from }; }
iterator end() const { return iterator{ to }; }
};
However, this does not work in the float case, since the standard range-based loop in C++ checks whether iter==end and not whether iter <= end as you would do in a for a loop.
Is there a simple way to create an iterable object that will behave like a correct range based for-loop on floats?
Here is my attempt which does not impair the semantics of iterators. Now, each iterator knows its stopping value. The iterator will set itself to this value upon exceeding it. All end iterators of a range with equal to therefore compare equal.
template <typename T>
struct range {
T from, to;
range(T from, T to): from(from), to(to) {}
struct iterator {
const T to; // iterator knows its bounds
T current;
T operator*() { return current; }
iterator& operator++() {
++current;
if(current > to)
// make it an end iterator
// (current being exactly equal to 'current' of other end iterators)
current = to;
return *this;
}
bool operator==(const iterator& other) const // OT: note the const
{ return current == other.current; }
// OT: this is how we do !=
bool operator!=(const iterator& other) const { return !(*this == other); }
};
iterator begin() const { return iterator{to, from}; }
iterator end() const { return iterator{to, to}; }
};
Why is this better?
The solution by #JeJo relies on the order in which you compare those iterators, i.e. it != end or end != it. But, in the case of range-based for, it is defined. Should you use this contraption in some other context, I advise the above approach.
Alternatively, if sizeof(T) > sizeof(void*), it makes sense to store a pointer to the originating range instance (which in the case of the range-for persists until the end) and use that to refer to a single T value:
template <typename T>
struct range {
T from, to;
range(T from, T to): from(from), to(to) {}
struct iterator {
range const* range;
T current;
iterator& operator++() {
++current;
if(current > range->to)
current = range->to;
return *this;
}
...
};
iterator begin() const { return iterator{this, from}; }
iterator end() const { return iterator{this, to}; }
};
Or it could be T const* const pointing directly to that value, it is up to you.
OT: Do not forget to make the internals private for both classes.
Instead of a range object you could use a generator (a coroutine using co_yield). Despite it is not in the standard (but planned for C++20), some compilers already implement it.
See: https://en.cppreference.com/w/cpp/language/coroutines
With MSVC it would be:
#include <iostream>
#include <experimental/generator>
std::experimental::generator<double> rangeGenerator(double from, double to) {
for (double x=from;x <= to;x++)
{
co_yield x;
}
}
int main()
{
for (auto i : rangeGenerator(5.1, 9.2))
std::cout << i << ' '; // prints 5.1 6.1 7.1 8.1 9.1
}
Is there a simple way to create an iterable object that will behave
like a correct for loop on floats?
The simplest hack† would be using the traits std::is_floating_point to provide different return (i.e. iter <= end) within the operator!= overload.
(See Live)
#include <type_traits>
bool operator!=(const iterator& other)
{
if constexpr (std::is_floating_point_v<T>) return current <= other.current;
return !(*this == other);
}
†Warning: Even though that does the job, it breaks the meaning of operator!= overload.
Alternative Solution
The entire range class can be replaced by a simple function in which the values of the range will be populated with the help of std::iota
in the standard container std::vector.
Use SFINE, to restrict the use of the function for only the valid types.
This way, you can rely on standard implementations and forget about the reinventions.
(See Live)
#include <iostream>
#include <type_traits>
#include <vector> // std::vector
#include <numeric> // std::iota
#include <cstddef> // std::size_t
#include <cmath> // std::modf
// traits for valid template types(integers and floating points)
template<typename Type>
using is_integers_and_floats = std::conjunction<
std::is_arithmetic<Type>,
std::negation<std::is_same<Type, bool>>,
std::negation<std::is_same<Type, char>>,
std::negation<std::is_same<Type, char16_t>>,
std::negation<std::is_same<Type, char32_t>>,
std::negation<std::is_same<Type, wchar_t>>
/*, std::negation<std::is_same<char8_t, Type>> */ // since C++20
>;
template <typename T>
auto ragesof(const T begin, const T end)
-> std::enable_if_t<is_integers_and_floats<T>::value, std::vector<T>>
{
if (begin >= end) return std::vector<T>{}; // edge case to be considered
// find the number of elements between the range
const std::size_t size = [begin, end]() -> std::size_t
{
const std::size_t diffWhole
= static_cast<std::size_t>(end) - static_cast<std::size_t>(begin);
if constexpr (std::is_floating_point_v<T>) {
double whole; // get the decimal parts of begin and end
const double decimalBegin = std::modf(static_cast<double>(begin), &whole);
const double decimalEnd = std::modf(static_cast<double>(end), &whole);
return decimalBegin <= decimalEnd ? diffWhole + 1 : diffWhole;
}
return diffWhole;
}();
// construct and initialize the `std::vector` with size
std::vector<T> vec(size);
// populates the range from [first, end)
std::iota(std::begin(vec), std::end(vec), begin);
return vec;
}
int main()
{
for (auto i : ragesof( 5, 9 ))
std::cout << i << ' '; // prints 5 6 7 8
std::cout << '\n';
for (auto i : ragesof(5.1, 9.2))
std::cout << i << ' '; // prints 5.1 6.1 7.1 8.1 9.1
}
A floating-point loop or iterator should typically use integer types to hold the total number of iterations and the number of the current iteration, and then compute the "loop index" value used within the loop based upon those and loop-invariant floating-point values.
For example:
for (int i=-10; i<=10; i++)
{
double x = i/10.0; // Substituting i*0.1 would be faster but less accurate
}
or
for (int i=0; i<=16; i++)
{
double x = ((startValue*(16-i))+(endValue*i))*(1/16);
}
Note that there is no possibility of rounding errors affecting the number of iterations. The latter calculation is guaranteed to yield a correctly-rounded result at the endpoints; computing startValue+i*(endValue-startValue) would likely be faster (since the loop-invariant (endValue-startValue) can be hoisted) but may be less accurate.
Using an integer iterator along with a function to convert an integer to a floating-point value is probably the most robust way to iterate over a range of floating-point values. Trying to iterate over floating-point values directly is far more likely to yield "off-by-one" errors.

need STL set in insertion order

How to store elements in set in insertion order.
for example.
set<string>myset;
myset.insert("stack");
myset.insert("overflow");
If you print, the output is
overflow
stack
needed output :
stack
overflow
One way is to use two containers, a std::deque to store the elements in insertion order, and another std::set to make sure there are no duplicates.
When inserting an element, check if it's in the set first, if yes, throw it out; if it's not there, insert it both in the deque and the set.
One common scenario is to insert all elements first, then process(no more inserting), if this is the case, the set can be freed after the insertion process.
A set is the wrong container for keeping insertion order, it will sort its element according to the sorting criterion and forget the insertion order. You have to use a sequenced container like vector, deque or list for that. If you additionally need the associative access set provides you would have to store your elements in multiple containers simultaneously or use a non-STL container like boost::multi_index which can maintain multiple element orders at the same time.
PS: If you sort the elements before inserting them in a set, the set will keep them in insertion order but I think that will not address your problem.
If you don't need any order besides the insertion order, you could also store the insert number in the stored element and make that the sorting criterion. However, why one would use a set in this case at all escapes me. ;)
Here's how I do it:
template <class T>
class VectorSet
{
public:
using iterator = typename vector<T>::iterator;
using const_iterator = typename vector<T>::const_iterator;
iterator begin() { return theVector.begin(); }
iterator end() { return theVector.end(); }
const_iterator begin() const { return theVector.begin(); }
const_iterator end() const { return theVector.end(); }
const T& front() const { return theVector.front(); }
const T& back() const { return theVector.back(); }
void insert(const T& item) { if (theSet.insert(item).second) theVector.push_back(item); }
size_t count(const T& item) const { return theSet.count(item); }
bool empty() const { return theSet.empty(); }
size_t size() const { return theSet.size(); }
private:
vector<T> theVector;
set<T> theSet;
};
Of course, new forwarding functions can be added as needed, and can be forwarded to whichever of the two data structures implements them most efficiently. If you are going to make heavy use of STL algorithms on this (I haven't needed to so far) you may also want to define member types that the STL expects to find, like value_type and so forth.
If you can use Boost, a very straightforward solution is to use the header-only library Boost.Bimap (bidirectional maps).
Consider the following sample program that will display your dummy entries in insertion order (try out here):
#include <iostream>
#include <string>
#include <type_traits>
#include <boost/bimap.hpp>
using namespace std::string_literals;
template <typename T>
void insertCallOrdered(boost::bimap<T, size_t>& mymap, const T& element) {
// We use size() as index, therefore indexing with 0, 1, ...
// as we add elements to the bimap.
mymap.insert({ element, mymap.size() });
}
int main() {
boost::bimap<std::string, size_t> mymap;
insertCallOrdered(mymap, "stack"s);
insertCallOrdered(mymap, "overflow"s);
// Iterate over right map view (integers) in sorted order
for (const auto& rit : mymap.right) {
std::cout << rit.first << " -> " << rit.second << std::endl;
}
}
I'm just wondering why nobody has suggested using such a nice library as Boost MultiIndex. Here's an example how to do that:
#include <boost/multi_index_container.hpp>
#include <boost/multi_index/indexed_by.hpp>
#include <boost/multi_index/identity.hpp>
#include <boost/multi_index/sequenced_index.hpp>
#include <boost/multi_index/ordered_index.hpp>
#include <iostream>
template<typename T>
using my_set = boost::multi_index_container<
T,
boost::multi_index::indexed_by<
boost::multi_index::sequenced<>,
boost::multi_index::ordered_unique<boost::multi_index::identity<T>>
>
>;
int main() {
my_set<int> set;
set.push_back(10);
set.push_back(20);
set.push_back(3);
set.push_back(11);
set.push_back(1);
// Prints elements of the set in order of insertion.
const auto &index = set.get<0>();
for (const auto &item : index) {
std::cout << item << " ";
}
// Prints elements of the set in order of value.
std::cout << "\n";
const auto &ordered_index = set.get<1>();
for (const auto &item : ordered_index) {
std::cout << item << " ";
}
}
what you need is this, very simple and a standard library. Example online compiler link: http://cpp.sh/7hsxo
#include <iostream>
#include <string>
#include <unordered_set>
static std::unordered_set<std::string> myset;
int main()
{
myset.insert("blah");
myset.insert("blah2");
myset.insert("blah3");
int count = 0;
for ( auto local_it = myset.begin(); local_it!= myset.end(); ++local_it ) {
printf("index: [%d]: %s\n", count, (*local_it).c_str());
count++;
}
printf("\n");
for ( unsigned i = 0; i < myset.bucket_count(); ++i) {
for ( auto local_it = myset.begin(i); local_it!= myset.end(i); ++local_it )
printf("bucket: [%d]: %s\n", i, (*local_it).c_str());
}
}

Constant time test for first element in intrusive rbtree

How can I efficiently tell if an element is at the beginning of an intrusive set or rbtree? I would like to define a simple function prev that returns a pointer to the previous item in a tree, or nullptr if there is no previous item. An analogous next function is easy to write, using iterator_to and comparing to end(). However, there is no equivalent reverse_iterator_to function that would allow me to compare to rend(). Moreover, I specifically do not want to compare to begin(), because that's not constant time in a red-black tree.
One thing that certainly seems to work is decrementing an iterator and comparing it to end(). That works fine with the implementation, but I can find no support for this in the documentation. What's the best way to implement prev in the following minimal working example?
#include <iostream>
#include <string>
#include <boost/intrusive/set.hpp>
using namespace std;
using namespace boost::intrusive;
struct foo : set_base_hook<> {
string name;
foo(const char *n) : name(n) {}
friend bool operator<(const foo &a, const foo &b) { return a.name < b.name; }
};
rbtree<foo> tree;
foo *
prev(foo *fp)
{
auto fi = tree.iterator_to(*fp);
return --fi == tree.end() ? nullptr : &*fi;
}
int
main()
{
tree.insert_equal(*new foo{"a"});
tree.insert_equal(*new foo{"b"});
tree.insert_equal(*new foo{"c"});
for (foo *fp = &*tree.find("c"); fp; fp = prev(fp))
cout << fp->name << endl;
}
Update: Okay, so what I was missing, which is probably what sehe was getting at indirectly, is that in STL begin() is actually guaranteed to be constant-time. So even though a generic red-black tree requires log(n) time to find the minimum element, an STL map doesn't--an STL std::map implementation is required to cache the first element. And I think the point sehe is making is that even though boost is not documented, it is fair to assume that boost::intrusive containers behave sort of like STL containers. Given that assumption, it is perfectly fine to say:
foo *
prev(foo *fp)
{
auto fi = tree.iterator_to(*fp);
return fi == tree.begin() ? nullptr : &*--fi;
}
As the comparison to tree.begin() shouldn't be too costly.
You can get the reverse-iterator from iterator_to.
Also, note that there is rbtree<>::container_from_iterator(iterator it) so you don't have to have a "global" state for your prev function.
You can just create the corresponding reverse_iterator. You'll have to +1 the iterator to get the expected address:
So my take on this would be (bonus: without memory leaks):
Live On Coliru
#include <boost/intrusive/set.hpp>
#include <iostream>
#include <string>
#include <vector>
using namespace boost::intrusive;
struct foo : set_base_hook<> {
std::string name;
foo(char const* n) : name(n) {}
bool operator<(const foo &b) const { return name < b.name; }
};
int main()
{
std::vector<foo> v;
v.emplace_back("a");
v.emplace_back("b");
v.emplace_back("c");
using Tree = rbtree<foo>;
Tree tree;
tree.insert_unique(v.begin(), v.end());
for (auto key : { "a", "b", "c", "missing" })
{
std::cout << "\nusing key '" << key << "': ";
auto start = tree.iterator_to(*tree.find(key));
if (start != tree.end()) {
for (auto it = Tree::reverse_iterator(++start); it != tree.rend(); ++it)
std::cout << it->name << " ";
}
}
}
Which prints
using key 'a': a
using key 'b': b a
using key 'c': c b a
using key 'missing':

C++ storing a value in an unordered pair

I want to store a floating point value for an unordered pair of an integers. I am unable to find any kind of easy to understand tutorials for this. E.g for the unordered pair {i,j} I want to store a floating point value f. How do I insert, store and retrieve values like this?
Simple way to handle unordered int pairs is using std::minmax(i,j) to generate std::pair<int,int>. This way you can implement your storage like this:
std::map<std::pair<int,int>,float> storage;
storage[std::minmax(i,j)] = 0.f;
storage[std::minmax(j,i)] = 1.f; //rewrites storage[(i,j)]
Admittedly proper hashing would give you some extra performance, but there is little harm in postponing this kind of optimization.
Here's some indicative code:
#include <iostream>
#include <unordered_map>
#include <utility>
struct Hasher
{
int operator()(const std::pair<int, int>& p) const
{
return p.first ^ (p.second << 7) ^ (p.second >> 3);
}
};
int main()
{
std::unordered_map<std::pair<int,int>, float, Hasher> m =
{ { {1,3}, 2.3 },
{ {2,3}, 4.234 },
{ {3,5}, -2 },
};
// do a lookup
std::cout << m[std::make_pair(2,3)] << '\n';
// add more data
m[std::make_pair(65,73)] = 1.23;
// output everything (unordered)
for (auto& x : m)
std::cout << x.first.first << ',' << x.first.second
<< ' ' << x.second << '\n';
}
Note that it relies on the convention that you store the unordered pairs with the lower number first (if they're not equal). You might find it convenient to write a support function that takes a pair and returns it in that order, so you can use that function when inserting new values in the map and when using a pair as a key for trying to find a value in the map.
Output:
4.234
3,5 -2
1,3 2.3
65,73 1.23
2,3 4.234
See it on ideone.com. If you want to make a better hash function, just hunt down an implementation of hash_combine (or use boost's) - plenty of questions here on SO explaining how to do that for std::pair<>s.
You implement a type UPair with your requirements and overload ::std::hash (which is the rare occasion that you are allowed to implement something in std).
#include <utility>
#include <unordered_map>
template <typename T>
class UPair {
private:
::std::pair<T,T> p;
public:
UPair(T a, T b) : p(::std::min(a,b),::std::max(a,b)) {
}
UPair(::std::pair<T,T> pair) : p(::std::min(pair.first,pair.second),::std::max(pair.first,pair.second)) {
}
friend bool operator==(UPair const& a, UPair const& b) {
return a.p == b.p;
}
operator ::std::pair<T,T>() const {
return p;
}
};
namespace std {
template <typename T>
struct hash<UPair<T>> {
::std::size_t operator()(UPair<T> const& up) const {
return ::std::hash<::std::size_t>()(
::std::hash<T>()(::std::pair<T,T>(up).first)
) ^
::std::hash<T>()(::std::pair<T,T>(up).second);
// the double hash is there to avoid the likely scenario of having the same value in .first and .second, resulinting in always 0
// that would be a problem for the unordered_map's performance
}
};
}
int main() {
::std::unordered_map<UPair<int>,float> um;
um[UPair<int>(3,7)] = 3.14;
um[UPair<int>(8,7)] = 2.71;
return 10*um[::std::make_pair(7,3)]; // correctly returns 31
}