Is there a possibility to convert array of double to char *? - c++

I am writing a program which has to create a file, map it to the memory and then write two-dimensional array of doubles to it. I encounter a problem when I look into the file. It is full of not expected values. I guess, this problem is related to casting, but can't come up with solution. So, the question is, how to convert array of doubles to char *? Hope someone can give me a clue to solve this problem.
int main(int argc, char **argv)
{
HANDLE plik, mappedFile;
char *poi;
LPCWSTR fileName = L"plik.txt";
double tab[8][12];
createMatrix(tab); // here I fill the array with values
// creating file
// mapping the file
poi = (char *)MapViewOfFile(
mappedFile,
FILE_MAP_ALL_ACCESS,
0,
0,
0);
if (!poi)
{
puts("Can't allocate Memory!");
abort();
}
memcpy(poi,tab,96*sizeof(double));
UnmapViewOfFile((void*)poi);
CloseHandle(mappedFile);
CloseHandle(plik);
getchar();
return 0;
}

I think your code is working, the file contains the double numbers, but remember that it's a binary format with floating point format, so a text editor will just show it as some junk. Try a hex editor, and check the double format. Or try to read it back.
The major problem with your approach is that it's not cross platform, a machine with different endianness wouldn't be able to properly read it (this may or may not be a problem for you).
What you want is serialization. The simplest version would just print the numbers in the file (with some user-defined limited precision) - e.g. with sprintf ..

Are you looking for something like this:
char* poi = new char[8*12*sizeof(double)];
int index = 0;
for(int i = 0; i < 8; i++)
{
for(int j = 0; j < 12; j++)
{
*(double*)(poi + index) = tab[i][j];
index+=sizeof(double);
}
}

I suggest you to replace file mapping with simple WriteFile function. It can be faster for many applications.
WriteFile(plic, tab, sizeof(tab), 0, 0);
will serialize your data accurately and quickly.

Related

Converting a unsigned char(BYTE) array to const t_wchar* (LPCWSTR)

Alright so I have a BYTE array that I need to ultimately convert into a LPCWSTR or const WCHAR* to use in a built in function. I have been able to print out the BYTE array with printf but now that I need to convert it into a string I am having problems... mainly that I have no idea how to convert something like this into a non array type.
BYTE ba[0x10];
for(int i = 0; i < 0x10; i++)
{
printf("%02X", ba[i]); // Outputs: F1BD2CC7F2361159578EE22305827ECF
}
So I need to have this same thing basically but instead of printing the array I need it transformed into a LPCWSTR or WCHAR or even a string. The main problem I am having is converting the array into a non array form.
LPCWSTR represents a UTF-16 encoded string. The array contents you have shown are outside the 7bit ASCII range, so unless the BYTE array is already encoded in UTF-16 (the array you showed is not, but if it were, you could just use a simple type-cast), you will need to do a conversion to UTF-16. You need to know the particular encoding of the array before you can do that conversion, such as with the Win32 API MultiByteToWideChar() function, or third-party libraries like iconv or ICU, or built-in locale convertors in C++11, etc. So what is the actual encoding of the array, and where is the array data coming from? It is not UTF-8, for instance, so it has to be something else.
Alright I got it working. Now I can convert the BYTE array to a char* var. Thanks for the help guys but the formatting wasn't a large problem in this instance. I appreciate the help though, its always nice to have some extra input.
// Helper function to convert
Char2Hex(unsigned char ch, char* szHex)
{
unsigned char byte[2];
byte[0] = ch/16;
byte[1] = ch%16;
for(int i = 0; i < 2; i++)
{
if(byte[i] >= 0 && byte[i] <= 9)
{
szHex[i] = '0' + byte[i];
}
else
szHex[i] = 'A' + byte[i] - 10;
}
szHex[2] = 0;
}
// Function used throughout code to convert
CharStr2HexStr(unsigned char const* pucCharStr, char* pszHexStr, int iSize)
{
int i;
char szHex[3];
pszHexStr[0] = 0;
for(i = 0; i < iSize; i++)
{
Char2Hex(pucCharStr[i], szHex);
strcat(pszHexStr, szHex);
}
}

Understanding binary conversions

I'm writing a resource file which I want to insert a bunch of data from various common files such as .JPG, .BMP (for example) and I want it to be in binary.
I'm going to code something to retrieve these data later on organized by index, and this is what I got so far:
float randomValue = 23.14f;
ofstream fileWriter;
fileWriter.open("myFile.dat", ios::binary);
fileWriter.write((char*)&randomValue, sizeof(randomValue));
fileWriter.close();
//With this my .dat file, when opened in notepad has "B!¹A" in it
float retrieveValue = 0.0f;
ifstream fileReader;
fileReader.open("myFile.dat", ios::binary);
fileReader.read((char*)&retrieveValue, sizeof(retrieveValue));
fileReader.close();
cout << retrieveValue << endl; //This gives me exactly the 23.14 I wanted, perfect!
While this works nicely, I'd like to understand what exactly is happening there.
I'm converting the address of randomValue to char*, and writing the values in this address to the file?
I'm curious also because I need to do this for an array, and I can't do this:
int* myArray = new int[10];
//fill myArray values with random stuff
fileWriter.open("myFile.dat", ios::binary);
fileWriter.write((char*)&myArray, sizeof(myArray));
fileWriter.close();
From what I understand, this would just write the first address' value in the file, not all the array. So, for testing, I'm trying to simply convert a variable to a char* which I would write to a file, and convert back to the variable to see if I'm retrieving the values correctly, so I'm with this:
int* intArray = new int[10];
for(int i = 0; i < 10; i++)
{
cout << &intArray[i]; //the address of each number in my array
cout << intArray[i]; //it's value
cout << reinterpret_cast<char*>(&intArray[i]); //the char* value of each one
}
But for some reason I don't know, my computer "beeps" when I run this code. During the array, I'm also saving these to a char* and trying to convert back to int, but I'm not getting the results expected, I'm getting some really long values.
Something like:
float randomValue = 23.14f;
char* charValue = reinterpret_cast<char*>(&randomValue);
//charValue contains "B!¹A" plus a bunch of other (un-initiallized values?) characters, so I'm guessing the value is correct
//Now I'm here
I want to convert charValue back to randomValue, how can I do it?
edit: There's valuable information in the answers below, but they don't solve my (original) problem. I was testing these type of conversions because I'm doing a code that I will pick a bunch of resource files such as BMP, JPG, MP3, and save them in a single .DAT file organized by some criteria I still haven't fully figured out.
Later, I am going to use this resource file to read from and load these contents into a program (game) I'm coding.
The criteria I am still thinking but I was wondering if it's possible to do something like this:
//In my ResourceFile.DAT
[4 bytes = objectID][3 bytes = objectType (WAV, MP3, JPG, BMP, etc)][4 bytes = objectLength][objectLength bytes = actual objectData]
//repeating this until end of file
And then in the code that reads the resource file, I want to do something like this (untested):
ifstream fileReader;
fileReader.open("myFile.DAT", ios::binary);
//file check stuff
while(!fileReader.eof())
{
//Here I'll load
int objectID = 0;
fileReader((char*)&objectID, 4); //read 4 bytes to fill objectID
char objectType[3];
fileReader(&objectType, 3); //read the type so I know which parser use
int objectLength = 0;
fileReader((char*)&objectLength, 4); //get the length of the object data
char* objectData = new char[objectLength];
fileReader(objectData, objectLength); //fill objectData with the data
//Here I'll use a parser to fill classes depending on the type etc, and move on to the next obj
}
Currently my code is working with the original files (BMP, WAV, etc) and filling them into classes, and I want to know how I can save the data from these files into a binary data file.
For example, my class that manages BMP data has this:
class FileBMP
{
public:
int imageWidth;
int imageHeight;
int* imageData;
}
When I load it, I call:
void FileBMP::Load(int iwidth, int iheight)
{
int imageTotalSize = iwidth * iheight * 4;
imageData = new int[imageTotalSize]; //This will give me 4 times the amount of pixels in the image
int cPixel = 0;
while(cPixel < imageTotalSize)
{
imageData[cPixel] = 0; //R value
imageData[cPixel + 1] = 0; //G value
imageData[cPixel + 2] = 0; //B value
imageData[cPixel + 3] = 0; //A value
cPixel += 4;
}
}
So I have this single dimension array containing values in the format of [RGBA] per pixel, which I am using later on for drawing on screen.
I want to be able to save just this array in the binary data format that I am planning that I stated above, and then read it and fill this array.
I think it's asking too much for a code like this, so I'd like to understand what I need to know to save these values into a binary file and then read back to fill it.
Sorry for the long post!
edit2: I solved my problem by making the first edit... thanks for the valuable info, I also got to know what I wanted to!
By using the & operator, you're getting a pointer to the contents of the variable (think of it as just a memory address).
float a = 123.45f;
float* p = &a; // now p points to a, i.e. has the memory address to a's contents.
char* c = (char*)&a; // c points to the same memory location, but the code says to treat the contents as char instead of float.
When you gave the (char*)&randomValue for write(), you simply told "take this memory address having char data and write sizeof(randomValue) chars from there". You're not writing the address value itself, but the contents from that location of memory ("raw binary data").
cout << reinterpret_cast<char*>(&intArray[i]); //the char* value of each one
Here you're expected to give char* type data, terminated with a null char (zero). However, you're providing the raw bytes of the float value instead. Your program might crash here, as cout will input chars until it finds the terminator char -- which it might not find anytime soon.
float randomValue = 23.14f;
char* charValue = reinterpret_cast<char*>(&randomValue);
float back = *(float*)charValue;
Edit: to save binary data, you simply need to provide the data and write() it. Do not use << operator overloads with ofstream/cout. For example:
int values[3] = { 5, 6, 7 };
struct AnyData
{
float a;
int b;
} data;
cout.write((char*)&values, sizeof(int) * 3); // the other two values follow the first one, you can write them all at once.
cout.write((char*)&data, sizeof(data)); // you can also save structs that do not have pointers.
In case you're going to write structs, have a look at #pragma pack compiler directive. Compilers will align (use padding) variable to certain size (int), which means that the following struct actually might require 8 bytes:
#pragma pack (push, 1)
struct CouldBeLongerThanYouThink
{
char a;
char b;
};
#pragma pack (pop)
Also, do not write pointer values itself (if there are pointer members in a struct), because the memory addresses will not point to any meaningful data once read back from a file. Always write the data itself, not pointer values.
What's happening is that you're copying the internal
representation of your data to a file, and then copying it back
into memory, This works as long as the program doing the
writing was compiled with the same version of the compiler,
using the same options. Otherwise, it might or it might not
work, depending on any number of things beyond your control.
It's not clear to me what you're trying to do, but formats like
.jpg and .bmp normally specify the format they want the
different types to have, and you have to respect that format.
It is unclear what you really want to do, so I cannot recommend a way of solving your real problem. But I would not be surprised if running the program actually caused beeps or any other strange behavior in your program.
int* intArray = new int[10];
for(int i = 0; i < 10; i++)
{
cout << reinterpret_cast<char*>(&intArray[i]);
}
The memory returned by new above is uninitialized, but you are trying to print it as if it was a null terminated string. That uninitialized memory could have the bell character (that causes beeps when printed to the terminal) or any other values, including that it might potentially not have a null termination and the insertion operator into the stream will overrun the buffer until it either finds a null or your program crashes accessing invalid memory.
There are other incorrect assumptions in your code, like for example given int *p = new int[10]; the expression sizeof(p) will be the size of a pointer in your architecture, not 10 times the size of an integer.

How can I create array of files in C/C++?

In a C/C++ program, is it correct for me to do this:
int i;
FILE **files = malloc(numFiles * sizeof(FILE *));
std::string file("foo"), ext(".bar");
char *num[10];
for (i = 0; i < numFiles; i++) {
files[i] = fopen((file + itoa(i, num, 10) + ext).c_str(), "w");
}
This is basically what I am doing, but I am not getting anything written to the files. They're blank.
EDIT
I have fixed my problem. I thought I might be doing something wrong here, but it turned out to be elsewhere. Thanks for the responses, anyway.
Sure they are blanked, you did not write anything, you simply open the file in writing mode!
You have to use the fwrite or fprintf function to write the data to the file and then close the file with fclose.
You have array of pointers to char. But you need array of char.
char *num[10]; --> char num[10].
I am wondering how it isn't crashing :)

What is the proper method of reading and parsing data files in C++?

What is an efficient, proper way of reading in a data file with mixed characters? For example, I have a data file that contains a mixture of data loaded from other files, 32-bit integers, characters and strings. Currently, I am using an fstream object, but it gets stopped once it hits an int32 or the end of a string. if i add random data onto the end of the string in the data file, it seems to follow through with the rest of the file. This leads me to believe that the null-termination added onto strings is messing it up. Here's an example of loading in the file:
void main()
{
fstream fin("C://mark.dat", ios::in|ios::binary|ios::ate);
char *mymemory = 0;
int size;
size = 0;
if (fin.is_open())
{
size = static_cast<int>(fin.tellg());
mymemory = new char[static_cast<int>(size+1)];
memset(mymemory, 0, static_cast<int>(size + 1));
fin.seekg(0, ios::beg);
fin.read(mymemory, size);
fin.close();
printf(mymemory);
std::string hithere;
hithere = cin.get();
}
}
Why might this code stop after reading in an integer or a string? How might one get around this? Is this the wrong approach when dealing with these types of files? Should I be using fstream at all?
Have you ever considered that the file reading is working perfectly and it is printf(mymemory) that is stopping at the first null?
Have a look with the debugger and see if I am right.
Also, if you want to print someone else's buffer, use puts(mymemory) or printf("%s", mymemory). Don't accept someone else's input for the format string, it could crash your program.
Try
for (int i = 0; i < size ; ++i)
{
// 0 - pad with 0s
// 2 - to two zeros max
// X - a Hex value with capital A-F (0A, 1B, etc)
printf("%02X ", (int)mymemory[i]);
if (i % 32 == 0)
printf("\n"); //New line every 32 bytes
}
as a way to dump your data file back out as hex.

Howto read chunk of memory as char in c++

Hello I have a chunk of memory (allocated with malloc()) that contains bits (bit literal), I'd like to read it as an array of char, or, better, I'd like to printout the ASCII value of 8 consecutively bits of the memory.
I have allocated he memory as char *, but I've not been able to take characters out in a better way than evaluating each bit, adding the value to a char and shifting left the value of the char, in a loop, but I was looking for a faster solution.
Thank you
What I've wrote for now is this:
for allocation:
char * bits = (char*) malloc(1);
for writing to mem:
ifstream cleartext;
cleartext.open(sometext);
while(cleartext.good())
{
c = cleartext.get();
for(int j = 0; j < 8; j++)
{ //set(index) and reset(index) set or reset the bit at bits[i]
(c & 0x80) ? (set(index)):(reset(index));//(*ptr++ = '1'):(*ptr++='0');
c = c << 1;
}..
}..
and until now I've not been able to get character back, I only get the bits printed out using:
printf("%s\n" bits);
An example of what I'm trying to do is:
input.txt contains the string "AAAB"
My program would have to write "AAAB" as "01000001010000010100000101000010" to memory
(it's the ASCII values in bit of AAAB that are 65656566 in bits)
Then I would like that it have a function to rewrite the content of the memory to a file.
So if memory contains again "01000001010000010100000101000010" it would write to the output file "AAAB".
int numBytes = 512;
char *pChar = (char *)malloc(numBytes);
for( int i = 0; i < numBytes; i++ ){
pChar[i] = '8';
}
Since this is C++, you can also use "new":
int numBytes = 512;
char *pChar = new char[numBytes];
for( int i = 0; i < numBytes; i++ ){
pChar[i] = '8';
}
If you want to visit every bit in the memory chunk, it looks like you need std::bitset.
char* pChunk = malloc( n );
// read in pChunk data
// iterate over all the bits.
for( int i = 0; i != n; ++i ){
std::bitset<8>& bits = *reinterpret_cast< std::bitset<8>* >( pByte );
for( int iBit = 0; iBit != 8; ++iBit ) {
std::cout << bits[i];
}
}
I'd like to printout the ASCII value of 8 consecutively bits of the memory.
The possible value for any bit is either 0 or 1. You probably want at least a byte.
char * bits = (char*) malloc(1);
Allocates 1 byte on the heap. A much more efficient and hassle-free thing would have been to create an object on the stack i.e.:
char bits; // a single character, has CHAR_BIT bits
ifstream cleartext;
cleartext.open(sometext);
The above doesn't write anything to mem. It tries to open a file in input mode.
It has ascii characters and common eof or \n, or things like this, the input would only be a textfile, so I think it should only contain ASCII characters, correct me if I'm wrong.
If your file only has ASCII data you don't have to worry. All you need to do is read in the file contents and write it out. The compiler manages how the data will be stored (i.e. which encoding to use for your characters and how to represent them in binary, the endianness of the system etc). The easiest way to read/write files will be:
// include these on as-needed basis
#include <algorithm>
#include <iostream>
#include <iterator>
#include <fstream>
using namespace std;
// ...
/* read from standard input and write to standard output */
copy((istream_iterator<char>(cin)), (istream_iterator<char>()),
(ostream_iterator<char>(cout)));
/*-------------------------------------------------------------*/
/* read from standard input and write to text file */
copy(istream_iterator<char>(cin), istream_iterator<char>(),
ostream_iterator<char>(ofstream("output.txt"), "\n") );
/*-------------------------------------------------------------*/
/* read from text file and write to text file */
copy(istream_iterator<char>(ifstream("input.txt")), istream_iterator<char>(),
ostream_iterator<char>(ofstream("output.txt"), "\n") );
/*-------------------------------------------------------------*/
The last remaining question is: Do you want to do something with the binary representation? If not, forget about it. Else, update your question one more time.
E.g: Processing the character array to encrypt it using a block cipher
/* a hash calculator */
struct hash_sha1 {
unsigned char operator()(unsigned char x) {
// process
return rc;
}
};
/* store house of characters, could've been a vector as well */
basic_string<unsigned char> line;
/* read from text file and write to a string of unsigned chars */
copy(istream_iterator<unsigned char>(ifstream("input.txt")),
istream_iterator<char>(),
back_inserter(line) );
/* Calculate a SHA-1 hash of the input */
basic_string<unsigned char> hashmsg;
transform(line.begin(), line.end(), back_inserter(hashmsg), hash_sha1());
Something like this?
char *buffer = (char*)malloc(42);
// ... put something into the buffer ...
printf("%c\n", buffer[0]);
But, since you're using C++, I wonder why you bother with malloc and such...
char* ptr = pAddressOfMemoryToRead;
while(ptr < pAddressOfMemoryToRead + blockLength)
{
char tmp = *ptr;
// temp now has the char from this spot in memory
ptr++;
}
Is this what you are trying to achieve:
char* p = (char*)malloc(10 * sizeof(char));
char* p1 = p;
memcpy(p,"abcdefghij", 10);
for(int i = 0; i < 10; ++i)
{
char c = *p1;
cout<<c<<" ";
++p1;
}
cout<<"\n";
free(p);
Can you please explain in more detail, perhaps including code? What you're saying makes no sense unless I'm completely misreading your question. Are you doing something like this?
char * chunk = (char *)malloc(256);
If so, you can access any character's worth of data by treating chunk as an array: chunk[5] gives you the 5th element, etc. Of course, these will be characters, which may be what you want, but I can't quite tell from your question... for instance, if chunk[5] is 65, when you print it like cout << chunk[5];, you'll get a letter 'A'.
However, you may be asking how to print out the actual number 65, in which case you want to do cout << int(chunk[5]);. Casting to int will make it print as an integer value instead of as a character. If you clarify your question, either I or someone else can help you further.
Are you asking how to copy the memory bytes of an arbitrary struct into a char* array? If so this should do the trick
SomeType t = GetSomeType();
char* ptr = malloc(sizeof(SomeType));
if ( !ptr ) {
// Handle no memory. Probably should just crash
}
memcpy(ptr,&t,sizeof(SomeType));
I'm not sure I entirely grok what you're trying to do, but a couple of suggestions:
1) use std::vector instead of malloc/free and new/delete. It's safer and doesn't have much overhead.
2) when processing, try doing chunks rather than bytes. Even though streams are buffered, it's usually more efficient grabbing a chunk at a time.
3) there's a lot of different ways to output bits, but again you don't want a stream output for each character. You might want to try something like the following:
void outputbits(char *dest, char source)
{
dest[8] = 0;
for(int i=0; i<8; ++i)
dest[i] = source & (1<<(7-i)) ? '1':'0';
}
Pass it a char[9] output buffer and a char input, and you get a printable bitstring back. Decent compilers produce OK output code for this... how much speed do you need?