Here's a very easy way to define move assignment for most any class with a move constructor:
class Foo {
public:
Foo(Foo&& foo); // you still have to write this one
Foo& operator=(Foo&& foo) {
if (this != &foo) { // avoid destructing the only copy
this->~Foo(); // call your own destructor
new (this) Foo(std::move(foo)); // call move constructor via placement new
}
return *this;
}
// ...
};
Is this sequence of calling your own destructor followed by placement new on the this pointer safe in standard C++11?
Only if you never, ever derive a type from this class. If you do, this will turn the object into a monstrosity. It's unfortunate that the standard uses this as an example in explaining object lifetimes. It's a really bad thing to do in real-world code.
Technically, the source code is safe in this tiny example. But the reality is that if you ever even look at Foo funny, you will invoke UB. It's so hideously unsafe that it's completely not worth it. Just use swap like everybody else- there's a reason for it and it's because that's the right choice. Also, self-assignment-checking is bad.
Related
Suppose I'm implementing some class A that has a clear() method that should set the object state to the "brand new" state as if it has just been created with a constructor:
I should free all the resources that the current object is using (exactly the same thing A::~A() does),
and then I should initialize those resources again (exactly the same thing A::A() does).
So my initial idea was as follows:
void A::clear() {
this->~A();
*this = A();
}
However, I was told that this code causes UB since I cannot dereference this after calling its destructor. But at the same time I was told a better idea as well: if we use placement new, there is no dereferencing, so this actually might work:
void A::clear() {
this->~A();
new (this) A();
}
This feels extremely uncomfortable and as error-prone as it gets... So is this code actually valid?
is this code actually valid?
Your code is valid. It's also a rather unusual approach to merely change the object's value.
The assignment operator alone, if implemented correctly, will achieve this.
void A::clear() {
*this = A();
}
If this code does not work as expected, your assignment operator has been incorrectly implemented.
Here is my piece of code, please help me understand how to get the copy constructor correct. My class has no copy constructor written for it
test(cosnt test&obj){
////////something
}
But yet when I attempt to make a copy such as test t2(t1); it appears to be copied correctly! Can you please explain to me the reason that the copy seems to work even without an explicit copy constructor?
#include <iostream>
using namespace std;
class test{
int *ptr;
public:
test(int t=0){
ptr=new int;
*ptr=t;
}
void increment(){
(*ptr)++;
}
void display(){
cout<<*ptr<<endl;
}
};
int main(){
test t1;
t1.display();
t1.increment();
t1.display();
test t2(t1);//copy constructor works fine!
t2.display();
t1.increment();
t1.display();
t2.display();
}
C++ is so amazing that when you don't define a copy constructor, move constructor, copy assignment and move assignment for a class, the compiler will have to define them for you (the Standard says so). Of course you can delete them via:
func() = delete;
So for example, if you want to delete the implicit copy constructor in your example you would declare:
test(const test&) = delete;
and as you can see your code won't no longer compile.
The behavior of the implicit copy constructor is the one you would expect: it will copy construct each member of the class to the the other object. In this case it will copy construct the pointer value (not the pointed value), effectively make the two object share the same pointer.
Now, your program is leaking memory right? You have called new but no delete. Let's say you want to clean your resources up by inserting:
delete ptr;
in the destructor (it's a simplified version, of course you would need to define at least a proper move assignment and move constructor). You know what will happen? A nice and beautiful runtime error, telling you that the pointer you are trying to free has not been allocated. The reason why that is, is that both your objects (t1 and t2) destructors a will be called and they will both delete the same pointer. The first correctly and the second erroneously.
For this reason a Rule of three (now Rule of Five) has been established in the C++ community. But you know what? There's even a better rule which is called Rule of Zero. To sums it up (but you should really read about it) it says: don't do RAII yourself. I'd suggest you to follow the latter.
Now, let's discuss a little a bit of new. I'm sure you know this, but I'm here to prevent future damages: you don't need to use new at all in C++. Not anymore, in most cases.
Most of the things pointers once did (optional parameter, pass array by pointer, copyable reference, etc..) has now been "deprecated" (not in the literal sense: they are still there) in favor of sexier approaches (namely boost:optional/std::optional, std::array/std::vector, std::reference_wrapper). And even when all those fails to give you what you need, you can still use std::shared_ptr and std::unique_ptr.
So, please, don't use naked new pointers. Thanks.
If you did not define the copy constructor yourself then the compiler implicitly defines it instead of you. This copy constructor makes member-wise copies of class data members.
Relative to your example of code the implicitly defined copy constructor will copy data member ptr. As the result two or more objects can refer to the same memory.
Your class also needs destructor and the copy assignment operator.
These three specail functions can look the following way for your class
test( const test &rhs ) : ptr( new int( *rhs.ptr ) )
{
}
test & operator =( const test &rhs )
{
if ( this != &rhs )
{
int tmp = new int( *rhs.ptr );
delete ptr;
ptr = tmp;
}
return ( *this );
}
~test()
{
delete ptr;
}
You did not define a copy constructor. Like #jrok said, the compiler-generated default copy constructor only does shallow member-wise copy.
Your copy constructor can look something like:
public:
test(const test& t)
{
ptr = new int;
*ptr = *t.ptr;
}
BTW, you might want to define a destrcutor too to prevent memory leak.
~test()
{
delete ptr;
}
I was reading C++11 Faq and came across this code. I have a better understanding of C++ coding, but I'm still not able to understand the below code.
template<class T>
class Handle {
T* p;
public:
Handle(T* pp) : p{pp} {}
~Handle() { delete p; } // user-defined destructor: no implicit copy or move
Handle(Handle&& h) :p{h.p} { h.p=nullptr; }; // transfer ownership
Handle& operator=(Handle&& h) { delete p; p=h.p; h.p=nullptr; return *this; } // transfer ownership
Handle(const Handle&) = delete; // no copy
Handle& operator=(const Handle&) = delete;
// ...
};
What does "transfer ownership" mean?
Why is the copy ctor equated to "delete"? how is it useful?
Please if someone can add a few examples with explanation, it would be a great help.
It's a move constructor, the special && syntax introduced in C++11 takes a rvalue reference, so a reference to a variable which has no name and can't be referenced anywhere else inside the code.
What happens in the constructor is that the Handle takes the ownership of the Handle passed through the move constructor in the way that it steals (pass me the term) the T* p inside by assigning its value to its own variable and then setting nullptr to the variable of the rvalue passed.
This is used because you don't really need to copy an rvalue, since that value won't be used anymore in the code, so it's safe to just take its data, this avoids a, possibly costly, copy constructor.
In C++ you had copy constructors and copy operators, which were expensive if your object was big. Now in C++11 you have move constructor and move operator which says "take everything from the source and kill it".
mybigthing y ;
...
mybigthing x( move(y)) ;
y is created with lots of stuff internally. after x(y), y is now empty and all the big stuff is in x.
One of the main reasons for this is to make returning big objects from functions free:
mybigthing f()
{
mybigthing tmp ;
...
return tmp ;
}
{
mybigthing y= f() ;
}
In c++03, this would be horrible performance wise. Now its free. The compilers are required to actually use y as the temporary inside of f() and never do any copies.
transfer ownership means if you do a=b the contents of b belong to a and does not exist in b anymore. This makes more sense in the example {A a; dosomething(a); return a;}. a exist locally in the function. It's contents are being moved into the return value. If A is a typedef for std::string it would mean the string internals have been moved instead of making a copy of a intentionally long string (html page maybe). However I believe string has a copy on write flag so it wouldn't make a copy in that situation but other classes may not bother to implement a copy on write.
The reason the constructor and assignment operator (which are move, not copy) delete is because the current p may be pointing to something. Not freeing it means a memory leak.
about your second question:
Why is the copy ctor equated to "delete"? how is it useful?
Here is an answer:
http://www.developerfusion.com/article/133063/constructors-in-c11/
C++11 Explicitly Deleted Constructors
C++11 also supports the concept of explicitly deleted constructors.
For example, you can define a class for which you do not want to write
any constructors and you also do not want the compiler to generate the
default constructor. In that case you need to explicitly delete the
default constructor:
class MyClass { public:
MyClass() = delete; };
I'm getting a segmentation fault which I believe is caused by the copy constructor. However, I can't find an example like this one anywhere online. I've read about shallow copy and deep copy but I'm not sure which category this copy would fall under. Anyone know?
MyObject::MyObject{
lots of things including const and structs, but no pointers
}
MyObject::MyObject( const MyObject& oCopy){
*this = oCopy;//is this deep or shallow?
}
const MyObject& MyObject::operator=(const MyObject& oRhs){
if( this != oRhs ){
members = oRhs.members;
.....//there is a lot of members
}
return *this;
}
MyObject::~MyObject(){
//there is nothing here
}
Code:
const MyObject * mpoOriginal;//this gets initialized in the constructor
int Main(){
mpoOriginal = new MyObject();
return DoSomething();
}
bool DoSomething(){
MyObject *poCopied = new MyObject(*mpoOriginal);//the copy
//lots of stuff going on
delete poCopied;//this causes the crash - can't step into using GDB
return true;
}
EDIT: Added operator= and constructor
SOLVED: Barking up the wrong tree, it ended up being a function calling delete twice on the same object
It is generally a bad idea to use the assignment operator like this in the copy constructor. This will default-construct all the members and then assign over them. It is much better to either just rely on the implicitly-generated copy constructor, or use the member initializer list to copy those members that need copying, and apply the appropriate initialization to the others.
Without details of the class members, it is hard to judge what is causing your segfault.
According to your code you're not creating the original object... you're just creating a pointer like this:
const MyObject * mpoOriginal;
So the copy is using bad data into the created new object...
Wow....
MyObject::MyObject( const MyObject& oCopy)
{
*this = oCopy;//is this deep or shallow?
}
It is neither. It is a call to the assignment operator.
Since you have not finished the construction of the object this is probably ill-advised (though perfectly valid). It is more traditional to define the assignment operator in terms of the copy constructor though (see copy and swap idium).
const MyObject& MyObject::operator=(const MyObject& oRhs)
{
if( this != oRhs ){
members = oRhs.members;
.....//there is a lot of members
}
return *this;
}
Basically fine, though normally the result of assignment is not cont.
But if you do it this way you need to divide up your processing a bit to make it exception safe. It should look more like this:
const MyObject& MyObject::operator=(const MyObject& oRhs)
{
if( this == oRhs )
{
return *this;
}
// Stage 1:
// Copy all members of oRhs that can throw during copy into temporaries.
// That way if they do throw you have not destroyed this obbject.
// Stage 2:
// Copy anything that can **not** throw from oRhs into this object
// Use swap on the temporaries to copy them into the object in an exception sage mannor.
// Stage 3:
// Free any resources.
return *this;
}
Of course there is a simpler way of doing this using copy and swap idum:
MyObject& MyObject::operator=(MyObject oRhs) // use pass by value to get copy
{
this.swap(oRhs);
return *this;
}
void MyObject::swap(MyObject& oRhs) throws()
{
// Call swap on each member.
return *this;
}
If there is nothing to do in the destructor don't declare it (unless it needs to be virtual).
MyObject::~MyObject(){
//there is nothing here
}
Here you are declaring a pointer (not an object) so the constructor is not called (as pointers don;t have constructors).
const MyObject * mpoOriginal;//this gets initialized in the constructor
Here you are calling new to create the object.
Are you sure you want to do this? A dynamically allocated object must be destroyed; ostensibly via delete, but more usually in C++ you wrap pointers inside a smart pointer to make sure the owner correctly and automatically destroys the object.
int main()
{ //^^^^ Note main() has a lower case m
mpoOriginal = new MyObject();
return DoSomething();
}
But since you probably don't want a dynamic object. What you want is automatic object that is destroyed when it goes out of scope. Also you probably should not be using a global variable (pass it as a parameter otherwise your code is working using the side affects that are associated with global state).
int main()
{
const MyObject mpoOriginal;
return DoSomething(mpoOriginal);
}
You do not need to call new to make a copy just create an object (passing the object you want to copy).
bool DoSomething(MyObject const& data)
{
MyObject poCopied (data); //the copy
//lots of stuff going on
// No need to delete.
// delete poCopied;//this causes the crash - can't step into using GDB
// When it goes out of scope it is auto destroyed (as it is automatic).
return true;
}
What you are doing is making your copy constructor use the assignment operator (which you don't seem to have defined). Frankly I'm surprised it compiles, but because you haven't shown all your code maybe it does.
Write you copy constructor in the normal way, and then see if you still get the same problem. If it's true what you say about 'lots of things ... but I don't see any pointers' then you should not be writing a copy constructor at all. Try just deleting it.
I don't have a direct answer as for what exactly causes the segfault, but conventional wisdom here is to follow the rule of three, i.e. when you find yourself needing any of copy constructor, assignment operator, or a destructor, you better implement all three of them (c++0x adds move semantics, which makes it "rule of four"?).
Then, it's usually the other way around - the copy assignment operator is implemented in terms of copy constructor - copy and swap idiom.
MyObject::MyObject{
lots of things including const and structs, but no pointers
}
The difference between a shallow copy and a deep copy is only meaningful if there is a pointer to dynamic memory. If any of those member structs isn't doing a deep copy of it's pointer, then you'll have to work around that (how depends on the struct). However, if all members either don't contain pointers, or correctly do deep copies of their pointers, then the copy constructor/assignment is not the source of your problems.
It's either, depending on what your operator= does. That's where the magic happens; the copy constructor is merely invoking it.
If you didn't define an operator= yourself, then the compiler synthesised one for you, and it is performing a shallow copy.
I have class foo that contains a std::auto_ptr member that I would like to copy construct but this does not appear to be allowed. There's a similar thing for the assignment. See the following example:
struct foo
{
private:
int _a;
std::string _b;
std::auto_ptr< bar > _c;
public:
foo(const foo& rhs)
: _a(rhs._a)
, _b(rhs._b)
, _c(rhs._c)
// error: Cannot mutate rhs._c to give up ownership - D'Oh!
{
}
foo& operator=(const foo& rhs)
{
_a = rhs._a;
_b = rhs._b;
_c = rhs._c;
// error: Same problem again.
}
};
I could just declare _c as mutable but I'm not sure this is correct. Does anyone have a better solution?
EDIT
OK, I'm not getting the kind of answer that I was expecting so I'll be a little more specific about the problem.
An object of type foo is created on the stack and passed by value into a container class (not stl) and then goes out of scope. I don't have any control over the container code. (It's actually an active queue implementation, with bugs.)
The bar class is a fairly heavyweight parser. It has very poor performance on new and delete so even if it was copy constructable, it would be way too expensive.
We can guarantee that when a bar object is created, it will only ever need to be owned in 1 place at a time. In this case it is being passed between threads and deleted when the transaction is completed. This is why I was hoping to use a std::autp_ptr.
I am very willing to consider boost smart pointers but I was hoping to guarantee this uniqueness if there is an alternative.
You might want to try following code:
foo(const foo& rhs)
: _a(rhs._a)
, _b(rhs._b)
, _c(_rhs._c.get() ? new bar(*_rhs._c.get()) : 0)
{
}
(Assignment operator is similar.)
However this will only work if bar is CopyConstructible and if this indeed does what you want. The thing is that both foo objects (_rhs and constructed one) will have different pointers in _c.
If you want them to share the pointer then you must not use auto_ptr as it does not support shared ownership. Consider in such case use of shared_ptr from Boost.SmartPtr for example (which will be included in new C++ standard). Or any other shared pointer implementation as this is such a common concept that lots of implementations are available.
As you have discovered you can't copy a std::auto_ptr like that. After the copy who owns the object pointed to? Instead you should use a reference counted smart pointer. The Boost library has a shared_ptr you could use.
First, I'd avoid auto_ptr
Transfer of ownership is good in some scenarios, but I find they are rare, and "full fledged" smart pointer libraries are now available easily. (IIRC auto_ptr was a compromise to include at least one example in the standard library, without the delays that a good implementation would have required).
See, for example here
or here
Decide on semantics
Should the copy of foo hold a reference to the same instance of bar? In that case, use boost::shared_ptr or (boost::intrusive_ptr), or a similar library.
Or should a deep copy be created?
(That may sometimes be required, e.g. when having delay-created state). I don't know any standard implementation of that concept, but it's not to complex to build that similar to existing smart pointers.
// roughly, incomplete, probably broken:
template <typename T>
class deep_copy_ptr
{
T * p;
public:
deep_copy_ptr() : p(0) {}
deep_copy_ptr(T * p_) : p(p_) {}
deep_copy_ptr(deep_copy_ptr<T> const & rhs)
{
p = rhs.p ? new T(*rhs.p) : 0;
}
deep_copy_ptr<T> & operator=(deep_copy_ptr<T> const & rhs)
{
if (p != rhs.p)
{
deep_copy_ptr<T> copy(rhs);
swap(copy);
}
}
// ...
}
The std::auto_ptr is a good tool for managing dynamic object in C++ but in order to use it effectivelly it's important to unserstand how auto_ptr works. This article explains why, when and where this smart pointer should be used.
In your case, first of all your should decide what you want to do with the object inside your auto_ptr. Should it be cloned or shared?
If it should be cloned, make sure it has a copy constructor and then your create a new auto_ptr which contains a copy of your the object see Adam Badura's answer.
If it should shared, you should use boost::shared_ptr as Martin Liversage suggested.
If I have class containing an auto_ptr, and want deep-copy semantics, I generatally only do this for classes that have a virtual copy operator, i.e. clone().
Then, within the copy constructor, I initialize the auto_ptr to a clone() of the other; e.g.
class Foo
{
public:
Foo(const Foo& rhs) : m_ptr(rhs.m_ptr->clone());
private:
std::auto_ptr<T> m_ptr;
};
clone() is typically implemented as follows:
class T
{
std::auto_ptr<T> clone() const
{
return std::auto_ptr<T>(new T(*this));
}
};
We are imposing the condition that T is clonable, but this condition is essentially imposed by having a copiable class with an auto_ptr member.
The whole idea of the auto_ptr is that there's only one owner of the referred to object. This implies you cannot copy the pointer without removing the original ownership.
Since you cannot copy it, you also can't copy an object containing an auto_ptr.
You might try to use move-semantics by e.g. using std::swap instead of copy.
My first choice would be to avoid auto_ptr in this situation altogether. But if I were backed against a wall, I might try to use the keyword mutable in the declaration of _c - this will allow it to be modified even from a const reference.
Given the edit, then it appears you want tranfer of ownership semantics.
In that case, then you'll want to have your copy constructor and assignment operator accept non-const references to their arguments, and perform the initialization/assignment there.
You can't use const references in a copy constructor or assignment operator that involves an auto_ptr<>. Remove the const. In other words, use declarations like
foo(foo & rhs);
foo & operator=(foo & rhs);
These forms are explicitly mentioned in the Standard, primarily in section 12.8. They should be usable in any standard-conforming implementation. In fact, paragraphs 5 and 10 of 12.8 says that the implicitly defined copy constructor and assignment operator (respectively) will take a non-const reference if any of the members require it.