Find Postfix to Prefix expression [duplicate] - c++

This question already has answers here:
Closed 10 years ago.
Possible Duplicate:
Postfix to Infix conversation
What would be the prefix notation of this expression? I can not solve this expression
6 a b 7 * + - c d g / + e ^ f * +
Any suggestion will be appreciated.

The in-order expression will be
[6-(a + b*7)] + [(c + d/g) ^ e]*f
from that you can find the pre-order, which is
+ -6 + a * b 7 * ^ + c / d g e f

Postfix To Infix::
6 a b 7 * + - c d g / + e ^ f * +
6 a (b*7) + - c d g / + e ^ f * +
6 {a + (b*7)} - c d g / + e ^ f * +
[6 - {a + (b*7)}] c d g / + e ^ f * +
[6 - {a + (b*7)}] c (d / g) + e ^ f * +
[6 - {a + (b*7)}] {c + (d / g)} e ^ f * +
[6 - {a + (b*7)}] [{c + (d / g)} ^ e] f * +
[6 - {a + (b*7)}] ([{c + (d / g)} ^ e] * f) +
[6 - {a + (b*7)}] + ([{c + (d / g)} ^ e] * f)
Infix To Prefix::
[6 - {a + (b*7)}] + ([{c + (d / g)} ^ e] * f)
[6 - {a + (b*7)}] + *[{c + (d / g)} ^ e] f
[6 - {a + (b*7)}] + *[{c + (/ d g)} ^ e] f
[6 - {a + (b*7)}] + *[{+ c / d g} ^ e] f
[6 - {a + (b*7)}] + (*^+ c / d g e f)
[6 - {a + (*b7)}] + (*^+ c / d g e f)
[6 - {+a *b7}] + (*^+ c / d g e f)
[-6 +a *b7] + (*^+ c / d g e f)
+[-6 +a *b7] (*^+ c / d g e f)
+-6 +a *b7 *^+ c / d g e f

Related

SymPy cannot rearrange results while solving a system of equations about Stackelberg game

Function f (assume n=3 for simplicity):
There are 3 symbols related to entities, corresponding to x[j](j=1,2,3) respectively. R and c is other symbols, which can be treated like constant for now. I try to diff f w.r.t x[j], and solve the results equations together and get x[j]=g(R,c). However, sympy cannot rearrange or split x[j] from the equation.
Derivatives:
Expected Results:
from sympy import *
import sympy as sym
real_n = 3
x = IndexedBase('x')
j, k, n = symbols('j,k n', cls=Idx)
f = x[j]*Symbol("R")/Sum(x[k],(k,1,real_n))-Symbol("c")*x[j]
equ = diff(f,x[j])
ee = solve([equ.subs(j,1),equ.subs(j,2),equ.subs(j,3)], (x[1],x[2],x[3]))
simplify(ee)
Sympy's result:
{x[1]: (R*Sum(x[k], (k, 1, 3)) - c*Sum(x[k], (k, 1, 3))**2)/(R*Sum(KroneckerDelta(1, k), (k, 1, 3))),
x[2]: (R*Sum(x[k], (k, 1, 3)) - c*Sum(x[k], (k, 1, 3))**2)/(R*Sum(KroneckerDelta(2, k), (k, 1, 3))),
x[3]: (R*Sum(x[k], (k, 1, 3)) - c*Sum(x[k], (k, 1, 3))**2)/(R*Sum(KroneckerDelta(3, k), (k, 1, 3)))}
I tried to check if the indexed symbol caused the error, and wrote x[i] as 3 different symbols, but it still didn't work.
from sympy import *
a, b, c = symbols('a b c', cls=Idx)
R = symbols("R")
eq1 = diff(a/(a+b+c)-a*R,a)
eq2 = diff(b/(a+b+c)-b*R,b)
eq3 = diff(c/(a+b+c)-c*R,c)
print(eq1,"\n",eq2,"\n",eq3)
solve([eq1,eq2,eq3], [a,b,c])
Output:
-R + 1/(a + b + c) - a/(a + b + c)**2
-R + 1/(a + b + c) - b/(a + b + c)**2
-R + 1/(a + b + c) - c/(a + b + c)**2
[]
Is there something wrong with my approach? Is it possible to approach this problem in SymPy from another angle?
Any suggestions for the solution of equations are also most welcome.
You can use doit to expand the summation and then solve:
In [6]: solve([equ.subs(j,1).doit(),equ.subs(j,2).doit(),equ.subs(j,3).doit()], (x[1],x[2],x[3]))
Out[6]:
⎡⎛ ____ ⎞⎤
⎢⎜ ╱ 2 ⎟⎥
⎢⎜R + 3⋅╲╱ R 2⋅R 2⋅R⎟⎥
⎢⎜─────────────, ───, ───⎟⎥
⎣⎝ 18⋅c 9⋅c 9⋅c⎠⎦

Ocaml Custom Data types

type expr =
| Plus of expr * expr (* a + b *)
| Minus of expr * expr (* a - b *)
| Times of expr * expr (* a * b *)
| Divide of expr * expr (* a / b *)
| Var of string (* "x", "y", etc. *)
Having this type "expr" I wanted to know how can I work with a customizable number of variables depending on my needs, in this case, we know that Plus is (Expr * Expr) but what if I want to do to do : ( a + b + c) or (a * b * c), is it possible? I got this example at https://ocaml.org/learn/tutorials/data_types_and_matching.html
Since + is a binary operation, the usual representation of a + b + c is this:
Plus (Plus (Var "a", Var "b"), Var "c")

What "this is not a function; it cannot be applied" error means?

I'm quite new to OCaml and I'm having this error :
let n = read_int ()
let rec pi =
match n with
| _ when n < 0 || n > 10000 -> raise (Failure "pi")
| 1 -> 2. *. ((2. *. 2.) /. (1. *. 3.))
| _ -> float_of_int (n * n * 2 * 2) /. float_of_int ((2 * n - 1) * (2 * n + 1)) *. pi (n - 1)
This expression has type float
This is not a function; it cannot be applied.
This code works without the read_int () but I need read_int in this case .
Without an argument there
let rec pi =
you are not defining a recursive function, but a recursive value pi (which happens to be a float). Thus the compiler is raising an error when you are trying to use this float pi as a function
6 | | _ -> float_of_int (n * n * 2 * 2) /. float_of_int ((2 * n - 1) * (2 * n + 1)) *. pi (n - 1)
^^
Error: This expression has type float
This is not a function; it cannot be applied.
You need to first define pi as a function. And once this function is defined, you will be able to call it on your input value.
If you look at your code, you can see that :
let n = read_int ()
let rec pi =
match n with
| _ when n < 0 || n > 10000 -> raise (Failure "pi")
| 1 -> 2. *. ((2. *. 2.) /. (1. *. 3.))
| _ -> float_of_int (n * n * 2 * 2) /. float_of_int ((2 * n - 1) * (2 * n + 1)) *. pi (n - 1)
pi is not a function, it is a value. Since pi does not take any argument. A probably workaround is to gives "n" as a parameter:
let rec pi n =
match n with
| _ when n < 0 || n > 10000 -> raise (Failure "pi")
| 1 -> 2. *. ((2. *. 2.) /. (1. *. 3.))
| _ -> float_of_int (n * n * 2 * 2) /. float_of_int ((2 * n - 1) * (2 * n + 1)) *. pi (n - 1)

Simplify equations for a computer algebric system in ocaml

IHello! I'm currently trying to code in ocaml a programm to draw a function which was write by the user.
To do that, I'm parsing the input, I'm tranforming the input into a data structure.
I'm currently trying to create an ocaml function to simplify at maximum this input.
For example, x*x - x*x will simplify in 0
Here is my parser :
%{
open Function
%}
%token <float> FLOAT
%token <string> VAR
%token COS SIN SQRT EXP LN PUIS
%token PLUS MINUS TIMES DIV
%token LPAR RPAR
%token EOL
%left LPAR RPAR
%left COS SIN SQRT EXP LN
%left PLUS MINUS
%left TIMES DIV
%left PUIS
%type <Function.formel> main
%start main
%%
main:
expr EOL { $1 }
;
expr:
| FLOAT { flt $1 }
| VAR { var $1 }
| FLOAT VAR { mul (flt $1) (var $2) }
| LPAR expr RPAR { $2 }
| expr TIMES expr { mul $1 $3 }
| expr DIV expr { div $1 $3 }
| expr PLUS expr { add $1 $3 }
| expr MINUS expr { sub $1 $3 }
| expr PUIS expr { puis $1 $3 }
| COS LPAR expr RPAR { cos $3 }
| PLUS expr { pos $2 }
| MINUS expr { neg $2 }
| FLOAT COS LPAR expr RPAR { mul (flt $1) (cos $4) }
| SIN LPAR expr RPAR { sin $3 }
| FLOAT SIN LPAR expr RPAR { mul (flt $1) (sin $4) }
| SQRT LPAR expr RPAR { sqrt $3 }
| LN LPAR expr RPAR { lnp $3 }
| EXP LPAR expr RPAR { expo $3 }
;
Here is my lexer :
{
open Parser
exception Eof
}
rule token = parse
| [' ' '\t'] { token lexbuf }
| ['\n'] { EOL }
| ['0'-'9']+ as lxm { FLOAT (float_of_string lxm) }
| '+' { PLUS }
| '-' { MINUS }
| '*' { TIMES }
| '/' { DIV }
| '(' { LPAR }
| ')' { RPAR }
| '^' { PUIS }
| "cos" { COS }
| "sin" { SIN }
| "sqrt" { SQRT }
| "ln" { LN }
| "exp" { EXP }
| ['a'-'z']+ as lxm { VAR (lxm) }
| eof { raise Eof }
I think my parser and my lexer are good.
Then, I'm using a tree to store the function :
type formel =
| Float of float
| Var of string
| Add of formel * formel
| Sub of formel * formel
| Mul of formel * formel
| Div of formel * formel
| Ln of formel
| Cos of formel
| Sin of formel
| Puis of formel * formel
| Sqrt of formel
| Exp of formel
let flt f = Float f
let add e1 e2 = Add (e1, e2)
let sub e1 e2 = Sub (e1, e2)
let mul e1 e2 = Mul (e1, e2)
let div e1 e2 = Div (e1, e2)
let puis e1 e2 = Puis (e1, e2)
let neg e = Mul (Float (-1.), e)
let pos e = Mul (Float 1., e)
let cos e = Cos e
let sin e = Sin e
let var v = Var v
let sqrt e = Sqrt e
let expo e = Exp e
let lnp e = Ln e
And here is the difficulty where I am : the creation of a function to simplify.
let rec simplify f =
let f_simplify = simp f in
if f_simplify = f
then f_simplify
else simplify f_simplify
and simp f =
match f with
| Float f -> Float f
| Var x -> Var x
(* 0 + x -> x *)
| Add (Float 0., f) -> simp f
(* x + 0 -> x *)
| Add (f, Float 0.) -> simp f
(* f1 + f2-> calcul (f1 + f2) *)
| Add (Float f1, Float f2) -> Float (f1 +. f2)
(* x + x -> 2 * x *)
| Add (f, g) when f = g -> simp (Mul (Float 2., simp f))
(* f1 * x + x -> (f1 + 1) * x *)
| Add (Mul (Float f1, f), g) when f = g -> simp (Mul (Float (f1 +. 1.), simp f))
(* x + f1 * x -> (f1 + 1) * x *)
| Add (f, Mul (Float f1, g)) when f = g -> simp (Mul (Float (f1 +. 1.), simp f))
(* x * f1 + x -> (f1 + 1) * x *)
| Add (Mul (f, Float f1), g) when f = g -> simp (Mul (Float (f1 +. 1.), simp f))
(* x + x * f1 -> (f1 + 1) * x *)
| Add (f, Mul (g, Float f1)) when f = g -> simp (Mul (Float (f1 +. 1.), simp f))
(* f1 * x + f2 * x -> (f1 + f2) * x *)
| Add (Mul (Float f1, f), Mul (Float f2, g)) when f = g -> simp (Mul (Float (f1 +. f2), simp f))
(* x * f1 + f2 * x -> (f1 + f2) * x *)
| Add (Mul (f, Float f1), Mul (Float f2, g)) when f = g -> simp (Mul (Float (f1 +. f2), simp f))
(* f1 * x + x * f2 -> (f1 + f2) * x *)
| Add (Mul (Float f1, f), Mul (g, Float f2)) when f = g -> simp (Mul (Float (f1 +. f2), simp f))
(* x * f1 + x * f2 -> (f1 + f2) * x *)
| Add (Mul (f, Float f1), Mul (g, Float f2)) when f = g -> simp (Mul (Float (f1 +. f2), simp f))
| Add (f, g) -> Add (simp f, simp g)
(* 0 - x -> - x *)
| Sub (Float 0., f) -> simp (Mul (Float (-1.), simp f))
(* x - 0 -> x *)
| Sub (f, Float 0.) -> simp f
(* f1 - f2 -> calcul (f1 - f2) *)
| Sub (Float f1, Float f2) -> Float (f1 -. f2)
(* f1 * x + x -> (f1 + 1) * x *)
| Sub (f, g) when f = g -> Float 0.
| Sub (f, g) -> Sub (simp f, simp g)
(* 0 / x -> 0 *)
| Div (Float 0., f) -> Float 0.
(* x / 1 -> x *)
| Div (f, Float 1.) -> simp f
(* f1 / f2 -> calcul (f1 / f2) *)
| Div (Float f1, Float f2) -> Float (f1 /. f2)
(* x / x -> 1 *)
| Div (f, g) when f = g -> Float 1.
| Div (f, g) -> Div (simp f, simp g)
(* 1 * x -> x *)
| Mul (Float 1., f) -> simp f
(* x * 1 -> x *)
| Mul (f, Float 1.) -> simp f
(* 0 * x -> 0 *)
| Mul (Float 0., f) -> Float 0.
(* x * 0 -> 0 *)
| Mul (f, Float 0.) -> Float 0.
(* f1 * f2 -> calcul (f1 * f2) *)
| Mul (Float f1, Float f2) -> Float (f1 *. f2)
(* x * x -> x ^ 2 *)
| Mul (f, g) when f = g -> simp (Puis (simp f, Float 2.))
(* x ^ a * x -> x ^ (a + 1) *)
| Mul (Puis (f, g), h) when f = h -> Puis (simp f, simp (Add (simp g, Float 1.)))
(* (f1 * x) * f2 -> (f1 * f2) * x *)
| Mul (Mul (Float f1, f), Float f2) -> simp (Mul (Float (f1 *. f2), simp f))
(* f1 * (f2 * x) -> (f1 * f2) * x *)
| Mul (Float f1, Mul (Float f2, f)) -> simp (Mul (Float (f1 *. f2), simp f))
(* (x * f1) * f2 -> (f1 * f2) * x *)
| Mul (Mul (f, Float f1), Float f2) -> simp (Mul (Float (f1 *. f2), simp f))
(* f1 * (x * f2) -> (f1 * f2) * x *)
| Mul (Float f1, Mul (f, Float f2)) -> simp (Mul (Float (f1 *. f2), simp f))
| Mul (f, g) -> Mul (simp f, simp g)
(* x ^ 0 -> 1 *)
| Puis (f, Float 0.) -> Float 1.
(* 0 ^ x -> 0 *)
| Puis (Float 0., f) -> Float 0.
(* x ^ 1 -> x *)
| Puis (f, Float 1.) -> simp f
| Puis (f, g) -> Puis (simp f, simp g)
| Ln f -> Ln (simp f)
| Cos f -> Cos (simp f)
| Sin f -> Sin (simp f)
| Sqrt f -> Sqrt (simp f)
| Exp f -> Exp (simp f)
Here is my problem :
For simple function as x*x + x*x, this function works.
But if I enter the function : 2 + x*x - x*x, there is no simplification done. The result is : 2 + x^2 - x^2
I have no idea how I can fix this problem, I'm on it since 3 days.
I hope everything is clear, and someone can give me some tips !
Have a great day !
The problem is in two folds:
If you draw out the tree, you will see that subtree is not equal.
You do it in the top-down manner. Normally, a simplification should be done bottom up( from higher to lower precedence e.g. 2+x*x+x*x ==> 2+x^2+x^2 ==> 2+2x^2 )
Your equation is of this tree:
- : formel =
Sub (Add (Float 2., Mul (Var "x", Var "x")), Mul (Var "x", Var "x"))
Let's follows the execution sequences:
it matches Sub (f, g) -> Sub (simp f, simp g)
with
f = Add (Float 2., Mul (Var "x", Var "x"))
g = Mul (Var "x", Var "x")
from (1) it executes simp f, hence matches Add (f, g) -> Add (simp f, simp g)
2.1. it matches Float(2.) with Float f -> Float f
2.2. it matches Mul(Var("x"),Var("x")) with Mul (f, g) when f = g -> simp (Puis (simp f, Float 2.))
it continues on simp g, hence matches Mul (f, g) when f = g -> simp (Puis (simp f, Float 2.))
That's why you got the result of:
Sub (Add (Float 2., Puis (Var "x", Float 2.)), Puis (Var "x", Float 2.))
(2 + x^2 - x^2)
because the left(2 + x^2) and right(x^2) subtrees aren't equal.
To solve problem (1)
One idea is to add commutative property of addition rules and transform it to a list of same precedences. For example,
Sub(f,Add(g,h)) -> [Plus(f),Minus(g),Minus(h)]
with this you can identify the same subtrees and eliminate them.
To solve problem (2)
You need to simplify based on the precedence of operators, e.g. x*x becomes x^2 before x+x is simplified to 2x. This can be done by altering to code to run parsing multiple times. Each time that subtree has changed, rerun the simplification on the upper tree.
Another idea is to archive it through Unification & substitution technique. I haven't thought it through. But it quite convincing that's doable.

How to solve a simple quadratic equation with Sympy?

solve(-14.4*(x**2)+71.8*x+5.083, x)
result is None. how come? My calculation by hand gives two roots, 5.0559 and -0.063
Perhaps you are not using the most current version. I get
>>> from sympy import *
>>> var('x')
x
>>> solve(-14.4*(x**2)+71.8*x+5.083, x)
[-0.0698162934055920, 5.05592740451670]
More generally:
import sympy as sp
y = 'a * x ** 2 + b * x + c' # for example a quadratic polynomial
s = sp.var('x a b c') # define four symbols as variables
print(sp.solve(y, s )) # sympy solves y(a,b,c,x) for each of a, b, c, x
print(sp.solve(y, x )) # sympy solves Y(a,b,c,x) for x treating a, b, c as constants
print(sp.solve(y, 'x')) # sympy solves Y(a,b,c,x) for x treating a, b, c as constants
Yields:
[(x, -(b*x + c)/x**2, b, c)]
[(-b + sqrt(-4*a*c + b**2))/(2*a), -(b + sqrt(-4*a*c + b**2))/(2*a)]
[(-b + sqrt(-4*a*c + b**2))/(2*a), -(b + sqrt(-4*a*c + b**2))/(2*a)]
While:
s = sp.var('x') # define one symbol as a varible
print(sp.solve(y, s )) # sympy solves Y(a,b,c,x) for x treating a, b, c as constants
print(sp.solve(y, x )) # sympy solves Y(a,b,c,x) for x treating a, b, c as constants
print(sp.solve(y, 'x')) # sympy solves Y(a,b,c,x) for x treating a, b, c as constants
Returns:
[(-b + sqrt(-4*a*c + b**2))/(2*a), -(b + sqrt(-4*a*c + b**2))/(2*a)]
[(-b + sqrt(-4*a*c + b**2))/(2*a), -(b + sqrt(-4*a*c + b**2))/(2*a)]
[(-b + sqrt(-4*a*c + b**2))/(2*a), -(b + sqrt(-4*a*c + b**2))/(2*a)]