What's the difference between gen and egen in Stata 12? - stata

Is there a reason why there are two different commands to generate a new variable?
Is there a simple way to remember when to use gen and when to use egen?

They both create a new variable, but work with different sets of functions. You will typically use gen when you have simple transformations of other variables in your dataset like
gen newvar = oldvar1^2 * oldvar2
In my workflow, egen usually appears when I need functions that work across all observations, like in
egen max_var = max(var)
or more complex instructions
egen newvar = rowmax(oldvar1 oldvar2)
to calculate the maximum for each observation between oldvar1 and oldvar2. I don't think there is a clear logic for separating the two commands.

gen
generate may be abbreviated by gen or even g and can be used with the following mathematical operators and functions:
+ addition
- subtraction
* multiplication
/ division
^ power
A large number of functions is available. Here are some examples:
abs(x) absolute value of x
exp(x) antilog of x
int(x) or trunc(x) truncation to integer value
ln(x), log(x) natural logarithm of x
round(x) rounds to the nearest integer of x
round(x,y) x rounded in units of y (i.e., round(x,.1) rounds to one decimal place)
sqrt(x)square root of x
runiform() returns uniformly distributed numbers between 0 and nearly 1
rnormal() returns numbers that follow a standard normal distribution
rnormal(x,y) returns numbers that follow a normal distribution with a mean of x and a s.d. of y
egen
A number of more complex possibilities have been implemented in the egen command like in the following examples:
egen nkids = anycount(pers1 pers2 pers3 pers4 pers5), value(1)
egen v323r = rank(v323)
egen myindex = rowmean(var15 var17 var18 var20 var23)
egen nmiss = rowmiss(x1-x10 var15-var23)
egen nmiss = rowtotal(x1-x10 var15-var23)
egen incomst = std(income)
bysort v3: egen mincome = mean(income)
Detailed usage explanations can be found at this link.

Related

I try to divide two functions from each other and get 0 every time

I have the code underneat in Amazone Athena to calculate how the last 7 days in footfall compare to the average week last year.
I only get a 0 as a result all the time, what is the problem.
I tried to make the x and y as Float but that still gave zero's
The data is on daily basis and a calculate a week average of last year by addding all weeks and divide by 52 (probably also a better way to do this)
select x.visitors/y.visitors*100
from
(select sum(visitors) as visitors
from corrected_scanners_per_day
where btcode in ('BT120031', 'BT120000','BT902', 'BT120052', 'BT120050', 'BT130109', 'BT120131', 'BT130110', 'BT130107', 'BT120126', 'BT120078', 'BT120076', 'BT120035', 'BT130450', 'BT120063', 'BT120044', 'BT120082', 'BT120030', 'BT120116', 'BT121196', 'BT130366', 'BT120085', 'BT120053', 'BT120014')
And datetime
BETWEEN current_date - interval '7'day
AND current_date) x
Join
(select sum(visitors) / 52 as visitors, year(datetime) as year
from corrected_scanners_per_day
where btcode in ('BT120031', 'BT120000','BT902', 'BT120052', 'BT120050', 'BT130109', 'BT120131', 'BT130110', 'BT130107', 'BT120126', 'BT120078', 'BT120076', 'BT120035', 'BT130450', 'BT120063', 'BT120044', 'BT120082', 'BT120030', 'BT120116', 'BT121196', 'BT130366', 'BT120085', 'BT120053', 'BT120014')
And datetime
BETWEEN CAST('2019-01-01' AS timestamp)
AND CAST('2019-12-31' AS timestamp)
group by year(datetime)
order by year(datetime)) y on 1=1
This is happening because your data types (visitors and 100) are all INT, so your output data type will also be an INT. When the calculation is converted to an INT, it is probably rounding to 0. So you need to explicitly make sure your final data type is a numeric type that allows decimals.
Try changing the first line to this:
select (x.visitors * 1.0) / (y.visitors * 1.0) * 100.0
You have other INT types inside your subqueries that should also probably be converted to decimals to make sure no truncation or rounding is occurring.

How to perform rolling window calculations without SSC packages

Goal: perform rolling window calculations on panel data in Stata with variables PanelVar, TimeVar, and Var1, where the window can change within a loop over different window sizes.
Problem: no access to SSC for the packages that would take care of this (like rangestat)
I know that
by PanelVar: gen Var1_1 = Var1[_n]
produces a copy of Var1 in Var1_1. So I thought it would make sense to try
by PanelVar: gen Var1SumLag = sum(Var1[(_n-3)/_n])
to produce a rolling window calculation for _n-3 to _n for the whole variable. But it fails to produce the results I want, it just produces zeros.
You could use sum(Var1) - sum(Var1[_n-3]), but I also want to be able to make the rolling window left justified (summing future observations) as well as right justified (summing past observations).
Essentially I would like to replicate Python's ".rolling().agg()" functionality.
In Stata _n is the index of the current observation. The expression (_n - 3) / _n yields -2 when _n is 1 and increases slowly with _n but is always less than 1. As a subscript applied to extract values from observations of a variable it always yields missing values given an extra rule that Stata rounds down expressions so supplied. Hence it reduces to -2, -1 or 0: in each case it yields missing values when given as a subscript. Experiment will show you that given any numeric variable say numvar references to numvar[-2] or numvar[-1] or numvar[0] all yield missing values. Otherwise put, you seem to be hoping that the / yields a set of subscripts that return a sequence you can sum over, but that is a long way from what Stata will do in that context: the / is just interpreted as division. (The running sum of missings is always returned as 0, which is an expression of missings being ignored in that calculation: just as 2 + 3 + . + 4 is returned as 9 so also . + . + . + . is returned as 0.)
A fairly general way to do what you want is to use time series operators, and this is strongly preferable to subscripts as (1) doing the right thing with gaps (2) automatically working for panels too. Thus after a tsset or xtset
L0.numvar + L1.numvar + L2.numvar + L3.numvar
yields the sum of the current value and the three previous and
L0.numvar + F1.numvar + F2.numvar + F3.numvar
yields the sum of the current value and the three next. If any of these terms is missing, the sum will be too; a work-around for that is to return say
cond(missing(L3.numvar), 0, L3.numvar)
More general code will require some kind of loop.
Given a desire to loop over lags (negative) and leads (positive) some code might look like this, given a range of subscripts as local macros i <= j
* example i and j
local i = -3
local j = 0
gen double wanted = 0
forval k = `i'/`j' {
if `k' < 0 {
local k1 = -(`k')
replace wanted = wanted + L`k1'.numvar
}
else replace wanted = wanted + F`k'.numvar
}
Alternatively, use Mata.
EDIT There's a simpler method, to use tssmooth ma to get moving averages and then multiply up by the number of terms.
tssmooth ma wanted1=numvar, w(3 1)
tssmooth ma wanted2=numvar, w(0 1 3)
replace wanted1 = 4 * wanted1
replace wanted2 = 4 * wanted2
Note that in contrast to the method above tssmooth ma uses whatever is available at the beginning and end of each panel. So, the first moving average, the average of the first value and the three previous, is returned as just the first value at the beginning of each panel (when the three previous values are unknown).

Nearest Neighbor Matching in Stata

I need to program a nearest neighbor algorithm in stata from scratch because my dataset does not allow me to use any of the available solutions (as far as I am concerned).
To be pecise. I have a dataset that is of similar structure to that of the following (original has around 14k observations)
input id value treatment match
1 0.14 0 .
2 0.32 0 .
3 0.465 1 2
4 0.878 1 2
5 0.912 1 2
6 0.001 1 1
end
I want to generate a variable called match (already included in the example above). For each observation with treatment == 1 the variable match should store the id of another observation from within treatment == 0 whose value is closest to value of the considered observation (treatment == 1).
I am new to stata programming, so I am not yet familiar with the syntax. My first shot is the following however it does not produce any changes to the match variable. I am sure this is a novice question but I am hoping for some advice on how to make the code running.
EDIT: I have changed the code slightly and now it seems to work. Do you see any problems that may arise if I run it on a bigger dataset?
set more off
clear all
input id pscore treatment
1 0.14 0
2 0.32 0
3 0.465 1
4 0.878 1
5 0.912 1
6 0.001 1
end
gen match = .
forval i = 1/`= _N' {
if treatment[`i'] == 1 {
local dist 1
forvalues j = 1/`= _N' {
if (treatment[`j'] == 0) {
local current_dist (pscore[`i'] - pscore[`j'])^2
if `dist' > `current_dist' {
local dist `current_dist' // update smallest distance
replace match = id[`j'] in `i' // write match
}
}
}
}
}
Consider some simulated data: 1,000 observations, 200 of them untreated (treat == 0) and the rest treated (treat == 1). Then the code included below will be much more efficient than the originally posted. (Ties, like in your code, are not explicitly handled.)
clear
set more off
*----- example data -----
set obs 1000
set seed 32956
gen id = _n
gen pscore = runiform()
gen treat = cond(_n <= 200, 0, 1)
*----- new method -----
timer clear
timer on 1
// get id of last non-treated and first treated
// (data is sorted by treat and ids are consecutive)
bysort treat (id): gen firsttreat = id[1]
local firstt = first[_N]
local lastnt = `firstt' - 1
// start loop
gen match = .
gen dif = .
quietly forvalues i = `firstt'/`=_N' {
// compute distances
replace dif = (pscore[`i'] - pscore)^2
summarize dif in 1/`lastnt', meanonly
// identify id of minimum-distance observation
replace match = . in 1/`lastnt'
replace match = id in 1/`lastnt' if dif == r(min)
summarize match in 1/`lastnt', meanonly
// save the minimum-distance id
replace match = r(max) in `i'
}
// clean variable and drop
replace match = . in 1/`lastnt'
drop dif firsttreat
timer off 1
tempfile first
save `first'
*----- your method -----
drop match
timer on 2
gen match = .
quietly forval i = 1/`= _N' {
if treat[`i'] == 1 {
local dist 1
forvalues j = 1/`= _N' {
if (treat[`j'] == 0) {
local current_dist (pscore[`i'] - pscore[`j'])^2
if `dist' > `current_dist' {
local dist `current_dist' // update smallest distance
replace match = id[`j'] in `i' // write match
}
}
}
}
}
timer off 2
tempfile second
save `second'
// check for equality of results
cf _all using `first'
// check times
timer list
The results in seconds to finish execution:
. timer list
1: 0.19 / 1 = 0.1930
2: 10.79 / 1 = 10.7900
The difference is huge, specially considering this data set has only 1,000 observations.
An interesting thing to notice is that as the number of non-treated cases increases relative to the number of treated, then the original method improves, but never reaches the levels of efficiency of the new method. As an example, invert the number of cases, so there is now 800 untreated and 200 treated (change data setup to gen treat = cond(_n <= 800, 0, 1)). The result is
. timer list
1: 0.07 / 1 = 0.0720
2: 4.45 / 1 = 4.4470
You can see that the new method also improves and is still much faster. In fact, the relative difference is still the same.
Another way to do this is using joinby or cross. The problem is they temporarily expand (a lot) the size of your data base. In many cases, they are not feasible due to the hard limit Stata has on the number of possible observations (see help limits). You can find an example of joinby here: https://stackoverflow.com/a/19784222/2077064.
Edit
If there's a large number of treated relative to untreated, your code suffers
because you go through the whole first loop many more times (due to the first if).
Furthermore, going through
that whole loop once, implies going through another loop that
has itself two if conditions, _N more times.
The opposite case in which there are few treated observations means that you go through the whole
first loop only in a small number of occasions, speeding up your code substantially.
The reason my code can maintain its efficiency is due to the use of in. This always
offers speed gains over if. Stata will go directly to those observations with no
logical checking needed. Your problem provides an opportunity for that replacement
and it's wise to seize it.
If my code used if where in is in place, the results would be different.
Your code would be faster for the
case in which there's a large number of untreated relative to treated, and again, that
is because in your code there would not be the need to go through the complete loop,
requiring very little work;
the first loop is short-circuited with the first if. For the opposite case,
my code would still dominate.
The key is to "separate" treated from untreated and work on each group using in.

Stata: compare coefficients of factor variables using foreach (or forvalues)

I am using an ordinal independent variable in an OLS regression as a categorical variable using the factor variable technique in Stata (i.e, i.ordinal). The variable can take on values of the integers from 0 to 9, with 0 being the base category. I am interested in testing if the coefficient of each variable is greater (or less) than that which succeeds it (i.e. _b[1.ordinal] >= _b[2.ordinal], _b[2.ordinal] >= _b[3.ordinal], etc.). I've started with the following pseudocode based on FAQ: One-sided t-tests for coefficients:
foreach i in 1 2 3 5 6 7 8 {
test _b[`i'.ordinal] - _b[`i+'.ordinal] = 0
gen sign_`i'`i+' = sign(_b[`i'.ordinal] - _b[`i+'.ordinal])
display "Ho: i <= i+ p-value = " ttail(r(df_r), sign_`i'`i+'*sqrt(r(F)))
display "Ho: i >= i+ p-value = " 1-ttail(r(df_r), sign_`i'`i+'*sqrt(r(F)))
}
where I want the ```i+' to mean the next value of i in the sequence (so if i is 3 then ``i+' is 5). Is this even possible to do? Of course, if you have any cleaner suggestions to test the coefficients in this manner, please advise.
Note: The model only uses a sub-sample of my dataset for which there are no observations for 4.ordinal, which is why I use foreach instead of forvalues. If you have suggestions for developing a general code that can be used regardless of missing variables, please advise.
There are various ways to do this. Note that there is little obvious point to creating a new variable just to hold one constant. Code not tested.
forval i = 1/8 {
local j = `i' + 1
capture test _b[`i'.ordinal] - _b[`j'.ordinal] = 0
if _rc == 0 {
local sign = sign(_b[`i'.ordinal] - _b[`j'.ordinal])
display "Ho: `i' <= `j' p-value = " ttail(r(df_r), `sign' * sqrt(r(F)))
display "Ho: `i' >= `j' p-value = " 1-ttail(r(df_r), `sign' * sqrt(r(F)))
}
}
The capture should eat errors.

Determine time period since event (up to n leads/lags)

I want to measure the number of periods (here years) since an event occurred (here represented by indicator variable pos) up to a given number of leads and lags (here three).
The following code works, but seems hackish and like I'm missing something fundamental. Is there a more robust solution that takes advantage of built in functions or a better logic? I'm on 11.2. Thanks!
version 11.2
clear
* generate annual data
set obs 40
generate country = cond(_n <= 20, "USA", "UK")
bysort country: generate year = 1766 + _n
generate pos = 1 if (year == 1776)
* generate years since event (up to three)
encode country, generate(countryn)
xtset countryn year
generate time_to_pos = 0 if (pos == 1)
forvalues i = 1/3 {
replace time_to_pos = `i' if (l`i'.pos == 1)
replace time_to_pos = -1 * `i' if (f`i'.pos == 1)
}
Clear question.
This can be shortened. Here is one way. Starting with your code to set up a sandpit
version 11.2
clear
* generate annual data
set obs 40
generate country = cond(_n <= 20, "USA", "UK")
bysort country: generate year = 1766 + _n
Now it is
gen time_to_pos = year - 1776 if abs(1776 - year) <= 3
That is all that seems needed for your example. If you want to generalise to multiple events within each panel, I'd like to know the rules for such events.
I was going to show a trick from http://www.stata-journal.com/article.html?article=dm0055 but it doesn't appear needed.