How to reduce the time complexity to find the longest zigzag sequence? - c++

I was trying to solve the problem zig zag sequences on top coder.The time complexity of my code is O(n*n). How can I reduce it to O(n) or O(nlog (n))
Pseudo code or explanation of the algorithm will be really helpful to me
Here is the problem statement.
Problem Statement
A sequence of numbers is called a zig-zag sequence if the differences between successive numbers strictly alternate between positive and negative. The first difference (if one exists) may be either positive or negative. A sequence with fewer than two elements is trivially a zig-zag sequence.
For example, 1,7,4,9,2,5 is a zig-zag sequence because the differences (6,-3,5,-7,3) are alternately positive and negative. In contrast, 1,4,7,2,5 and 1,7,4,5,5 are not zig-zag sequences, the first because its first two differences are positive and the second because its last difference is zero.
Given a sequence of integers, sequence, return the length of the longest subsequence of sequence that is a zig-zag sequence. A subsequence is obtained by deleting some number of elements (possibly zero) from the original sequence, leaving the remaining elements in their original order.
And here is my code
#include <iostream>
#include<vector>
#include<cstring>
#include<cstdio>
using namespace std;
class ZigZag
{
public:
int dp[200][2];
void print(int n)
{
for(int i=0;i<n;i++)
{
cout<<dp[i][0]<<endl;
}
}
int longestZigZag(vector<int> a)
{
int n=a.size();
//int dp[n][2];
for(int i=0;i<n;i++)
{
cout<<a[i]<<" "<<"\t";
}
cout<<endl;
memset(dp,sizeof(dp),0);
dp[0][1]=dp[0][0]=1;
for(int i=1;i<n;i++)
{
dp[i][1]=dp[i][0]=1;
for(int j=0;j<i;j++)
{
if(a[i]<a[j])
{
dp[i][0]=max(dp[j][1]+1,dp[i][0]);
}
if(a[j]<a[i])
{
dp[i][1]=max(dp[j][0]+1,dp[i][1]);
}
}
cout<<dp[i][1]<<"\t"<<dp[i][0]<<" "<<i<<endl;
//print(n);
}
cout<<dp[n-1][0]<<endl;
return max(dp[n-1][0],dp[n-1][1]);
}
};

U can do it in O(n) using a greedy approach. Take the first non-repeating number - this is the first number of your zigzag subsequence. Check whether the next number in the array is lesser than or greater than the first number.
Case 1: If lesser, check the next element to that and keep going till you find the least element (ie) the element after that would be greater than the previous element. This would be your second element.
Case 2: If greater, check the next element to that and keep going till you find the greatest element (ie) the element after that would be lesser than the previous element. This would be your second element.
If u have used Case 1 to find the second element, use Case 2 to find the third element or vice-versa. Keep alternating between these two cases till u have no more elements in the original sequence. The resultant numbers u get would form the longest zigzag subsequence.
Eg: { 1, 17, 5, 10, 13, 15, 10, 5, 16, 8 }
The resulting subsequence:
1 -> 1,17 (Case 2) -> 1,17,5 (Case 1) -> 1,17,5,15 (Case 2) -> 1,17,5,15,5 (Case 1) -> 1,17,5,15,5,16 (Case 2) -> 1,17,5,15,5,16,8 (Case 1)
Hence the length of the longest zigzag subsequence is 7.
U can refer to sjelkjd's solution for an implementation of this idea.

As the subsequence should not be necessarily contiguous you can't make it O(n). In a worst case the complexity is O(2^n). Howewer, I did some checks to cut off subtrees as soon as possible.
int maxLenght;
void test(vector<int>& a, int sign, int last, int pos, int currentLenght) {
if (maxLenght < currentLenght) maxLenght = currentLenght;
if (pos >= a.size() || pos >= a.size() + currentLenght - maxLenght) return;
if (last != a[pos] && (last - a[pos] >= 0) != sign)
test(a,!sign,a[pos],pos+1,currentLenght+1);
test(a,sign,last,pos+1,currentLenght);
}
int longestZigZag(vector<int>& a) {
maxLenght = 0;
test(a,0,a[0],1,1);
test(a,!0,a[0],1,1);
return maxLenght;
}

You can use RMQs to remove the inner for-loop. When you find the answer for dp[i][0] and dp[i][1], save it in two RMQ trees - say, RMQ0 and RMQ1 - just like you're doing now with the two rows of the dp array. So, when you calculate dp[i][0], you put the value dp[i][0] on position a[i] in RMQ0, meaning that there is a zig-zag sequence with length dp[i][0] ending increasingly with number a[i].
Then, in order to calculate dp[i + 1][0], you don't have to loop through all the numbers between 0 and i. Instead, you can query RMQ0 for the largest number on position > a[i + 1]. This will give you the longest zig-zag subsequence ending with a number larger than the current one - i.e. the longest one that can be continued decreasingly with the number a[i + 1]. Then you can do the same for RMQ1 for the other half of the zig-zag subsequences.
Since you can implement dynamic RMQ with query complexity of O(log N), this gives you an overall complexity of O(N log N).

You can solve this problem in O(n) time and O(n) extra space.
Algorithm goes as follows.
Store the difference of alternative term in new array of size n-1
Now traverse the new array and just check whether the product of alternative term is less then zero or not.
Increment result accordingly. If while traversing you find that array is product is more than zero in that case you store the result and again start counting for the rest of the element in difference array.
Find the maximum among them store it into result, and return (result+1)
Here is it's implementation in C++
#include <iostream>
#include <vector>
using namespace std;
int main()
{
ios_base::sync_with_stdio(false);
int n;
cin>>n;
vector<int> data(n);
for(int i = 0; i < n; i++)
cin>>data[i];
vector<int> diff(n-1);
for(int i = 1; i < n; i++)
diff[i-1] = data[i]-data[i-1];
int res = 1;
if( n < 2)
cout<<res<<"\n";
else
{
int temp_idx = 0;
for(int i = 1; i < n-1; i++)
{
if(diff[i]*diff[i-1] < 0)
{
temp_idx++;
res++;
}
else
{
res = max(res,temp_idx);
temp_idx = 1;
}
}
cout<<res+1<<"\n";
}
return 0;
}

This is a purely theoretical solution. This is how you would solve it if you would be asked for it in an academical environment, standing next to the chalkboard.
The solution to the problem can be created using dynamic programming:
The subproblem has the form of: if I have an element x of the sequence, what is the longest subsequence that is ending on that element?
Then you can work out your solution using recursive calls, which should look something like this (the directions of the relations might be wrong, I haven't checked it):
S - given sequence (array of integers)
P(i), Q(i) - length of the longest zigzag subsequence on elements S[0 -> i] inclusive (the longest sequence that is correct, where S[i] is the last element)
P(i) = {if i == 0 then 1
{max(Q(j) if A[i] < A[j] for every 0 <= j < i)
Q(i) = {if i == 0 then 0 #yields 0 because we are pedantic about "is zig the first relation, or is it zag?". If we aren't, then this can be a 1.
{max(P(j) if A[i] > A[j] for every 0 <= j < i)
This should be O(n) with the right memoization (storing each output of Q(i) and P(i)), because each subproblem is only computed once: n*|P| + n*|Q|.
These calls return the length of the solution - the actual result can be found by storing "parent pointer" whenever a max value is found, and then traversing backwards on these pointers.
You can avoid the recursion simply by substituting function calls with array lookups: P[i] and Q[i], and using a for loop.

Related

Given an integer K and a matrix of size t x t. construct a string s consisting of first t lowercase english letters such that the total cost of s is K

I'm solving this problem and stuck halfway through, looking for help and a better method to tackle such a problem:
problem:
Given an integer K and a matrix of size t x t. we have to construct a string s consisting of the first t lowercase English letters such that the total cost of s is exactly K. it is guaranteed that there exists at least one string that satisfies given conditions. Among all possible string s which is lexicographically smallest.
Specifically the cost of having the ith character followed by jth character of the English alphabet is equal to cost[i][j].
For example, the cost of having 'a' followed by 'a' is denoted by cost[0][0] and the cost of having 'b' followed by 'c' is denoted by cost[1][3].
The total cost of a string is the total cost of two consecutive characters in s. for matrix cost is
[1 2]
[3 4],
and the string is "abba", then we have
the cost of having 'a' followed by 'b' is is cost[0][1]=2.
the cost of having 'b' followed by 'b' is is `cost0=4.
the cost of having 'b' followed by 'a' is cost0=3.
In total, the cost of the string "abba" is 2+4+3=9.
Example:
consider, for example, K is 3,t is 2, the cost matrix is
[2 1]
[3 4]
There are two strings that its total cost is 3. Those strings are:
"aab"
"ba"
our answer will be "aab" as it is lexicographically smallest.
my approach
I tried to find and store all those combinations of i, j such that it sums up to desired value k or is individual equals k.
for above example
v={
{2,1},
{3,4}
}
k = 3
and v[0][0] + v[0][1] = 3 & v[1][0] = 3 . I tried to store the pairs in an array like this std::vector<std::vector<std::pair<int, int>>>. and based on it i will create all possible strings and will store in the set and it will give me the strings in lexicographical order.
i stucked by writing this much code:
#include<iostream>
#include<vector>
int main(){
using namespace std;
vector<vector<int>>v={{2,1},{3,4}};
vector<pair<int,int>>k;
int size=v.size();
for(size_t i=0;i<size;i++){
for(size_t j=0;j<size;j++){
if(v[i][j]==3){
k.push_back(make_pair(i,j));
}
}
}
}
please help me how such a problem can be tackled, Thank you. My code can only find the individual [i,j] pairs that can be equal to desired K. I don't have idea to collect multiple [i,j] pairs which sum's to desired value and it also appears my approach is totally naive and based on brute force. Looking for better perception to solve the problems and implement it in the code. Thank you.
This is a backtracking problem. General approach is :
a) Start with the "smallest" letter for e.g. 'a' and then recurse on all the available letters. If you find a string that sums to K then you have the answer because that will be the lexicographically smallest as we are finding it from smallest to largest letter.
b) If not found in 'a' move to the next letter.
Recurse/backtrack can be done as:
Start with a letter and the original value of K
explore for every j = 0 to t and reducing K by cost[i][j]
if K == 0 you found your string.
if K < 0 then that path is not possible, so remove the last letter in the string, try other paths.
Pseudocode :
string find_smallest() {
for (int i = 0; i < t; i++) {
s = (char)(i+97)
bool value = recurse(i,t,K,s)
if ( value ) return s;
s = ""
}
return ""
}
bool recurse(int i, int t, int K, string s) {
if ( K < 0 ) {
return false;
}
if ( K == 0 ) {
return true;
}
for ( int j = 0; j < t; j++ ) {
s += (char)(j+97);
bool v = recurse(j, t, K-cost[i][j], s);
if ( v ) return true;
s -= (char)(j+97);
}
return false;
}
In your implementation, you would probably need another vector of vectors of pairs to explore all your candidates. Also another vector for updating the current cost of each candidate as it builds up. Following this approach, things start to get a bit messy (IMO).
A more clean and understandable option (IMO again) could be to approach the problem with recursivity:
#include <iostream>
#include <vector>
#define K 3
using namespace std;
string exploreCandidate(int currentCost, string currentString, vector<vector<int>> &v)
{
if (currentCost == K)
return currentString;
int size = v.size();
int lastChar = (int)currentString.back() - 97; // get ASCII code
for (size_t j = 0; j < size; j++)
{
int nextTotalCost = currentCost + v[lastChar][j];
if (nextTotalCost > K)
continue;
string nextString = currentString + (char)(97 + j); // get ASCII char
string exploredString = exploreCandidate(nextTotalCost, nextString, v);
if (exploredString != "00") // It is a valid path
return exploredString;
}
return "00";
}
int main()
{
vector<vector<int>> v = {{2, 1}, {3, 4}};
int size = v.size();
string initialString = "00"; // reserve first two positions
for (size_t i = 0; i < size; i++)
{
for (size_t j = 0; j < size; j++)
{
initialString[0] = (char)(97 + i);
initialString[1] = (char)(97 + j);
string exploredString = exploreCandidate(v[i][j], initialString, v);
if (exploredString != "00") { // It is a valid path
cout << exploredString << endl;
return 0;
}
}
}
}
Let us begin from the main function:
We define our matrix and iterate over it. For each position, we define the corresponding sequence. Notice that we can use indices to get the respective character of the English alphabet, knowing that in ASCII code a=97, b=98...
Having this initial sequence, we can explore candidates recursively, which lead us to the exploreCandidate recursive function.
First, we want to make sure that the current cost is not the value we are looking for. If it is, we leave immediately without even evaluating the following iterations for candidates. We want to do this because we are looking for the lexicographically smallest element, and we are not asked to provide information about all the candidates.
If the cost condition is not satisfied (cost < K), we need to continue exploring our candidate, but not for the whole matrix but only for the row corresponding to the last character. Then we can encounter two scenarios:
The cost condition is met (cost = K): if at some point of recursivity the cost is equal to our value K, then the string is a valid one, and since it will be the first one we encounter, we want to return it and finish the execution.
The cost is not valid (cost > K): If the current cost is greater than K, then we need to abort this branch and see if other branches are luckier. Returning a boolean would be nice, but since we want to output a string (or maybe not, depending on the statement), an option could be to return a string and use "00" as our "false" value, allowing us to know whether the cost condition has been met. Other options could be returning a boolean and using an output parameter (passed by reference) to contain the output string.
EDIT:
The provided code assumes positive non-zero costs. If some costs were to be zero you could encounter infinite recursivity, so you would need to add more constraints in your recursive function.

Why does the longest prefix which is also suffix calculation part in the KMP have a time complexity of O(n) and not O(n^2)?

I was going through the code of KMP when I noticed the Longest Prefix which is also suffix calculation part of KMP. Here is how it goes,
void computeLPSArray(char* pat, int M, int* lps)
{
int len = 0;
lps[0] = 0;
int i = 1;
while (i < M) {
if (pat[i] == pat[len]) {
len++;
lps[i] = len;
i++;
}
else
{
if (len != 0) {
len = lps[len - 1]; //<----I am referring to this part
}
else
{
lps[i] = 0;
i++;
}
}
}
}
Now the part where I got confused was the one which I have shown in comments in the above code. Now we do know that when a code contains a loop like the following
int a[m];
memset(a, 0, sizeof(a));
for(int i = 0; i<m; i++){
for(int j = i; j>=0; j--){
a[j] = a[j]*2;//This inner loop is causing the same cells in the 1
//dimensional array to be visited more than once.
}
}
The complexity comes out to be O(m*m).
Similarly if we write the above LPS computation in the following format
while(i<M){
if{....}
else{
if(len != 0){
//doesn't this part cause the code to again go back a few elements
//in the LPS array the same way as the inner loop in my above
//written nested for loop does? Shouldn't that mean the same cell
//in the array is getting visited more than once and hence the
//complexity should increase to O(M^2)?
}
}
}
It might be that the way I think complexities are calculated is wrong. So please clarify.
If expressions do not take time that grows with len.
Len is an integer. Reading it takes O(1) time.
Array indexing is O(1).
Visiting something more than once does not mean you are higher O notation wise. Only if the visit count grows faster than kn for some k.
If you carefully analyze the algorithm of creating prefix table, you may notice that the total number of rollbacked positions could be m at most, so the upper bound for total number of iterations is 2*m which yields O(m)
Value of len grows alongside the main iterator i and whenever there is a mismatch, len drops back to zero value but this "drop" cannot exceed the interval passed by the main iterator i since the start of match.
For example, let's say, the main iterator i started matching with len at position 5 and mismatched at position 20.
So,
LPS[5]=1
LPS[6]=2
...
LPS[19]=15
At the moment of mismatch, len has a value of 15. Hence it may rollback at most 15 positions down to zero, which is equivalent to the interval passed by i while matching. In other words, on every mismatch, len travels back no more than i has traveled forward since the start of match

Please tell me the efficient algorithm of Range Mex Query

I have a question about this problem.
Question
You are given a sequence a[0], a 1],..., a[N-1], and set of range (l[i], r[i]) (0 <= i <= Q - 1).
Calculate mex(a[l[i]], a[l[i] + 1],..., a[r[i] - 1]) for all (l[i], r[i]).
The function mex is minimum excluded value.
Wikipedia Page of mex function
You can assume that N <= 100000, Q <= 100000, and a[i] <= 100000.
O(N * (r[i] - l[i]) log(r[i] - l[i]) ) algorithm is obvious, but it is not efficient.
My Current Approach
#include <bits/stdc++.h>
using namespace std;
int N, Q, a[100009], l, r;
int main() {
cin >> N >> Q;
for(int i = 0; i < N; i++) cin >> a[i];
for(int i = 0; i < Q; i++) {
cin >> l >> r;
set<int> s;
for(int j = l; j < r; j++) s.insert(a[i]);
int ret = 0;
while(s.count(ret)) ret++;
cout << ret << endl;
}
return 0;
}
Please tell me how to solve.
EDIT: O(N^2) is slow. Please tell me more fast algorithm.
Here's an O((Q + N) log N) solution:
Let's iterate over all positions in the array from left to right and store the last occurrences for each value in a segment tree (the segment tree should store the minimum in each node).
After adding the i-th number, we can answer all queries with the right border equal to i.
The answer is the smallest value x such that last[x] < l. We can find by going down the segment tree starting from the root (if the minimum in the left child is smaller than l, we go there. Otherwise, we go to the right child).
That's it.
Here is some pseudocode:
tree = new SegmentTree() // A minimum segment tree with -1 in each position
for i = 0 .. n - 1
tree.put(a[i], i)
for all queries with r = i
ans for this query = tree.findFirstSmaller(l)
The find smaller function goes like this:
int findFirstSmaller(node, value)
if node.isLeaf()
return node.position()
if node.leftChild.minimum < value
return findFirstSmaller(node.leftChild, value)
return findFirstSmaller(node.rightChild)
This solution is rather easy to code (all you need is a point update and the findFisrtSmaller function shown above and I'm sure that it's fast enough for the given constraints.
Let's process both our queries and our elements in a left-to-right manner, something like
for (int i = 0; i < N; ++i) {
// 1. Add a[i] to all internal data structures
// 2. Calculate answers for all queries q such that r[q] == i
}
Here we have O(N) iterations of this loop and we want to do both update of the data structure and query the answer for suffix of currently processed part in o(N) time.
Let's use the array contains[i][j] which has 1 if suffix starting at the position i contains number j and 0 otherwise. Consider also that we have calculated prefix sums for each contains[i] separately. In this case we could answer each particular suffix query in O(log N) time using binary search: we should just find the first zero in the corresponding contains[l[i]] array which is exactly the first position where the partial sum is equal to index, and not to index + 1. Unfortunately, such arrays would take O(N^2) space and need O(N^2) time for each update.
So, we have to optimize. Let's build a 2-dimensional range tree with "sum query" and "assignment" range operations. In such tree we can query sum on any sub-rectangle and assign the same value to all the elements of any sub-rectangle in O(log^2 N) time, which allows us to do the update in O(log^2 N) time and queries in O(log^3 N) time, giving the time complexity O(Nlog^2 N + Qlog^3 N). The space complexity O((N + Q)log^2 N) (and the same time for initialization of the arrays) is achieved using lazy initialization.
UP: Let's revise how the query works in range trees with "sum". For 1-dimensional tree (to not make this answer too long), it's something like this:
class Tree
{
int l, r; // begin and end of the interval represented by this vertex
int sum; // already calculated sum
int overriden; // value of override or special constant
Tree *left, *right; // pointers to children
}
// returns sum of the part of this subtree that lies between from and to
int Tree::get(int from, int to)
{
if (from > r || to < l) // no intersection
{
return 0;
}
if (l <= from && to <= r) // whole subtree lies within the interval
{
return sum;
}
if (overriden != NO_OVERRIDE) // should push override to children
{
left->overriden = right->overriden = overriden;
left->sum = right->sum = (r - l) / 2 * overriden;
overriden = NO_OVERRIDE;
}
return left->get(from, to) + right->get(from, to); // split to 2 queries
}
Given that in our particular case all queries to the tree are prefix sum queries, from is always equal to 0, so, one of the calls to children always return a trivial answer (0 or already computed sum). So, instead of doing O(log N) queries to the 2-dimensional tree in the binary search algorithm, we could implement an ad-hoc procedure for search, very similar to this get query. It should first get the value of the left child (which takes O(1) since it's already calculated), then check if the node we're looking for is to the left (this sum is less than number of leafs in the left subtree) and go to the left or to the right based on this information. This approach will further optimize the query to O(log^2 N) time (since it's one tree operation now), giving the resulting complexity of O((N + Q)log^2 N)) both time and space.
Not sure this solution is fast enough for both Q and N up to 10^5, but it may probably be further optimized.

Given a sorted array and a parameter k, find the count of sum of two numbers greater than or equal to k in linear time

I am trying to find all pairs in an array with sum equal to k. My current solution takes O(n*log(n)) time (code snippet below).Can anybody help me in finding a better solution, O(n) or O(lgn) may be (if it exists)
map<int,int> mymap;
map<int,int>::iterator it;
cin>>n>>k;
for( int i = 0 ; i < n ; i++ ){
cin>>a;
if( mymap.find(a) != mymap.end() )
mymap[a]++;
else
mymap[a] = 1;
}
for( it = mymap.begin() ; it != mymap.end() ; it++ ){
int val = it->first;
if( mymap.find(k-val) != mymap.end() ){
cnt += min( it->second, mymap.find(k-val)->second );
it->second = 0;
}
}
cout<<cnt;
Another aproach which will take O(log n) in the best case and O(nlog n) in the worst one for positive numbers can be done in this way:
Find element in array that is equal to k/2 or if it doesn’t exist than finds the minimum greater then k/2. All combinations with this element and all greater elements will be interested for us because p + s >= k when p>= k/2 and s>=k/2. Array is sorted, so binary search with some modifications can be used. This step will take O(log n) time.
All elements which are less then k/2 + elements greater or equal to "mirror elements" (according to median k/2) will also be interested for us because p + s >= k when p=k/2-t and s>= k/2+t. Here we need to loop through elements less then k/2 and find their mirror elements (binary search). The loop should be stopped if mirror element is greater then the last array.
For instance we have array {1,3,5,8,11} and k = 10, so on the first step we will have k/2 = 5 and pairs {5,7}, {8,11}, {8, 11}. The count of these pairs will be calculated by formula l * (l - 1)/2 where l = count of elements >= k/2. In our case l = 3, so count = 3*2/2=3.
On the second step for 3 number a mirror element will be 7 (5-2=3 and 5+2=7), so pairs {3, 8} and {3, 11} will be interested. For 1 number mirror will be 9 (5-4=1 and 5+4=9), so {1, 11} is what we look for.
So, if k/2 < first array element this algorithm will be O(log n).
For negative the algorithm will be a little bit more complex but can be solved also with the same complexity.
There exists a rather simple O(n) approach using the so-called "two pointers" or "two iterators" approach. The key idea is to have two iterators (not necessarily C++ iterators, indices would do too) running on the same array so that if first iterator points to value x, then the second iterator points to the maximal element in the array that is less then k-x.
We will be increasing the first iterator, and while doing this we'll also change the second iterator to maintain this property. Note that as the first pointer increases, the corresponding position of the second pointer will only decrease, so on every iteration we can start from the position where we stopped at the previous iteration; we will never need to increase the second pointer. This is how we achieve O(n) time.
Code is like this (did not test this, but the idea should be clear)
vector<int> a; // the given array
int r = a.size() - 1;
for (int l=0; l<a.size(); l++) {
while ((r >= 0) && (a[r] >= k - a[l]))
r--;
// now r is the maximal position in a so that a[r] < k - a[l]
// so all elements right to r form a needed pair with a[l]
ans += a.size() - r - 1; // this is how many pairs we have starting at l
}
Another approach which might be simpler to code, but a bit slower, is O(n log n) using binary search. For each element a[l] of the array, you can find the maximal position r so that a[r]<k-a[l] using binary search (this is the same r as in the first algorithm).
#Drew Dormann - thanks for the remark.
Run through the array with two pointers. left and right.
Assuming left is the small side, start with left at location 0 and then right moves towards left until a[left]+a[right] >= k for the last time.
When this is achieved, then total_count += (a.size - right + 1).
You then move left one step forwards and right needs to (maybe) move towards it. Repeat this until they meet.
When this is done, and let us say they met at location x, then totla_count += choose(2, a.size - x).
Sort the array (n log n)
for (i = 1 to n)
Start at the root
if a[i] + curr_node >= k, go left and match = indexof(curr_nod)e
else, go right
If curr_node = leaf node, add all nodes after a[match] to the list of valid pairs with a[i]
Step 2 also takes O(n log n). The for loop runs n times. Within the loop, we perform a binary search for each node i.e. log n steps. Hence the overall complexity of the algorithm is O (n log n).
This should do the work:
void count(int A[], int n) //n being the number of terms in array
{ int i, j, k, count = 0;
cin>>k;
for(i = 0; i<n; i++)
for(j = 0; j<n; j++)
if(A[i] + A[j] >= k)
count++ ;
cout<<"There are "<<count<<" such numbers" ;
}

Array balancing point

What is the best way to solve this?
A balancing point of an N-element array A is an index i such that all elements on lower indexes have values <= A[i] and all elements on higher indexes have values higher or equal A[i].
For example, given:
A[0]=4 A[1]=2 A[2]=7 A[3]=11 A[4]=9
one of the correct solutions is: 2. All elements below A[2] is less than A[2], all elements after A[2] is more than A[2].
One solution that appeared to my mind is O(nsquare) solution. Is there any better solution?
Start by assuming A[0] is a pole. Then start walking the array; comparing each element A[i] in turn against A[0], and also tracking the current maximum.
As soon as you find an i such that A[i] < A[0], you know that A[0] can no longer be a pole, and by extension, neither can any of the elements up to and including A[i]. So now continue walking until you find the next value that's bigger than the current maximum. This then becomes the new proposed pole.
Thus, an O(n) solution!
In code:
int i_pole = 0;
int i_max = 0;
bool have_pole = true;
for (int i = 1; i < N; i++)
{
if (A[i] < A[i_pole])
{
have_pole = false;
}
if (A[i] > A[i_max])
{
i_max = i;
if (!have_pole)
{
i_pole = i;
}
have_pole = true;
}
}
If you want to know where all the poles are, an O(n log n) solution would be to create a sorted copy of the array, and look to see where you get matching values.
EDIT: Sorry, but this doesn't actually work. One counterexample is [2, 5, 3, 1, 4].
Make two auxiliary arrays, each with as many elements as the input array, called MIN and MAX.
Each element M of MAX contains the maximum of all the elements in the input from 0..M. Each element M of MIN contains the minimum of all the elements in the input from M..N-1.
For each element M of the input array, compare its value to the corresponding values in MIN and MAX. If INPUT[M] == MIN[M] and INPUT[M] == MAX[M] then M is a balancing point.
Building MIN takes N steps, and so does MAX. Testing the array then takes N more steps. This solution has O(N) complexity and finds all balancing points. In the case of sorted input every element is a balancing point.
Create a double-linked list such as i-th node of this list contains A[i] and i. Traverse this list while elements grow (counting maximum of these elements). If some A[bad] < maxSoFar it can't be MP. Remove it and go backward removing elements until you find A[good] < A[bad] or reach the head of the list. Continue (starting with maxSoFar as maximum) until you reach end of the list. Every element in result list is MP and every MP is in this list. Complexity is O(n) since is maximum of steps is performed for descending array - n steps forward and n removals.
Update
Oh my, I confused "any" with "every" in problem definition :).
You can combine bmcnett's and Oli's answers to find all the poles as quickly as possible.
std::vector<int> i_poles;
i_poles.push_back(0);
int i_max = 0;
for (int i = 1; i < N; i++)
{
while (!i_poles.empty() && A[i] < A[i_poles.back()])
{
i_poles.pop_back();
}
if (A[i] >= A[i_max])
{
i_poles.push_back(i);
}
}
You could use an array preallocated to size N if you wanted to avoid reallocations.