Execution time of functions decreases at runtime. (C++) Why? - c++

For some testing purposes I have written a piece of code for measuring execution times of several fast operations in my real-time video processing code. And things are working fine. I am getting very realistic results, but i noticed one interesting peculiarity.
I am using a POSIX function clock_gettime with CLOCK_MONOTONIC attribute. So i am getting timespecs with nanosecond precision (1/1000000000sec) and it is said that getting a timespec value in that manner takes only several processor ticks.
Here are two functions that i am using for saving timespecs. I also added definitions of datastructures that are being used:
QVector<long> timeMemory;
QVector<std::string> procMemory;
timespec moment;
void VisionTime::markBegin(const std::string& action) {
if(measure){
clock_gettime(CLOCK_MONOTONIC, &moment);
procMemory.append(action + ";b");
timeMemory.append(moment.tv_nsec);
}
}
void VisionTime::markEnd(const std::string& action) {
if(measure){
clock_gettime(CLOCK_MONOTONIC, &moment);
procMemory.append(action + ";e");
timeMemory.append(moment.tv_nsec);
}
}
I am collecting the results into a couple of QVectors that are used later.
I noticed that when these two functions are executed for the first time(right after each other, having nothing between them), the difference between two saved timespecs is ~34000ns. Next time the difference is about 2 times smaller. And so on. If i execute them for hundreds of times then the average difference is ~2000ns.
So an average recurrent execution of these functions takes about 17000x less time than the first one.
As i am taking hundreds of measurements in a row, it does not really matter to me that some first executions last a little bit longer. But anyway it just interests me, why is it that way?
I have various experience in Java, but i am quite new to c++. I do not know much how things work here.
I am using O3 flag for optimization level.
My QMake conf:
QMAKE_CXXFLAGS += -O3 -march=native
So, can anyone tell, which part of this little code gets faster at runtime, how and why? I doubt appending to QVector. Does optimization affect this somehow?
It's my first question here on stackoverflow, hope it's not too long :) Many thanks for all your responses!

There are quite a few potential first-time costs in your measurement code, here's a couple and how you can test for them.
Memory allocation: Those QVectors won't have any memory allocated on the heap until the first time you use them.
Also, the vector will most likely start out by allocating a small amount of memory, then allocate exponentially more as you add more data (a standard compromise for containers like this). Therefore, you will have many memory allocations towards the beginning of your runtime, then the frequency will decrease over time.
You can verify that this is happening by looking at the return value of QVector::capacity(), and tune the behavior by QVector::reserve(int) - e.g. if you do timeMemory.reserve(10000);, procMemory.reserve(10000);, you can reserve enough space for the first ten thousand measurements before your measurements begin.
Lazy symbol binding: the dynamic linker by default won't resolve symbols from Qt (or other shared libraries) until they are needed. So, if these measuring functions are the first place in your code where some QVector or std::string functions are called, the dynamic linker will need to do some one-time work to resolve those functions, which takes time.
If this is indeed the case, you can disable the lazy loading by setting the environment variable LD_BIND_NOW=1 on Linux or DYLD_BIND_AT_LAUNCH=1 on Mac.

It is probably due to branch prediction. http://en.wikipedia.org/wiki/Branch_predictor

Related

Time measurement repeatedly makes mistake in specific places

I need to write program which would measure performance of certain data structures. But I can't get reliable result. For example when I measured performance 8 times for the same size of structure, every other result was different(for example: 15ms, 9ms, 15ms, 9ms, 15ms, ...), although the measurements weren't dependent on each other(for every measurement I generated new data). I tried to extract the problem and here is what I have:
while (true) {
auto start = high_resolution_clock::now();
for (int j = 0; j < 500; j++)
;
auto end = high_resolution_clock::now();
cout << duration<double, milli>(end - start).count() << " ";
_getch();
}
What happens when I run this code is - In the first run of loop the time is significantly higher than in next runs. Well it's always higher in the first run, but from time to time also in other measurements.
Example output: 0.006842 0.002566 0.002566 0.002138 0.002993 0.002138 0.002139 ...
And that's the behaviour everytime I start the program.
Here are some things I tried:
It does matter if I compile Release or Debug version. Measurements are still faulty but in different places.
I turned off code optimization.
I tried using different clocks.
And what I think is quite important - While my Add function wasn't empty, the problem depended on data size. For example program worked well for most data sizes but let's say for element count of 7500 measurements were drastically different.
I just deleted part of code after the segment i posted here. And guess what, first measurement is no longer faulty. I have no idea what's happening here.
I would be glad if someone explained to me what can be possible cause of all of this.
In that code, it's likely that you're just seeing the effect of the instruction cache or the micro-op cache. The first time the test is run, more instructions have to be fetched and decoded; on subsequent runs the results of that are available in the caches. As for the alternating times you were setting on some other code, that could be fluctuations in the branch prediction buffer, or something else entirely.
There's too many complex processes involved in execution on modern CPUs to expect a normal sequence of instructions to execute in a fixed amount of time. While it's possible to measure or at least account for these externalities when looking at individual instructions, for nontrivial code you basically have to accept empirical measurements including their variance.
Depending on what kind of operating system you're on, for durations this short, the scheduler can cause huge differences. If your thread is preempted, then you have the idle duration in your time. There are also many things that happen that you don't see: caches, pages, allocation. Modern systems are complex.
You're better off making the whole benchmark bigger, and then doing multiple runs on each thing you're testing, and then using something like ministat from FreeBSD to compare the runs of the same test, and then compare the ministat for the different things you're comparing.
To do this effectively, your benchmark should try to use the same amount of memory as the real workload, so that you memory access is a part of the benchmark.

C++ benchmarking, volatile

I'm trying to measure how long it takes to execute a function 'check()' using rdtsc as follows:
a = rdtsc();
check(pw);
b = rdtsc();
return (b-a);
However, I am receiving very small time differences, which I think is due to my compiler (using G++, on windows) optimising the code. As 'check()' does not affect any other part of the program, I think the compiler is ignoring this call altogether.
I have read about using something called asm volatile to tell the compiler not to optimise a certain section of code, but I cannot figure out how to implement it.
Any help on this?
Presumably the function calculates and returns some value. Do something with that value, such as add it to a global variable (and eventually print out that variable), so that the compiler cannot easily optimise the function away.
1) You need run hundreds millions of iterations for receiving kinda avg. performance
2) DON'T benchmark such low-level things, because it's almost not related to real world. Real task work billions CPU circles and single volatile can add just 0.000001% overhead... or may increase it by 100000%, if yours threads constantly accessing to shared data. You may benchmark part of yours algorithm and then improve it, but not particular instructions.

optimizing `std::vector operator []` (vector access) when it becomes a bottleneck

gprof says that my high computing app spends 53% of its time inside std::vector <...> operator [] (unsigned long), 32% of which goes to one heavily used vector. Worse, I suspect that my parallel code failing to scale beyond 3-6 cores is due to a related memory bottleneck. While my app does spend a lot of time accessing and writing memory, it seems like I should be able (or at least try) to do better than 52%. Should I try using dynamic arrays instead (size remains constant in most cases)? Would that be likely to help with possible bottlenecks?
Actually, my preferred solution would be to solve the bottleneck and leave the vectors as is for convenience. Based on the above, are there any likely culprits or solutions (tcmalloc is out)?
Did you examine your memory access pattern itself? It might be inefficient - cache unfriendly.
Did you try to use raw pointer while array accessing?
// regular place
for (int i = 0; i < arr.size(); ++i)
wcout << arr[i];
// In bottleneck
int *pArr = &arr.front();
for (int i = 0; i < arr.size(); ++i)
wcout << pArr[i];
I suspect that gprof prevents functions to be inlined. Try to use another profiling method. std::vector operator [] cannot be bottleneck because it doesn't differ much from raw array access. SGI implementaion is shown below:
reference operator[](size_type __n) { return *(begin() + __n); }
iterator begin() { return _M_start; }
You cannot trust gprof for high-speed code profiling, you should instead use a passive profiling method like oprofile to get the real picture.
As an alternative you could profile by manual code alteration (e.g. calling a computation 10 times instead of one and checking how much the execution time increases). Note that this is however going to be influenced by cache issues so YMMV.
The vector class is heavily liked and provides a certain amount of convenience, at the expense of performance, which is fine when you don't particularly need performance.
If you really need performance, it won't hurt you too much to bypass the vector class and go directly to a simple old hand-made array, whether statically or dynamically allocated. Then 1) the time you currently spend indexing should essentially disappear, speeding up your app by that amount, and 2) you can move on to whatever the "next big thing" is that takes time in your app.
EDIT:
Most programs have a lot more room for speedup than you might suppose. I made a walk-through project to illustrate this. If I can summarize it really quickly, it goes like this:
Original time is 2.7 msec per "job" (the number of "jobs" can be varied to get enough run-time to analyze it).
First cut showed roughly 60% of time was spent in vector operations, including indexing, appending, and removing. I replaced with a similar vector class from MFC, and time decreased to 1.8 msec/job. (That's a 1.5x or 50% speedup.)
Even with that array class, roughly 40% of time was spent in the [] indexing operator. I wanted it to index directly, so I forced it to index directly, not through the operator function. That reduced time to 1.5 msec/job, a 1.2x speedup.
Now roughly 60% of the time is adding/removing items in arrays. An additional fraction was spent in "new" and "delete". I decided to chuck the arrays and do two things. One was to use do-it-yourself linked lists, and to pool used objects. The first reduced time to 1.3 msec (1.15x). The second reduced it to 0.44 msec (2.95x).
Of that time, I found that about 60% of the time was in code I had written to do indexing into the list (as if it were an array). I decided that could be done instead just by having a pointer directly into the list. Result: 0.14 msec (3.14x).
Now I found that nearly all the time was being spent in a line of diagnostic I/O I was printing to the console. I decided to get rid of that: 0.0037 msec (38x).
I could have kept going, but I stopped.
The overall time per job was reduced by a compounded factor of about 700x.
What I want you to take away is if you need performance bad enough to deviate from what might be considered the accepted ways of doing things, you don't have to stop after one "bottleneck".
Just because you got a big speedup doesn't mean there are no more.
In fact the next "bottleneck" might be bigger than the first, in terms of speedup factor.
So raise your expectations of speedup you can get, and go for broke.

function calling performance

I have called snprintf a few times consecutively with different arguments. I take the time needed for each snprintf. I found that the first call to snprintf takes the longest time. After that, the time needed to call the same function decreases until it converges. What is the reason for that? I have tried with other functions and also exhibit the same behavior.
I am asking this because it relates to testing the code performance. Normally in the main program it would be only be called periodically. However, when I test the function separately like in a loop, it would be faster, hence, resulting in inaccuracy of the measurement of performance.
The first call takes 4000++ ns, second call takes 1700ns, third call takes 800 ns until around 10++ calls, it is reduced to 130ns.
snprintf(buffer, 32, "%d", randomGeneratedNumber1);
snprintf(buffer, 32, "%d", randomGeneratedNumber2);
.
.
.
The most likely explanation is that both the function code will end up in the instruction cache after the second time around just like the input data (if there is any) will be in the data cache. Furthermore, some branches may be predicted correctly the second time around.
So, all in all, "things have been cached".
Your program may be dynamically linked to the library containing snprintf(). The first time delay would then be what is needed to load the library.
Search TLB and cache. But for just small answer, in these small codes, cache effects the execution time. For large codes, besides the cache, many memory pages will be swapped out and for later usage swapped in from hard disk to your ram. So when you use a part of code very often it will not be swapped out and thus it's execution time is enhanced.

Coding Practices which enable the compiler/optimizer to make a faster program

Many years ago, C compilers were not particularly smart. As a workaround K&R invented the register keyword, to hint to the compiler, that maybe it would be a good idea to keep this variable in an internal register. They also made the tertiary operator to help generate better code.
As time passed, the compilers matured. They became very smart in that their flow analysis allowing them to make better decisions about what values to hold in registers than you could possibly do. The register keyword became unimportant.
FORTRAN can be faster than C for some sorts of operations, due to alias issues. In theory with careful coding, one can get around this restriction to enable the optimizer to generate faster code.
What coding practices are available that may enable the compiler/optimizer to generate faster code?
Identifying the platform and compiler you use, would be appreciated.
Why does the technique seem to work?
Sample code is encouraged.
Here is a related question
[Edit] This question is not about the overall process to profile, and optimize. Assume that the program has been written correctly, compiled with full optimization, tested and put into production. There may be constructs in your code that prohibit the optimizer from doing the best job that it can. What can you do to refactor that will remove these prohibitions, and allow the optimizer to generate even faster code?
[Edit] Offset related link
Here's a coding practice to help the compiler create fast code—any language, any platform, any compiler, any problem:
Do not use any clever tricks which force, or even encourage, the compiler to lay variables out in memory (including cache and registers) as you think best. First write a program which is correct and maintainable.
Next, profile your code.
Then, and only then, you might want to start investigating the effects of telling the compiler how to use memory. Make 1 change at a time and measure its impact.
Expect to be disappointed and to have to work very hard indeed for small performance improvements. Modern compilers for mature languages such as Fortran and C are very, very good. If you read an account of a 'trick' to get better performance out of code, bear in mind that the compiler writers have also read about it and, if it is worth doing, probably implemented it. They probably wrote what you read in the first place.
Write to local variables and not output arguments! This can be a huge help for getting around aliasing slowdowns. For example, if your code looks like
void DoSomething(const Foo& foo1, const Foo* foo2, int numFoo, Foo& barOut)
{
for (int i=0; i<numFoo, i++)
{
barOut.munge(foo1, foo2[i]);
}
}
the compiler doesn't know that foo1 != barOut, and thus has to reload foo1 each time through the loop. It also can't read foo2[i] until the write to barOut is finished. You could start messing around with restricted pointers, but it's just as effective (and much clearer) to do this:
void DoSomethingFaster(const Foo& foo1, const Foo* foo2, int numFoo, Foo& barOut)
{
Foo barTemp = barOut;
for (int i=0; i<numFoo, i++)
{
barTemp.munge(foo1, foo2[i]);
}
barOut = barTemp;
}
It sounds silly, but the compiler can be much smarter dealing with the local variable, since it can't possibly overlap in memory with any of the arguments. This can help you avoid the dreaded load-hit-store (mentioned by Francis Boivin in this thread).
The order you traverse memory can have profound impacts on performance and compilers aren't really good at figuring that out and fixing it. You have to be conscientious of cache locality concerns when you write code if you care about performance. For example two-dimensional arrays in C are allocated in row-major format. Traversing arrays in column major format will tend to make you have more cache misses and make your program more memory bound than processor bound:
#define N 1000000;
int matrix[N][N] = { ... };
//awesomely fast
long sum = 0;
for(int i = 0; i < N; i++){
for(int j = 0; j < N; j++){
sum += matrix[i][j];
}
}
//painfully slow
long sum = 0;
for(int i = 0; i < N; i++){
for(int j = 0; j < N; j++){
sum += matrix[j][i];
}
}
Generic Optimizations
Here as some of my favorite optimizations. I have actually increased execution times and reduced program sizes by using these.
Declare small functions as inline or macros
Each call to a function (or method) incurs overhead, such as pushing variables onto the stack. Some functions may incur an overhead on return as well. An inefficient function or method has fewer statements in its content than the combined overhead. These are good candidates for inlining, whether it be as #define macros or inline functions. (Yes, I know inline is only a suggestion, but in this case I consider it as a reminder to the compiler.)
Remove dead and redundant code
If the code isn't used or does not contribute to the program's result, get rid of it.
Simplify design of algorithms
I once removed a lot of assembly code and execution time from a program by writing down the algebraic equation it was calculating and then simplified the algebraic expression. The implementation of the simplified algebraic expression took up less room and time than the original function.
Loop Unrolling
Each loop has an overhead of incrementing and termination checking. To get an estimate of the performance factor, count the number of instructions in the overhead (minimum 3: increment, check, goto start of loop) and divide by the number of statements inside the loop. The lower the number the better.
Edit: provide an example of loop unrolling
Before:
unsigned int sum = 0;
for (size_t i; i < BYTES_TO_CHECKSUM; ++i)
{
sum += *buffer++;
}
After unrolling:
unsigned int sum = 0;
size_t i = 0;
**const size_t STATEMENTS_PER_LOOP = 8;**
for (i = 0; i < BYTES_TO_CHECKSUM; **i = i / STATEMENTS_PER_LOOP**)
{
sum += *buffer++; // 1
sum += *buffer++; // 2
sum += *buffer++; // 3
sum += *buffer++; // 4
sum += *buffer++; // 5
sum += *buffer++; // 6
sum += *buffer++; // 7
sum += *buffer++; // 8
}
// Handle the remainder:
for (; i < BYTES_TO_CHECKSUM; ++i)
{
sum += *buffer++;
}
In this advantage, a secondary benefit is gained: more statements are executed before the processor has to reload the instruction cache.
I've had amazing results when I unrolled a loop to 32 statements. This was one of the bottlenecks since the program had to calculate a checksum on a 2GB file. This optimization combined with block reading improved performance from 1 hour to 5 minutes. Loop unrolling provided excellent performance in assembly language too, my memcpy was a lot faster than the compiler's memcpy. -- T.M.
Reduction of if statements
Processors hate branches, or jumps, since it forces the processor to reload its queue of instructions.
Boolean Arithmetic (Edited: applied code format to code fragment, added example)
Convert if statements into boolean assignments. Some processors can conditionally execute instructions without branching:
bool status = true;
status = status && /* first test */;
status = status && /* second test */;
The short circuiting of the Logical AND operator (&&) prevents execution of the tests if the status is false.
Example:
struct Reader_Interface
{
virtual bool write(unsigned int value) = 0;
};
struct Rectangle
{
unsigned int origin_x;
unsigned int origin_y;
unsigned int height;
unsigned int width;
bool write(Reader_Interface * p_reader)
{
bool status = false;
if (p_reader)
{
status = p_reader->write(origin_x);
status = status && p_reader->write(origin_y);
status = status && p_reader->write(height);
status = status && p_reader->write(width);
}
return status;
};
Factor Variable Allocation outside of loops
If a variable is created on the fly inside a loop, move the creation / allocation to before the loop. In most instances, the variable doesn't need to be allocated during each iteration.
Factor constant expressions outside of loops
If a calculation or variable value does not depend on the loop index, move it outside (before) the loop.
I/O in blocks
Read and write data in large chunks (blocks). The bigger the better. For example, reading one octect at a time is less efficient than reading 1024 octets with one read.
Example:
static const char Menu_Text[] = "\n"
"1) Print\n"
"2) Insert new customer\n"
"3) Destroy\n"
"4) Launch Nasal Demons\n"
"Enter selection: ";
static const size_t Menu_Text_Length = sizeof(Menu_Text) - sizeof('\0');
//...
std::cout.write(Menu_Text, Menu_Text_Length);
The efficiency of this technique can be visually demonstrated. :-)
Don't use printf family for constant data
Constant data can be output using a block write. Formatted write will waste time scanning the text for formatting characters or processing formatting commands. See above code example.
Format to memory, then write
Format to a char array using multiple sprintf, then use fwrite. This also allows the data layout to be broken up into "constant sections" and variable sections. Think of mail-merge.
Declare constant text (string literals) as static const
When variables are declared without the static, some compilers may allocate space on the stack and copy the data from ROM. These are two unnecessary operations. This can be fixed by using the static prefix.
Lastly, Code like the compiler would
Sometimes, the compiler can optimize several small statements better than one complicated version. Also, writing code to help the compiler optimize helps too. If I want the compiler to use special block transfer instructions, I will write code that looks like it should use the special instructions.
The optimizer isn't really in control of the performance of your program, you are. Use appropriate algorithms and structures and profile, profile, profile.
That said, you shouldn't inner-loop on a small function from one file in another file, as that stops it from being inlined.
Avoid taking the address of a variable if possible. Asking for a pointer isn't "free" as it means the variable needs to be kept in memory. Even an array can be kept in registers if you avoid pointers — this is essential for vectorizing.
Which leads to the next point, read the ^#$# manual! GCC can vectorize plain C code if you sprinkle a __restrict__ here and an __attribute__( __aligned__ ) there. If you want something very specific from the optimizer, you might have to be specific.
On most modern processors, the biggest bottleneck is memory.
Aliasing: Load-Hit-Store can be devastating in a tight loop. If you're reading one memory location and writing to another and know that they are disjoint, carefully putting an alias keyword on the function parameters can really help the compiler generate faster code. However if the memory regions do overlap and you used 'alias', you're in for a good debugging session of undefined behaviors!
Cache-miss: Not really sure how you can help the compiler since it's mostly algorithmic, but there are intrinsics to prefetch memory.
Also don't try to convert floating point values to int and vice versa too much since they use different registers and converting from one type to another means calling the actual conversion instruction, writing the value to memory and reading it back in the proper register set.
The vast majority of code that people write will be I/O bound (I believe all the code I have written for money in the last 30 years has been so bound), so the activities of the optimiser for most folks will be academic.
However, I would remind people that for the code to be optimised you have to tell the compiler to to optimise it - lots of people (including me when I forget) post C++ benchmarks here that are meaningless without the optimiser being enabled.
use const correctness as much as possible in your code. It allows the compiler to optimize much better.
In this document are loads of other optimization tips: CPP optimizations (a bit old document though)
highlights:
use constructor initialization lists
use prefix operators
use explicit constructors
inline functions
avoid temporary objects
be aware of the cost of virtual functions
return objects via reference parameters
consider per class allocation
consider stl container allocators
the 'empty member' optimization
etc
Attempt to program using static single assignment as much as possible. SSA is exactly the same as what you end up with in most functional programming languages, and that's what most compilers convert your code to to do their optimizations because it's easier to work with. By doing this places where the compiler might get confused are brought to light. It also makes all but the worst register allocators work as good as the best register allocators, and allows you to debug more easily because you almost never have to wonder where a variable got it's value from as there was only one place it was assigned.
Avoid global variables.
When working with data by reference or pointer pull that into local variables, do your work, and then copy it back. (unless you have a good reason not to)
Make use of the almost free comparison against 0 that most processors give you when doing math or logic operations. You almost always get a flag for ==0 and <0, from which you can easily get 3 conditions:
x= f();
if(!x){
a();
} else if (x<0){
b();
} else {
c();
}
is almost always cheaper than testing for other constants.
Another trick is to use subtraction to eliminate one compare in range testing.
#define FOO_MIN 8
#define FOO_MAX 199
int good_foo(int foo) {
unsigned int bar = foo-FOO_MIN;
int rc = ((FOO_MAX-FOO_MIN) < bar) ? 1 : 0;
return rc;
}
This can very often avoid a jump in languages that do short circuiting on boolean expressions and avoids the compiler having to try to figure out how to handle keeping
up with the result of the first comparison while doing the second and then combining them.
This may look like it has the potential to use up an extra register, but it almost never does. Often you don't need foo anymore anyway, and if you do rc isn't used yet so it can go there.
When using the string functions in c (strcpy, memcpy, ...) remember what they return -- the destination! You can often get better code by 'forgetting' your copy of the pointer to destination and just grab it back from the return of these functions.
Never overlook the oppurtunity to return exactly the same thing the last function you called returned. Compilers are not so great at picking up that:
foo_t * make_foo(int a, int b, int c) {
foo_t * x = malloc(sizeof(foo));
if (!x) {
// return NULL;
return x; // x is NULL, already in the register used for returns, so duh
}
x->a= a;
x->b = b;
x->c = c;
return x;
}
Of course, you could reverse the logic on that if and only have one return point.
(tricks I recalled later)
Declaring functions as static when you can is always a good idea. If the compiler can prove to itself that it has accounted for every caller of a particular function then it can break the calling conventions for that function in the name of optimization. Compilers can often avoid moving parameters into registers or stack positions that called functions usually expect their parameters to be in (it has to deviate in both the called function and the location of all callers to do this). The compiler can also often take advantage of knowing what memory and registers the called function will need and avoid generating code to preserve variable values that are in registers or memory locations that the called function doesn't disturb. This works particularly well when there are few calls to a function. This gets much of the benifit of inlining code, but without actually inlining.
I wrote an optimizing C compiler and here are some very useful things to consider:
Make most functions static. This allows interprocedural constant propagation and alias analysis to do its job, otherwise the compiler needs to presume that the function can be called from outside the translation unit with completely unknown values for the paramters. If you look at the well-known open-source libraries they all mark functions static except the ones that really need to be extern.
If global variables are used, mark them static and constant if possible. If they are initialized once (read-only), it's better to use an initializer list like static const int VAL[] = {1,2,3,4}, otherwise the compiler might not discover that the variables are actually initialized constants and will fail to replace loads from the variable with the constants.
NEVER use a goto to the inside of a loop, the loop will not be recognized anymore by most compilers and none of the most important optimizations will be applied.
Use pointer parameters only if necessary, and mark them restrict if possible. This helps alias analysis a lot because the programmer guarantees there is no alias (the interprocedural alias analysis is usually very primitive). Very small struct objects should be passed by value, not by reference.
Use arrays instead of pointers whenever possible, especially inside loops (a[i]). An array usually offers more information for alias analysis and after some optimizations the same code will be generated anyway (search for loop strength reduction if curious). This also increases the chance for loop-invariant code motion to be applied.
Try to hoist outside the loop calls to large functions or external functions that don't have side-effects (don't depend on the current loop iteration). Small functions are in many cases inlined or converted to intrinsics that are easy to hoist, but large functions might seem for the compiler to have side-effects when they actually don't. Side-effects for external functions are completely unknown, with the exception of some functions from the standard library which are sometimes modeled by some compilers, making loop-invariant code motion possible.
When writing tests with multiple conditions place the most likely one first. if(a || b || c) should be if(b || a || c) if b is more likely to be true than the others. Compilers usually don't know anything about the possible values of the conditions and which branches are taken more (they could be known by using profile information, but few programmers use it).
Using a switch is faster than doing a test like if(a || b || ... || z). Check first if your compiler does this automatically, some do and it's more readable to have the if though.
In the case of embedded systems and code written in C/C++, I try and avoid dynamic memory allocation as much as possible. The main reason I do this is not necessarily performance but this rule of thumb does have performance implications.
Algorithms used to manage the heap are notoriously slow in some platforms (e.g., vxworks). Even worse, the time that it takes to return from a call to malloc is highly dependent on the current state of the heap. Therefore, any function that calls malloc is going to take a performance hit that cannot be easily accounted for. That performance hit may be minimal if the heap is still clean but after that device runs for a while the heap can become fragmented. The calls are going to take longer and you cannot easily calculate how performance will degrade over time. You cannot really produce a worse case estimate. The optimizer cannot provide you with any help in this case either. To make matters even worse, if the heap becomes too heavily fragmented, the calls will start failing altogether. The solution is to use memory pools (e.g., glib slices ) instead of the heap. The allocation calls are going to be much faster and deterministic if you do it right.
A dumb little tip, but one that will save you some microscopic amounts of speed and code.
Always pass function arguments in the same order.
If you have f_1(x, y, z) which calls f_2, declare f_2 as f_2(x, y, z). Do not declare it as f_2(x, z, y).
The reason for this is that C/C++ platform ABI (AKA calling convention) promises to pass arguments in particular registers and stack locations. When the arguments are already in the correct registers then it does not have to move them around.
While reading disassembled code I've seen some ridiculous register shuffling because people didn't follow this rule.
Two coding technics I didn't saw in the above list:
Bypass linker by writing code as an unique source
While separate compilation is really nice for compiling time, it is very bad when you speak of optimization. Basically the compiler can't optimize beyond compilation unit, that is linker reserved domain.
But if you design well your program you can can also compile it through an unique common source. That is instead of compiling unit1.c and unit2.c then link both objects, compile all.c that merely #include unit1.c and unit2.c. Thus you will benefit from all the compiler optimizations.
It's very like writing headers only programs in C++ (and even easier to do in C).
This technique is easy enough if you write your program to enable it from the beginning, but you must also be aware it change part of C semantic and you can meet some problems like static variables or macro collision. For most programs it's easy enough to overcome the small problems that occurs. Also be aware that compiling as an unique source is way slower and may takes huge amount of memory (usually not a problem with modern systems).
Using this simple technique I happened to make some programs I wrote ten times faster!
Like the register keyword, this trick could also become obsolete soon. Optimizing through linker begin to be supported by compilers gcc: Link time optimization.
Separate atomic tasks in loops
This one is more tricky. It's about interaction between algorithm design and the way optimizer manage cache and register allocation. Quite often programs have to loop over some data structure and for each item perform some actions. Quite often the actions performed can be splitted between two logically independent tasks. If that is the case you can write exactly the same program with two loops on the same boundary performing exactly one task. In some case writing it this way can be faster than the unique loop (details are more complex, but an explanation can be that with the simple task case all variables can be kept in processor registers and with the more complex one it's not possible and some registers must be written to memory and read back later and the cost is higher than additional flow control).
Be careful with this one (profile performances using this trick or not) as like using register it may as well give lesser performances than improved ones.
I've actually seen this done in SQLite and they claim it results in performance boosts ~5%: Put all your code in one file or use the preprocessor to do the equivalent to this. This way the optimizer will have access to the entire program and can do more interprocedural optimizations.
Most modern compilers should do a good job speeding up tail recursion, because the function calls can be optimized out.
Example:
int fac2(int x, int cur) {
if (x == 1) return cur;
return fac2(x - 1, cur * x);
}
int fac(int x) {
return fac2(x, 1);
}
Of course this example doesn't have any bounds checking.
Late Edit
While I have no direct knowledge of the code; it seems clear that the requirements of using CTEs on SQL Server were specifically designed so that it can optimize via tail-end recursion.
Don't do the same work over and over again!
A common antipattern that I see goes along these lines:
void Function()
{
MySingleton::GetInstance()->GetAggregatedObject()->DoSomething();
MySingleton::GetInstance()->GetAggregatedObject()->DoSomethingElse();
MySingleton::GetInstance()->GetAggregatedObject()->DoSomethingCool();
MySingleton::GetInstance()->GetAggregatedObject()->DoSomethingReallyNeat();
MySingleton::GetInstance()->GetAggregatedObject()->DoSomethingYetAgain();
}
The compiler actually has to call all of those functions all of the time. Assuming you, the programmer, knows that the aggregated object isn't changing over the course of these calls, for the love of all that is holy...
void Function()
{
MySingleton* s = MySingleton::GetInstance();
AggregatedObject* ao = s->GetAggregatedObject();
ao->DoSomething();
ao->DoSomethingElse();
ao->DoSomethingCool();
ao->DoSomethingReallyNeat();
ao->DoSomethingYetAgain();
}
In the case of the singleton getter the calls may not be too costly, but it is certainly a cost (typically, "check to see if the object has been created, if it hasn't, create it, then return it). The more complicated this chain of getters becomes, the more wasted time we'll have.
Use the most local scope possible for all variable declarations.
Use const whenever possible
Dont use register unless you plan to profile both with and without it
The first 2 of these, especially #1 one help the optimizer analyze the code. It will especially help it to make good choices about what variables to keep in registers.
Blindly using the register keyword is as likely to help as hurt your optimization, It's just too hard to know what will matter until you look at the assembly output or profile.
There are other things that matter to getting good performance out of code; designing your data structures to maximize cache coherency for instance. But the question was about the optimizer.
Align your data to native/natural boundaries.
I was reminded of something that I encountered once, where the symptom was simply that we were running out of memory, but the result was substantially increased performance (as well as huge reductions in memory footprint).
The problem in this case was that the software we were using made tons of little allocations. Like, allocating four bytes here, six bytes there, etc. A lot of little objects, too, running in the 8-12 byte range. The problem wasn't so much that the program needed lots of little things, it's that it allocated lots of little things individually, which bloated each allocation out to (on this particular platform) 32 bytes.
Part of the solution was to put together an Alexandrescu-style small object pool, but extend it so I could allocate arrays of small objects as well as individual items. This helped immensely in performance as well since more items fit in the cache at any one time.
The other part of the solution was to replace the rampant use of manually-managed char* members with an SSO (small-string optimization) string. The minimum allocation being 32 bytes, I built a string class that had an embedded 28-character buffer behind a char*, so 95% of our strings didn't need to do an additional allocation (and then I manually replaced almost every appearance of char* in this library with this new class, that was fun or not). This helped a ton with memory fragmentation as well, which then increased the locality of reference for other pointed-to objects, and similarly there were performance gains.
A neat technique I learned from #MSalters comment on this answer allows compilers to do copy elision even when returning different objects according to some condition:
// before
BigObject a, b;
if(condition)
return a;
else
return b;
// after
BigObject a, b;
if(condition)
swap(a,b);
return a;
If you've got small functions you call repeatedly, i have in the past got large gains by putting them in headers as "static inline". Function calls on the ix86 are surprisingly expensive.
Reimplementing recursive functions in a non-recursive way using an explicit stack can also gain a lot, but then you really are in the realm of development time vs gain.
Here's my second piece of optimisation advice. As with my first piece of advice this is general purpose, not language or processor specific.
Read the compiler manual thoroughly and understand what it is telling you. Use the compiler to its utmost.
I agree with one or two of the other respondents who have identified selecting the right algorithm as critical to squeezing performance out of a program. Beyond that the rate of return (measured in code execution improvement) on the time you invest in using the compiler is far higher than the rate of return in tweaking the code.
Yes, compiler writers are not from a race of coding giants and compilers contain mistakes and what should, according to the manual and according to compiler theory, make things faster sometimes makes things slower. That's why you have to take one step at a time and measure before- and after-tweak performance.
And yes, ultimately, you might be faced with a combinatorial explosion of compiler flags so you need to have a script or two to run make with various compiler flags, queue the jobs on the large cluster and gather the run time statistics. If it's just you and Visual Studio on a PC you will run out of interest long before you have tried enough combinations of enough compiler flags.
Regards
Mark
When I first pick up a piece of code I can usually get a factor of 1.4 -- 2.0 times more performance (ie the new version of the code runs in 1/1.4 or 1/2 of the time of the old version) within a day or two by fiddling with compiler flags. Granted, that may be a comment on the lack of compiler savvy among the scientists who originate much of the code I work on, rather than a symptom of my excellence. Having set the compiler flags to max (and it's rarely just -O3) it can take months of hard work to get another factor of 1.05 or 1.1
When DEC came out with its alpha processors, there was a recommendation to keep the number of arguments to a function under 7, as the compiler would always try to put up to 6 arguments in registers automatically.
For performance, focus first on writing maintenable code - componentized, loosely coupled, etc, so when you have to isolate a part either to rewrite, optimize or simply profile, you can do it without much effort.
Optimizer will help your program's performance marginally.
You're getting good answers here, but they assume your program is pretty close to optimal to begin with, and you say
Assume that the program has been
written correctly, compiled with full
optimization, tested and put into
production.
In my experience, a program may be written correctly, but that does not mean it is near optimal. It takes extra work to get to that point.
If I can give an example, this answer shows how a perfectly reasonable-looking program was made over 40 times faster by macro-optimization. Big speedups can't be done in every program as first written, but in many (except for very small programs), it can, in my experience.
After that is done, micro-optimization (of the hot-spots) can give you a good payoff.
i use intel compiler. on both Windows and Linux.
when more or less done i profile the code. then hang on the hotspots and trying to change the code to allow compiler make a better job.
if a code is a computational one and contain a lot of loops - vectorization report in intel compiler is very helpful - look for 'vec-report' in help.
so the main idea - polish the performance critical code. as for the rest - priority to be correct and maintainable - short functions, clear code that could be understood 1 year later.
One optimization i have used in C++ is creating a constructor that does nothing. One must manually call an init() in order to put the object into a working state.
This has benefit in the case where I need a large vector of these classes.
I call reserve() to allocate the space for the vector, but the constructor does not actually touch the page of memory the object is on. So I have spent some address space, but not actually consumed a lot of physical memory. I avoid the page faults associated the associated construction costs.
As i generate objects to fill the vector, I set them using init(). This limits my total page faults, and avoids the need to resize() the vector while filling it.
One thing I've done is try to keep expensive actions to places where the user might expect the program to delay a bit. Overall performance is related to responsiveness, but isn't quite the same, and for many things responsiveness is the more important part of performance.
The last time I really had to do improvements in overall performance, I kept an eye out for suboptimal algorithms, and looked for places that were likely to have cache problems. I profiled and measured performance first, and again after each change. Then the company collapsed, but it was interesting and instructive work anyway.
I have long suspected, but never proved that declaring arrays so that they hold a power of 2, as the number of elements, enables the optimizer to do a strength reduction by replacing a multiply by a shift by a number of bits, when looking up individual elements.
Put small and/or frequently called functions at the top of the source file. That makes it easier for the compiler to find opportunities for inlining.