Error
stack.cc:53:28: error: no matching function for call to ‘Stack<std::basic_string<char> >::push(std::string)’
stack.cc:53:28: note: candidate is:
stack.cc:32:11: note: Stack<T>& Stack<T>::push(T&) [with T = std::basic_string<char>]
stack.cc
#include<iostream>
template <typename T>
class Stack {
private:
T* array_;
int length_;
T* last_;
void expandArray();
public:
Stack(int length = 8) {
array_ = new T[length];
length_ = length;
last_ = array_;
}
Stack<T>& push(T&);
T pop();
};
template<typename T>
void Stack<T>::expandArray() {
T* array_temp = new T[length_ << 1];
memcpy(array_temp, array_, length_);
std::swap(array_, array_temp);
delete[] array_temp;
length_ <<= 1;
}
template<typename T>
Stack<T>& Stack<T>::push(T& data) {
if (last_ == (array_ + length_ - 1)) {
expandArray();
}
last_[0] = data;
last_++;
return *this;
}
template<typename T>
T Stack<T>::pop() {
if(array_ != last_) {
T temp = last_[0];
last_--;
return temp;
}
return NULL;
}
int main() {
Stack<std::string> s;
s.push(std::string("a"))
.push(std::string("b"))
.push(std::string("c"))
.push(std::string("d"));
std::cout << s.pop() << std::endl;
std::cout << s.pop() << std::endl;
std::cout << s.pop() << std::endl;
std::cout << s.pop() << std::endl;
}
Wanted to understand why a conversion is happening from std::string to std::basic_string<char>?
Please feel free to comment on the code quality as well.
The actual problem is that you're attempting to pass a reference to an object created in the argument rather than stored in a variable. See that T& argument to Stack<T>::push? You cannot pass your temporary here because it's a non-const reference. Try as follows...
Stack<T>& push(const T&);
Use this signature for your implementation, too.
That being said, know that std::string is a mere typedef over std::basic_string<char>. This is because the functionality for strings can be extended to the other character types, too -- std::wstring for wchar_t, std::u16string for char16_t, and std::u32string for char32_t. ;-)
See §21.4 Class template basic_string [basic.string] of the C++11 specification.
// basic_string typedef names
typedef basic_string<char> string;
typedef basic_string<char16_t> u16string;
typedef basic_string<char32_t> u32string;
typedef basic_string<wchar_t> wstring;
Note that you shouldn't rely on iostream to include string for you. You should also include cstring and specify the scope for your memcpy call.
By the way, you should really look into using an initializer list for Stack's constructor... see as follows.
Stack(int length = 8) : length_(length), array_(new T[length]), last_(array_) { }
Note that this functioning properly on array_ preceding last_ as a class member declaration ;-)
... AND a final note. Your pop is incorrect, since you're returning the element past the top. Instead, try something as follows...
template<typename T>
T Stack<T>::pop() {
if (array_ != last_) {
return *--last_;
}
/* other stuff here */
}
You need to decrement prior to dereferencing, since last_ points past the top. As a side note, you're also returning a copy of the std::string from pop, even though you stated you wanted to avoid as such.
Note you shouldn't be returning NULL since this isn't a pointer type. In fact, you'll just be creating an std::string via the constructor that takes a const char *... which is explicitly prohibited in the case of NULL. See §21.4.2¶8-9...
basic_string(const charT* s, const Allocator& a = Allocator());
Requires: s shall not be a null pointer.
std::string is a typedef for std::basic_string<char> it is not being converted to it, it is it. The reason is that the same std::basic_string template can be used with wchar_t to have unicode strings.
Because that is what std::string really is - it is just an alias for `std::basic_string':
typedef basic_string<char> string;
When the compiler is reporting the error message, it is displaying the typedef's real base type, not the alias name.
Related
I was implementing the circular array data structure whose code looks like this:
struct CircularArrayException : public std::exception {
std::string msg;
CircularArrayException(const std::string arg_msg)
: msg{"CircularArrayException: " + arg_msg} {}
const char * what () const throw () {
return msg.c_str();
}
};
template <typename T>
class CircularArray {
public:
const size_t array_size;
std::unique_ptr<T> uptr_arr;
size_t occupied_size = 0;
int front_idx = -1;
int back_idx = -1;
CircularArray(const CircularArray& ca) = delete;
CircularArray& operator=(const CircularArray& ca) = delete;
CircularArray(
const size_t arg_array_size
): array_size{arg_array_size} {
uptr_arr = std::make_unique<T>(array_size);
};
};
After the implementation I tested the implementation with CircularArray<char> and it works fine.
But, then I realized that we use std::make_unique<char[]>(num_elements) to declare a unique_ptr to an array as opposed to std::make_unique<char>(num_elements). But, even then the code seems to work fine. I looked the documentation of std::make_unique here and couldn't understand the explanation of the (2)nd signature. Can anyone help me out to understand the difference and why my code works?
Here is the what is written on cppreference for the (2) signature:
template< class T >
unique_ptr<T> make_unique( std::size_t size );
(2) (since C++14)
(only for array types with unknown bound)
Constructs an array of unknown bound T. This overload participates in overload resolution only if T is an array of unknown bound. The function is equivalent to: unique_ptr<T>(new typename std::remove_extent<T>::type[size]())
Here is the goldbolt link: https://godbolt.org/z/K9h3qTeTW
std::make_unique<char>(65); creates a pointer to a single character initialised with the value 65 ('A'). std::make_unique<char[]>(65) creates an array with 65 elements.
If you run this code:
#include <memory>
#include <iostream>
int main()
{
auto a = std::make_unique<char>(65);
std::cout << *a << "\n";
auto b = std::make_unique<char[]>(65);
std::cout << (int)b[0] << "\n";
}
It'll print A for the first one and an undefined value for the second one (possibly 0) as the array elements are uninitialised.
Your code "works" by chance, using any more than 1 element of your "array" will cause undefined behaviour.
Short version
Can I reinterpret_cast a std::vector<void*>* to a std::vector<double*>*?
What about with other STL containers?
Long version
I have a function to recast a vector of void pointers to a datatype specified by a template argument:
template <typename T>
std::vector<T*> recastPtrs(std::vector<void*> const& x) {
std::vector<T*> y(x.size());
std::transform(x.begin(), x.end(), y.begin(),
[](void *a) { return static_cast<T*>(a); } );
return y;
}
But I was thinking that copying the vector contents isn't really necessary, since we're really just reinterpreting what's being pointed to.
After some tinkering, I came up with this:
template <typename T>
std::vector<T*> recastPtrs(std::vector<void*>&& x) {
auto xPtr = reinterpret_cast<std::vector<T*>*>(&x);
return std::vector<T*>(std::move(*xPtr));
}
So my questions are:
Is it safe to reinterpret_cast an entire vector like this?
What if it was a different kind of container (like a std::list or std::map)? To be clear, I mean casting a std::list<void*> to std::list<T*>, not casting between STL container types.
I'm still trying to wrap my head around move semantics. Am I doing it right?
And one follow-up question: What would be the best way to generate a const version without code duplication? i.e. to define
std::vector<T const*> recastPtrs(std::vector<void const*> const&);
std::vector<T const*> recastPtrs(std::vector<void const*>&&);
MWE
#include <vector>
#include <algorithm>
#include <iostream>
template <typename T>
std::vector<T*> recastPtrs(std::vector<void*> const& x) {
std::vector<T*> y(x.size());
std::transform(x.begin(), x.end(), y.begin(),
[](void *a) { return static_cast<T*>(a); } );
return y;
}
template <typename T>
std::vector<T*> recastPtrs(std::vector<void*>&& x) {
auto xPtr = reinterpret_cast<std::vector<T*>*>(&x);
return std::vector<T*>(std::move(*xPtr));
}
template <typename T>
void printVectorAddr(std::vector<T> const& vec) {
std::cout<<" vector object at "<<&vec<<", data()="<<vec.data()<<std::endl;
}
int main(void) {
std::cout<<"Original void pointers"<<std::endl;
std::vector<void*> voidPtrs(100);
printVectorAddr(voidPtrs);
std::cout<<"Elementwise static_cast"<<std::endl;
auto dblPtrs = recastPtrs<double>(voidPtrs);
printVectorAddr(dblPtrs);
std::cout<<"reintepret_cast entire vector, then move ctor"<<std::endl;
auto dblPtrs2 = recastPtrs<double>(std::move(voidPtrs));
printVectorAddr(dblPtrs2);
}
Example output:
Original void pointers
vector object at 0x7ffe230b1cb0, data()=0x21de030
Elementwise static_cast
vector object at 0x7ffe230b1cd0, data()=0x21de360
reintepret_cast entire vector, then move ctor
vector object at 0x7ffe230b1cf0, data()=0x21de030
Note that the reinterpret_cast version reuses the underlying data structure.
Previously-asked questions that didn't seem relevant
These are the questions that come up when I tried to search this:
reinterpret_cast vector of class A to vector of class B
reinterpret_cast vector of derived class to vector of base class
reinterpret_cast-ing vector of one type to a vector of another type which is of the same type
And the answer to these was a unanimous NO, with reference to the strict aliasing rule. But I figure that doesn't apply to my case, since the vector being recast is an rvalue, so there's no opportunity for aliasing.
Why I'm trying to do this
I'm interfacing with a MATLAB library that gives me data pointers as void* along with a variable indicating the datatype. I have one function that validates the inputs and collects these pointers into a vector:
void parseInputs(int argc, mxArray* inputs[], std::vector<void*> &dataPtrs, mxClassID &numericType);
I can't templatize this part since the type is not known until runtime. On the other side, I have numeric routines to operate on vectors of a known datatype:
template <typename T>
void processData(std::vector<T*> const& dataPtrs);
So I'm just trying to connect one to the other:
void processData(std::vector<void*>&& voidPtrs, mxClassID numericType) {
switch (numericType) {
case mxDOUBLE_CLASS:
processData(recastPtrs<double>(std::move(voidPtrs)));
break;
case mxSINGLE_CLASS:
processData(recastPtrs<float>(std::move(voidPtrs)));
break;
default:
assert(0 && "Unsupported datatype");
break;
}
}
Given the comment that you're receiving the void * from a C library (something like malloc), it seems like we can probably narrow the problem down quite a bit.
In particular, I'd guess you're really dealing with something that's more like an array_view than a vector. That is, you want something that lets you access some data cleanly. You might change individual items in that collection, but you'll never change the collection as a whole (e.g., you won't try to do a push_back that could need to expand the memory allocation).
For such a case, you can pretty easily create a wrapper of your own that gives you vector-like access to the data--defines an iterator type, has a begin() and end() (and if you want, the others like rbegin()/rend(), cbegin()/cend() and crbegin()/crend()), as well as an at() that does range-checked indexing, and so on.
So a fairly minimal version could look something like this:
#pragma once
#include <cstddef>
#include <stdexcept>
#include <cstdlib>
#include <iterator>
template <class T> // note: no allocator, since we don't do allocation
class array_view {
T *data;
std::size_t size_;
public:
array_view(void *data, std::size_t size_) : data(reinterpret_cast<T *>(data)), size_(size_) {}
T &operator[](std::size_t index) { return data[index]; }
T &at(std::size_t index) {
if (index > size_) throw std::out_of_range("Index out of range");
return data[index];
}
std::size_t size() const { return size_; }
typedef T *iterator;
typedef T const &const_iterator;
typedef T value_type;
typedef T &reference;
iterator begin() { return data; }
iterator end() { return data + size_; }
const_iterator cbegin() { return data; }
const_iterator cend() { return data + size_; }
class reverse_iterator {
T *it;
public:
reverse_iterator(T *it) : it(it) {}
using iterator_category = std::random_access_iterator_tag;
using difference_type = std::ptrdiff_t;
using value_type = T;
using pointer = T *;
using reference = T &;
reverse_iterator &operator++() {
--it;
return *this;
}
reverse_iterator &operator--() {
++it;
return *this;
}
reverse_iterator operator+(size_t size) const {
return reverse_iterator(it - size);
}
reverse_iterator operator-(size_t size) const {
return reverse_iterator(it + size);
}
difference_type operator-(reverse_iterator const &r) const {
return it - r.it;
}
bool operator==(reverse_iterator const &r) const { return it == r.it; }
bool operator!=(reverse_iterator const &r) const { return it != r.it; }
bool operator<(reverse_iterator const &r) const { return std::less<T*>(r.it, it); }
bool operator>(reverse_iterator const &r) const { return std::less<T*>(it, r.it); }
T &operator *() { return *(it-1); }
};
reverse_iterator rbegin() { return data + size_; }
reverse_iterator rend() { return data; }
};
I've tried to show enough that it should be fairly apparent how to add most of the missing functionality (e.g., crbegin()/crend()), but I haven't worked really hard at including everything here, since much of what's left is more repetitive and tedious than educational.
This is enough to use the array_view in most of the typical vector-like ways. For example:
#include "array_view"
#include <iostream>
#include <iterator>
int main() {
void *raw = malloc(16 * sizeof(int));
array_view<int> data(raw, 16);
std::cout << "Range based:\n";
for (auto & i : data)
i = rand();
for (auto const &i : data)
std::cout << i << '\n';
std::cout << "\niterator-based, reverse:\n";
auto end = data.rend();
for (auto d = data.rbegin(); d != end; ++d)
std::cout << *d << '\n';
std::cout << "Forward, counted:\n";
for (int i=0; i<data.size(); i++) {
data[i] += 10;
std::cout << data[i] << '\n';
}
}
Note that this doesn't attempt to deal with copy/move construction at all, nor with destruction. At least as I've formulated it, the array_view is a non-owning view into some existing data. It's up to you (or at least something outside of the array_view) to destroy the data when appropriate. Since we're not destroying the data, we can use the compiler-generated copy and move constructors without any problem. We won't get a double-delete from doing a shallow copy of the pointer, because we don't do any delete when the array_view is destroyed.
No, you cannot do anything like this in Standard C++.
The strict aliasing rule says that to access an object of type T, you must use an expression of type T; with a very short list of exceptions to that.
Accessing a double * via a void * expression is not such an exception; let alone a vector of each. Nor is it an exception if you accessed the object of type T via an rvalue.
well i cant find how do this, basically its a variable union with params, basic idea, (writed as function)
Ex1
union Some (int le)
{
int i[le];
float f[le];
};
Ex2
union Some
{
int le;
int i[le];
float f[le];
};
obs this don't works D:
maybe a way to use an internal variable to set the lenght but don't works too.
Thx.
No, this is not possible: le would need to be known at compile-time.
One solution would be to use a templated union:
template <int N> union Some
{
int i[N];
float f[N];
};
N, of course, is compile-time evaluable.
Another solution is the arguably more succinct
typedef std::vector<std::pair<int, float>> Some;
or a similar solution based on std::array.
Depending on your use case you could try to simulate a union.
struct Some
{
//Order is important
private:
char* pData;
public:
int* const i;
float* const f;
public:
Some(size_t len)
:pData(new char[sizeof(int) < sizeof(float) ? sizeof(float) : sizeof(int)])
,i ((int*)pData)
,f ((float*)pData)
{
}
~Some()
{
delete[] pData;
}
Some(const Some&) = delete;
Some& operator=(const Some&) = delete;
};
Alternative solution using templates, unique_ptr and explicit casts:
//max_size_of<>: a recursive template struct to evaluate the
// maximum value of the sizeof function of all types passed as
// parameter
//The recursion is done by using the "value" of another
// specialization of max_size_of<> with less parameter types
template <typename T, typename...Args>
struct max_size_of
{
static const std::size_t value = std::max(sizeof(T), max_size_of<Args...>::value);
};
//Specialication for max_size_of<> as recursion stop
template <typename T>
struct max_size_of<T>
{
static const std::size_t value = sizeof(T);
};
//dataptr_auto_cast<>: a recursive template struct that
// introduces a virtual function "char* const data_ptr()"
// and an additional explicit cast operator for a pointer
// of the first type. Due to the recursion a cast operator
// for every type passed to the struct is created.
//Attention: types are not allowed to be duplicate
//The recursion is done by inheriting from of another
// specialization of dataptr_auto_cast<> with less parameter types
template <typename T, typename...Args>
struct dataptr_auto_cast : public dataptr_auto_cast<Args...>
{
virtual char* const data_ptr() const = 0; //This is needed by the cast operator
explicit operator T* const() const { return (T*)data_ptr(); } //make it explicit to avoid unwanted side effects (manual cast needed)
};
//Specialization of dataptr_auto_cast<> as recursion stop
template <typename T>
struct dataptr_auto_cast<T>
{
virtual char* const data_ptr() const = 0;
explicit operator T* const() const { return (T*)data_ptr(); }
};
//union_array<>: inherits from dataptr_auto_cast<> with the same
// template parameters. Also has a static const member "blockSize"
// that indicates the size of the largest datatype passed as parameter
// "blockSize" is used to determine the space needed to store "size"
// elements.
template <typename...Args>
struct union_array : public dataptr_auto_cast<Args...>
{
static const size_t blockSize = max_size_of<Args...>::value;
private:
std::unique_ptr<char[]> m_pData; //std::unique_ptr automatically deletes the memory it points to on destruction
size_t m_size; //The size/no. of elements
public:
//Create a new array to store "size" elements
union_array(size_t size)
:m_pData(new char[size*blockSize])
,m_size(size)
{
}
//Copy constructor
union_array(const union_array<Args...>& other)
:m_pData(new char[other.m_size*blockSize])
,m_size(other.m_size)
{
memcpy(m_pData.get(), other.m_pData.get(), other.m_size);
}
//Move constructor
union_array(union_array<Args...>&& other)
:m_pData(std::move(other.m_pData))
,m_size(std::move(other.m_size))
{
}
union_array& operator=(const union_array<Args...>& other)
{
m_pData = new char[other.m_size*blockSize];
m_size = other.m_size;
memcpy(m_pData.get(), other.m_pData.get(), other.m_size);
}
union_array& operator=(union_array<Args...>&& other)
{
m_pData = std::move(other.m_pData);
m_size = std::move(other.m_size);
}
~union_array() = default;
size_t size() const
{
return m_size;
}
//Implementation of dataptr_auto_cast<>::data_ptr
virtual char* const data_ptr() const override
{
return m_pData.get();
}
};
int main()
{
auto a = union_array<int, char, float, double>(5); //Create a new union_array object with enough space to store either 5 int, 5 char, 5 float or 5 double values.
((int*)a)[3] = 3; //Use as int array
auto b = a; //copy
((int*)b)[3] = 1; //Change a value
auto c = std::move(a);// move a to c, a is invalid beyond this point
// std::cout << ((int*)a)[3] << std::endl; //This will crash as a is invalid due to the move
std::cout << ((int*)b)[3] << std::endl; //prints "1"
std::cout << ((int*)c)[3] << std::endl; //prints "3"
}
Explanation
template <typename T, typename...Args>
struct max_size_of
{
static const std::size_t value = std::max(sizeof(T), max_size_of<Args...>::value);
};
template <typename T>
struct max_size_of<T>
{
static const std::size_t value = sizeof(T);
};
max_size_of<> is used to get the largest sizeof() value of all types passed as template paremeters.
Let's have a look at the simple case first.
- max_size_of<char>::value: value will be set to sizeof(char).
- max_size_of<int>::value: value will be set to sizeof(int).
- and so on
If you put in more than one type it will evaluate to the maximum of the sizeof of these types.
For 2 types this would look like this: max_size_of<char, int>::value: value will be set to std::max(sizeof(char), max_size_of<int>::value).
As described above max_size_of<int>::value is the same as sizeof(int), so max_size_of<char, int>::value is the same as std::max(sizeof(char), sizeof(int)) which is the same as sizeof(int).
template <typename T, typename...Args>
struct dataptr_auto_cast : public dataptr_auto_cast<Args...>
{
virtual char* const data_ptr() const = 0;
explicit operator T* const() const { return (T*)data_ptr(); }
};
template <typename T>
struct dataptr_auto_cast<T>
{
virtual char* const data_ptr() const = 0;
explicit operator T* const() const { return (T*)data_ptr(); }
};
dataptr_auto_cast<> is what we use as a simple abstract base class.
It forces us to implement a function char* const data_ptr() const in the final class (which will be union_array).
Let's just assume that the class is not abstract and use the simple version dataptr_auto_cast<T>:
The class implements a operator function that returns a pointer of the type of the passed template parameter.
dataptr_auto_cast<int> has a function explicit operator int* const() const;
The function provides access to data provided by the derived class through the data_ptr()function and casts it to type T* const.
The const is so that the pointer isn't altered accidentially and the explicit keyword is used to avoid unwanted implicit casts.
As you can see there are 2 versions of dataptr_auto_cast<>. One with 1 template paremeter (which we just looked at) and one with multiple template paremeters.
The definition is quite similar with the exception that the multiple parameters one inherits dataptr_auto_cast with one (the first) template parameter less.
So dataptr_auto_cast<int, char> has a function explicit operator int* const() const; and inherits dataptr_auto_cast<char> which has a function explicit operator char* const() const;.
As you can see there is one cast operator function implemented with each type you pass.
There is only one exception and that is passing the same template parameter twice.
This would lead in the same operator function being defined twice within the same class which doesn't work.
For this use case, using this as a base class for the union_array, this shouldn't matter.
Now that these two are clear let's look at the actual code for union_array:
template <typename...Args>
struct union_array : public dataptr_auto_cast<Args...>
{
static const size_t blockSize = max_size_of<Args...>::value;
private:
std::unique_ptr<char[]> m_pData;
size_t m_size;
public:
//Create a new array to store "size" elements
union_array(size_t size)
:m_pData(new char[size*blockSize])
,m_size(size)
{
}
//Copy constructor
union_array(const union_array<Args...>& other)
:m_pData(new char[other.m_size*blockSize])
,m_size(other.m_size)
{
memcpy(m_pData.get(), other.m_pData.get(), other.m_size);
}
//Move constructor
union_array(union_array<Args...>&& other)
:m_pData(std::move(other.m_pData))
,m_size(std::move(other.m_size))
{
}
union_array& operator=(const union_array<Args...>& other)
{
m_pData = new char[other.m_size*blockSize];
m_size = other.m_size;
memcpy(m_pData.get(), other.m_pData.get(), other.m_size);
}
union_array& operator=(union_array<Args...>&& other)
{
m_pData = std::move(other.m_pData);
m_size = std::move(other.m_size);
}
~union_array() = default;
size_t size() const
{
return m_size;
}
virtual char* const data_ptr() const override
{
return m_pData.get();
}
};
As you can see union_array<> inherits from dataptr_auto_cast<> using the same template arguments.
So this gives us a cast operator for every type passed as template paremeter to union_array<>.
Also at the end of union_array<> you can see that the char* const data_ptr() const function is implemented (the abstract function from dataptr_auto_cast<>).
The next interesting thing to see is static const size_t blockSize which is initilialized with the maximum sizeof value of the template paremeters to union_array<>.
To get this value the max_size_of is used as described above.
The class uses std::unique_ptr<char[]> as data storage, as std::unique_ptr automatically will delete the space for us, once the class is destroyed.
Also std::unique_ptr is capable of move semantics, which is used in the move assign operator function and the move constructor.
A "normal" copy assign operator function and a copy constructor are also included and copy the memory accordingly.
The class has a constructor union_array(size_t size) which takes the number of elements the union_array should be able to hold.
Multiplying this value with blockSize gives us the space needed to store exactly size elements of the largest template type.
Last but not least there is an access method to ask for the size() if needed.
C++ requires that the size of a type be known at compile time.
The size of a block of data need not be known, but all types have known sizes.
There are three ways around it.
I'll ignore the union part for now. Imagine if you wanted:
struct some (int how_many) {
int data[how_many];
};
as the union part adds complexity which can be dealt with separately.
First, instead of storing the data as part of the type, you can store pointers/references/etc to the data.
struct some {
std::vector<int> data;
explicit some( size_t how_many ):data(how_many) {};
some( some&& ) = default;
some& operator=( some&& ) = default;
some( some const& ) = default;
some& operator=( some const& ) = default;
some() = default;
~some() = default;
};
here we store the data in a std::vector -- a dynamic array. We default copy/move/construct/destruct operations (explicitly -- because it makes it clearer), and the right thing happens.
Instead of a vector we can use a unique_ptr:
struct some {
std::unique_ptr<int[]> data;
explicit some( size_t how_many ):data(new int[how_many]) {};
some( some&& ) = default;
some& operator=( some&& ) = default;
some() = default;
~some() = default;
};
this blocks copying of the structure, but the structure goes from being size of 3 pointers to being size of 1 in a typical std implementation. We lose the ability to easily resize after the fact, and copy without writing the code ourselves.
The next approach is to template it.
template<std::size_t N>
struct some {
int data[N];
};
this, however, requires that the size of the structure be known at compile-time, and some<2> and some<3> are 'unrelated types' (barring template pattern matching). So it has downsides.
A final approach is C-like. Here we rely on the fact that data can be variable in size, even if types are not.
struct some {
int data[1]; // or `0` in some compilers as an extension
};
some* make_some( std::size_t n ) {
Assert(n >= 1); // unless we did `data[0]` above
char* buff = new some[(n-1)*sizeof(int) + sizeof(some)]; // note: alignment issues on some platforms?
return new(buff) some(); // placement new
};
where we allocate a buffer for some of variable size. Access to the buffer via data[13] is practically legal, and probably actually so as well.
This technique is used in C to create structures of variable size.
For the union part, you'll want to create a buffer of char with the right size std::max(sizeof(float), sizeof(int))*N, and expose functions:
char* data(); // returns a pointer to the start of the buffer
int* i() { return reinterpret_cast<int*>(data()); }
float* f() { return reinterpret_cast<float*>(data()); }
you may also need to properly initialize the data as the proper type; in theory, a char buffer of '\0's may not correspond to defined float values or ints that are zero.
I would like to suggest a different approach: Instead of tying the number of elements to the union, tie it outside:
union Some
{
int i;
float f;
};
Some *get_Some(int le) { return new Some[le]; }
Don't forget to delete[] the return value of get_Some... Or use smart pointers:
std::unique_ptr<Some[]> get_Some(int le)
{ return std::make_unique<Some[]>(le); }
You can even create a Some_Manager:
struct Some_Manager
{
union Some
{
int i;
float f;
};
Some_Manager(int le) :
m_le{le},
m_some{std::make_unique<Some[]>(le)}
{}
// ... getters and setters...
int count() const { return m_le; }
Some &operator[](int le) { return m_some[le]; }
private:
int m_le{};
std::unique_ptr<Some[]> m_some;
};
Take a look at the Live example.
It's not possible to declare a structure with dynamic sizes as you are trying to do, the size must be specified at run time or you will have to use higher-level abstractions to manage a dynamic pool of memory at run time.
Also, in your second example, you include le in the union. If what you were trying to do were possible, it would cause le to overlap with the first value of i and f.
As was mentioned before, you could do this with templating if the size is known at compile time:
#include <cstdlib>
template<size_t Sz>
union U {
int i[Sz];
float f[Sz];
};
int main() {
U<30> u;
u.i[0] = 0;
u.f[1] = 1.0;
}
http://ideone.com/gG9egD
If you want dynamic size, you're beginning to reach the realm where it would be better to use something like std::vector.
#include <vector>
#include <iostream>
union U {
int i;
float f;
};
int main() {
std::vector<U> vec;
vec.resize(32);
vec[0].i = 0;
vec[1].f = 42.0;
// But there is no way to tell whether a given element is
// supposed to be an int or a float:
// vec[1] was populated via the 'f' option of the union:
std::cout << "vec[1].i = " << vec[1].i << '\n';
}
http://ideone.com/gjTCuZ
I've written a pretty simple array class in C++ and use it in my application:
/* A simple array class template that performs dynamic */
/* memory management and casting to (T*), which allows */
/* to use it as a usual array. */
template <typename T>
class Array
{
public:
//Constructor
Array(unsigned long size)
{
try
{
data = new T[size];
m_size = size;
}
catch(...)
{
cout << "Could not allocate " << size << " bytes." << endl;
data = NULL; m_size = 0;
}
}
//Typecast operator
operator T*() { assert(data!=NULL); return data; }
//Subscript operator
T& operator[] (unsigned long Index);
//Destructor
~Array() { if(data!=NULL) delete[] data; }
private:
T * data;
unsigned long m_size;
};
template<typename T>
T& Array<T>::operator[] (unsigned long Index)
{
assert(Index<m_size);
assert(data!=NULL);
return data[Index];
}
However, when I use it like this:
Array<char> filename(5);
filename[0] = SomeVar;
GCC ouputs the following warning:
warning: ISO C++ says that these are ambiguous, even though the worst conversion for the first is better than the worst conversion for the second: [enabled by default]
note: candidate 1: T& Array<T>::operator[](long unsigned int) [with T = char]
note: candidate 2: operator[](char*, int) <built-in>
What is the reason? How can I solve it?
The reason is quite simple: for your filename[0] the compiler can use your operator[], or it can convert filename to char* using your type conversion operator, and then apply operator[] to a char pointer.
More explicitly, what happening is
filename.Array<char>::operator[](0)
vs
filename.Array<char>::operator char*().operator[](0)
(don't know whether the latter is correct c++, but it gives an idea of what happening)
P.S. Almost sure this should have been asked before, but was not able to find a duplicate.
How might I initialise a std::vector from an array of structs, where the struct contains a union of different types. In other words, the array is used to store a number of values of a specific type, which can be int, char* etc.
This is my solution so far but I'm looking for a better approach:
The convert function returns a vector<int> if it stores ints or a vector<std::string> if it stores char*.
The Value type below is a struct containing a union called value. The Container class below points to a buffer of such Values.
// union member getter
class Getter
{
public:
void operator()(int8_t& i, const Value& value)
{
i = value.value.i;
}
void operator()(std::string& s, const Value& value)
{
s = std::string(value.value.s);
}
...
};
template<class T>
std::vector<T> convert(Container* container)
{
std::vector<T> c;
c.reserve(container->nrOfValues);
Getter g;
for(int i=0;i<container->nrOfValues;i++)
{
T value;
g(value, container->values[i]);
c.push_back(value);
}
return c;
}
Your problem is the union gives a different name to each value, which causes the need for a function that converts a name to a type, such as Getter::operator() returning a type and getting a named member of the union.
There isn't much you can do with this. You can save a variable declaration and a copy/string constructor on each item, but that's about it.
If you can't modify the original struct, you could initialize the vector with a length set of default value (which must be passed in), then iterate through using the getter as:
vector<T> v(length, defaultValue);
typename vector<T>::iterator iter = vec.begin();
for(int index = 0; *iter != vec.end() && index < length; ++iter, ++index) {
converter(*iter, array[index]);
}
Notice that this starts getting cumbersome in iterating the index and the iterator and verifying both are still valid in case of an accident...
If you can modify the original struct:
class Ugly { // or struct, it doesn't matter
public:
union {
char* s;
int i;
} value;
Ugly(char* s) {
value.s = s;
}
Ugly (const int& i) {
value.i = i;
}
operator std::string() const {
return std::string(value.s);
}
operator int() const {
return value.i;
}
};
Then your for loop becomes:
for(int i=0;i<container->nrOfValues;i++)
{
c.push_back(container->values[i]);
}
Note: You might create the vector and pass it as an argument to the copy function since it involves copying the data over during the return.
If you like some template magic, you could do it slightly different way:
// Source union to get data from
union U
{
int i;
char* s;
double d;
};
// Conversion type template function (declared only)
template <class T> T convert(const U& i_u);
// Macro for template specializations definition
#define FIELD_CONV(SrcType, DestField)\
template <> SrcType convert(const U& i_u)\
{ auto p = &DestField; return i_u.*p; }
// Defining conversions: source type -> union field to get data from
FIELD_CONV(int, U::i)
FIELD_CONV(std::string, U::s)
FIELD_CONV(double, U::d)
// Get rid of macro that not needed any more - just for macro haters ;-)
#undef FIELD_CONV
// Usage
template<class T> std::vector<T> convert(Container* container)
{
std::vector<T> c;
c.reserve(container->nrOfValues);
for(int i = 0; i < container->nrOfValues; ++i)
c.push_back(convert<T>(container->values[i]));
return c;
}
The advantage of this approach - it is short, simple and easy to extend. When you add new field to union you just write another FIELD_CONV() definition.
Compiled example is here.