I am trying to build and link a C++, cmake-based project with clang (3.0). This project links to several libraries that are installed in a custom directory /my/dir/. This directory is included in the LD_LIBRARY_PATH and LIBRARY_PATH environment variables. Project builds and links fine with g++.
The link command generated and executed by cmake looks like the following:
/usr/bin/clang++ -O3 stuff.cpp.o -o stuff -rdynamic -lmylib
ld then complains with the following message:
/usr/bin/ld: cannot find -lmylib
The link command above runs fine whenever I manually add -L/my/dir/. Is there a way to link without specifying the -L flag?
The $LD_LIBRARY_PATH environment variable (and its various alternatives on other UNIX-based platforms) is used at runtime, not link time, to find libraries.
Using -L is the correct approach and cannot be avoided.
Note: A better approach under Linux (you don't specify your platform so I'm guessing) is to correctly configure a file in /etc/ld.so.conf.d/ and avoid using $LD_LIBRARY_PATH altogether.
Related
I'm trying to compile a shared library I wrote in C++ to use a specific version of another shared library in the current directory, however it seems to be ignoring that and it uses the (older and incompatible) .so file in my LD_LIBRARY_PATH at runtime. How would I go about overriding the .so file it uses to use my own? I also need to retain the older version for another use on the same system.
Here's my command I'm using to compile: clang++ /data/openpilot/selfdrive/df/libs/libSNPE.so -lsymphony-cpu -lsymphonypower -I/data/openpilot/phonelibs/snpe/include -std=c++14 -lstdc++ -fPIC -o d_f.so dynamic_follow.cc -shared
/data/openpilot/selfdrive/df/libs/libSNPE.so being the library I want to use.
I also tried to use the -l flag before my library file, however it returns cannot find -l/data/openpilot/selfdrive/df/libs/libSNPE.so
Confirmed to still use the library in LD_LIBRARY_PATH with this command as well: clang++ -Wl,-rpath,/data/openpilot/selfdrive/df/libs -L/data/openpilot/selfdrive/df/libs -lSNPE -lsymphony-cpu -lsymphonypower -I/data/openpilot/phonelibs/snpe/include -std=c++14 -stdlib=libc++ -fPIC -o d_f.so dynamic_follow.cc -shared
The -L flag tells where to look for libraries at link time, while LD_LIBRARY_PATH tells where to look for libraries at run-time. So whatever path you set at link-time, this will be ignored when running the executable.
You need to have LD_LIBRARY_PATH include the directory of your dynamic library at run-time for your executable to find it. So you may run your executable like this:
LD_LIBRARY_PATH=/data/openpilot/selfdrive/df/libs:"$LD_LIBRARY_PATH" ./your-exec
I am trying to compile and run a C++ program on a server where I don't have root access. I am having trouble linkingboost_iostreams library.
I can successfully compile my program by pointing to the boost installation directory using the -L flag as:
g++ -I path/to/boost/build/include -o out prog1.cpp prog2.cpp -L path/to/boost/build/lib -lboost_iostreams
However, if I run the program as ./out I get the error error while loading shared libraries: libboost_iostreams.so.1.67.0: cannot open shared object file: No such file or directory since the linker is not able to locate libboost_iostreams.so.1.67.0 (which DOES exist under path/to/boost/build/lib)
Thanks to this answer, I was able to explicitly specify LD_LIBRARY_PATH and run the program as
LD_LIBRARY_PATH="path/to/boost/build/lib" ./out.
Since I am not root, I can't run ldconfig either. I was wondering if there is a way to load dynamic libraries without having to prefix LD_LIBRARY_PATH when you run the program and no root access.
I have figured out a way to solve this using the method explained here https://amir.rachum.com/blog/2016/09/17/shared-libraries/. The solution is to use rpath during compilation.
According to the article The only difference between rpath and
runpath is the order they are searched in. Specifically, their
relation to LD_LIBRARY_PATH - rpath is searched in before
LD_LIBRARY_PATH while runpath is searched in after. The meaning of
this is that rpath cannot be changed dynamically with environment
variables while runpath can.
In short once you compile with -rpath path/to/boost/build/lib, the directory containing the library libboost_iostreams.so.1.67.0 is searched at runtime without having to prefix LD_LIBRARY_PATH="path/to/boost/build/lib" ./out.
After compiling with
g++ -I path/to/boost/build/include -o out prog1.cpp prog2.cpp -L path/to/boost/build/lib -lboost_iostreams -rpath path/to/boost/build/lib
I was able to run ./out without any issues.
EDIT 1
As pointed by Nikos in the comments, alternatively you can set your LD_LIBRARY_PATH by export LD_LIBRARY_PATH=path/to/boost/build/lib. Add this line to .~/.bashrc file so that it is not lost when you log out.
I have built a GCC cross toolchain for the RPi and can cross-compile C++ source and successfully run it after copying the executable to the RPi.
Next I built the Boost libraries targeting ARM, using the cross toolchain. I can successfully build and link C++ source to those Boost libraries using the cross toolchain on my PC.
I then copied the program, dynamically linked to Boost, to the RPi and copied all built libraries into /usr/local/lib on the Pi. However, executing fails:
$ ./my_program
./my_program: error while loading shared libraries: libboost_system.so.1.60.0: cannot open shared object file: No such file or directory
Again, this library, libboost_system.so.1.60.0, exists in /usr/local/lib.
I also tried
export LD_LIBRARY_PATH='/usr/local/lib'
but that doesn't change anything. What am I doing wrong?
EDIT:
I build all source files like this (rpi-g++ is a symlink to my cross-compiler):
rpi-g++ -c -std=c++1y -Wall -Wextra -pedantic -O2 -I /path/to/cross/boost/include *.cpp
rpi-g++ -o myprog *.o -L /path/to/cross/boost/lib/ -lboost_system -pthread
EDIT 2:
When linked with
rpi-g++ -o myprog *.o -L /path/to/cross/boost/lib/ -rdynamic -lboost_system -pthread
the problem remains the same. I have checked and verified everything suggested by Technaton as well. Strangely, ldd insists that the created executable is "not a dynamic executable" (checked that on my PC and on the RPi), which doesn't make sense to me.
There are several things you can check. I've posted a complete check list here, but judging from your linker command line, number 5 is probably the culprit.
Check that your library and your program are correctly build for the target architecture. You can verify that by using file ./myprog and file libboost_system.so.1.60.0.
Make sure that you have copied the actual shared object, and not a link to it.
Ensure that the shared object file's permissions are sane (0755).
Run ldconfig -v and check that your shared object file is picked up. Normally, /usr/local/lib is in the standard library search path, and LD_LIBRARY_PATH is not required.
Make sure that your program is actually dynamically linked by running ldd ./myprog. Judging from your linker command line, that is the problem: You're missing -rdynamic.
Check the paths returned from ldd: If you have linked with rpath, the library search path might be screwed up. Try again without -rpath.
I have built and installed a shared library to do some profiling of my projects via code instrumentation, specifically with the -finstrument-functions switch of gcc.
It is possible to turn the instrumentation on and off with the compiler switch, and hence I'd like to be able to turn the dependency to the profiling library on and off just by reconfiguring.
I can pass -finstrument-functions to gcc via configure's CFLAGS, but when I try to pass -lmylib via LDFLAGS configure fails with
configure:2796: checking whether we are cross compiling
configure:2804: gcc -o conftest -g -Wall -Wextra -Werror -lmylib conftest.c >&5
configure:2808: $? = 0
configure:2815: ./conftest
./conftest: error while loading shared libraries: libmylib.so.0: cannot open shared object file: No such file or directory
The file exists, I have double checked and compiling and linking a dummy example works as expected.
Interestingly, when I pass the full path to the shared library instead of -lmylib, the error persists, but when I pass the full path to the corresponding static library, configure runs smoothly, and everything is built as expected.
My question in a nutshell: Is there a possibility to pass optional shared libraries to autotools-generated configure scripts, without changing configure.ac?
Thanks,
Andy
It looks like your library is not in the compiler's default library search path.
You may also pass library search path through LDFLAGS with the -L switch:
CFLAGS=-finstrument-functions LDFLAGS="-lmylib -L/path/to/mylib" ./configure ....
fixed by running sudo ldconfig
I'll leave this here in case someone else has the same problem.
I want to set up LEDA library in my system.
I have downloaded LEDA library from the following link
http://www.algorithmic-solutions.info/free/d5.php
Instruction given in read me file
2. Preparations
---------------
Unpacking the LEDA distribution file
LEDA---.tar.gz will create the LEDA root
directory "LEDA---". You might want to rename
it or move it to some different place. Let denote the final
complete path name of the LEDA root directory.
To install and use the Unix object code of LEDA you have to modify
your environment as follows:
a) LEDAROOT:
Set the environment variable LEDAROOT to the LEDA root directory:
csh/tcsh: setenv LEDAROOT
sh/bash: LEDAROOT=
export LEDAROOT
b) Command Search Path:
Include $LEDAROOT/Manual/cmd into your command search path
(environment variable path (csh) or PATH (sh)) and call rehash (if
required by your system).
c) Shared Library: (for solaris, linux, irix, osf1)
If you planning to use shared libraries include $LEDAROOT into the
LD_LIBRARY_PATH search path. Then go to $LEDAROOT and type
make shared. This will construct the shared libraries from the static
libraries.
Please note: Building the shared library is not supported on each
platform.
d) xlman and demos: Go to $LEDAROOT and type make xlman to compile
and link LEDA's interactive manual reader xlman. Now you can start
xlman for reading and printing manual pages, starting demo programs
and browsing more release notes.
3. Compiling and linking application programs
---------------------------------------------
a) Use the -I compiler flag to tell the compiler where to find the
LEDA header files.
CC (g++) -I$LEDAROOT/incl -c file.c
b) Use the -L compiler flag to tell the compiler where to find the
library (libleda.a/so)
CC (g++) -L$LEDAROOT file.o -lleda -lX11 -lm
If using windows on solaris systems you might have to link
with the system socket library and the network services library as
well:
CC (g++) ... -lleda -lX11 -lsocket -lnsl -lm
c) Compile and link simultaneously with
CC (g++) -I$LEDAROOT/incl -L$LEDAROOT file.c -lleda -lX11 -lm
You may want to ask your system adminstrator to install the header
files and library in the system's default directories.
Then you no longer have to specify header and library search paths on
the compiler command line.
I followed these instruction but I got error in command
> make xlman
error
coredump#coredump-VPCCB15FG:~/Documents/LEDA$ make xlman
make -C demo/xlman
make: *** demo/xlman: No such file or directory. Stop.
make: *** [xlman] Error 2
someone please help me to setup library.
NOTE: For the free version of the Leda library, you don't have to build the package to use the library. It simply doesn't work.
To use the library simply include it in your compile line and linker.
If you are compiling from the shell (assuming you are using Linux), do the following:
1. Set the env variable to the library folder e.g export LEDAROOT= /path/to/Leda
2. Set the LD_LIBRARY_PATH env variable e.g export LD_LIBRARY_PATH=$LEDAROOT
Verify that this variables are set then you can compile and link and run. You can simply do
CC (g++) -I$LEDAROOT/incl -L$LEDAROOT file.c -lleda -lX11 -lm
With this you should be good to go.
If you are using an IDE, simply add the include path (i.e /path/to/leda) to you project settings.
This is all you have to do. Building the library does not work. Simply include it