Simple question here: are you allowed to explicitly delete a boost::shared_ptr yourself? Should you ever?
Clarifying, I don't mean delete the pointer held by the shared_ptr. I meant the actual shared_ptr itself. I know most people suggest to not do it, so I was just wondering if it's OK to explicitly do it.
Your question isn't clear. If you've allocated a shared_ptr dynamically then you're certainly allowed to delete it whenever you want.
But if you're asking whether you're allowed to delete whatever object is being managed by the shared_ptr, then the answer is ... it depends. If shared_ptr::unique returns true, then calling shared_ptr::reset will delete the managed object. However, if shared_ptr::unique returns false, it means there are more than one shared_ptrs sharing ownership of that object. In this case a call to reset will only result in the reference count being decremented by 1, actual deletion of the object will take place when the last shared_ptr managing that object either goes out of scope or is itself reset.
EDIT:
After your edit, it seems you are asking about deleting a dynamically allocated shared_ptr. Something like this:
auto sp = new boost::shared_ptr<int>( new int(42) );
// do something with sp
delete sp;
This is allowed and will work as expected, although it would be an unusual use case. The only caveat is that if in between the allocation and deletion of sp you create another shared_ptr that shares ownership of the object, deleting sp will not result in deletion of the object, that will only happen when the reference count for the object goes to 0.
[Edit: you can delete a shared_ptr if and only if it was created with new, same as any other type. I can't think why you'd create a shared_ptr with new, but there's nothing stopping you.]
Well, you could write delete ptr.get();.
Doing so leads almost inevitably to undefined behavior either when the other shared owners use their shared_ptr to access the now-deleted object, or the last shared_ptr to the object is destroyed, and the object gets deleted again.
So no, you shouldn't.
The purpose of shared_ptr is to manage an object that no one "person" has the right or responsibility to delete, because there could be others sharing ownership. So you shouldn't ever want to, either.
If you want to simulate the count decrement, you can do it manually on the heap like so:
int main(void) {
std::shared_ptr<std::string>* sp = new std::shared_ptr<std::string>(std::make_shared<std::string>(std::string("test")));
std::shared_ptr<std::string>* sp2 = new std::shared_ptr<std::string>(*sp);
delete sp;
std::cout << *(*sp2) << std::endl; // test
return 0;
}
Or on the stack using std::shared_ptr::reset() like so:
int main(void) {
std::shared_ptr<std::string> p = std::make_shared<std::string>(std::string("test"));
std::shared_ptr<std::string> p2 = p;
p.reset();
std::cout << *p2 << std::endl; // test
return 0;
}
But it's not that useful.
You cannot force its reference count to zero, no.
Think about what would be required for that to work. You would need to go to each place the shared_ptr is used and clear it.
If you did force the shared pointer to delete and set it to NULL, it would be just like a weak_ptr. However, all those places in the code using that shared_ptr are not ready for that and expect to be holding a valid pointer. They have no reason to check for NULL, and so those bits of code would crash.
Expliticly deleting comes in handy in some (very?) rare cases.
In addition to explicitly deleting, sometimes you HAVE to explicitly destruct a shared pointer when you are 'deleting' it!
Things can get weird when interfacing with C code, passing a shared_ptr as an opaque value.
For example I have the following for passing objects to and from the Lua scripting language which is written in C. (www.lua.org)
static void push( lua_State *L, std::shared_ptr<T> sp )
{
if( sp == nullptr ) {
lua_pushnil( L );
return;
}
// This is basically malloc from C++ point of view.
void *ud = lua_newuserdata( L, sizeof(std::shared_ptr<T>));
// Copy constructor, bumps ref count.
new(ud) std::shared_ptr<T>( sp );
luaL_setmetatable( L, B::class_name );
}
So thats a shared_ptr in some malloc'd memory. The reverse is this... (setup to be called just before Lua garbage collects an object and 'free's it).
static int destroy( lua_State *L )
{
// Grab opaque pointer
void* ud = luaL_checkudata( L, 1, B::class_name );
std::shared_ptr<T> *sp = static_cast<std::shared_ptr<T>*>(ud);
// Explicitly called, as this was 'placement new'd
// Decrements the ref count
sp->~shared_ptr();
return 0;
}
Related
I am trying to find out how can I delete children of my Block class. I tried to do it with raw pointer. I don't know why, but it didn't work. I was getting the scalar deleting error. I now tried to do this with std::shared_ptr. I t didn't work as well. I am removing the children with:
void Block::remove(Block* block)
{
std::shared_ptr<Block> ptr(block);
auto it = std::find(children.begin(), children.end(), ptr);
if (it != children.end())
{
*it = NULL;
children.erase(it);
}
}
and the Block deleter is:
Block::~Block()
{
for (auto& child : this->children)
{
child = NULL;
}
if (!this->children.empty())
this->children.clear();
}
According to the debugging process, the ptr variable is found and then deleted. At the point of deleting everything works well until the last line, where I am getting the scalar deletion error. Just for the record: the children variable is of type std::vector<std::shared_ptr<Block>>.
EDIT:
The full code is here: https://github.com/DragonGamesStudios/Ages-of-Life. All the block functions are defined in AOLGuiLibrary/source/Block.cpp
You are mixing shared_ptrs with raw pointers, and that is a bad practice. If I understand correctly, you store the blocks in the vector of shared pointers, and that means that this vector has an ownership on these objects. When you create an additional shared_ptr out of a raw pointer you create another object that has the ownership on the same object:
std::shared_ptr<Block> ptr(block);
As the result, you would try to delete the object twice, and that leads to the undefined behavior.
First of all: do you need shared pointers? Consider using unique_ptr as a less error prone idea (if only one pointer object has the ownership, it is easier to understand who and when would destroy the underlying object).
Next, NEVER use raw pointers in this context: you may use raw pointers only when you don't store/delete the object. And for sure don't create smart pointers out of something that is already stored in one of them already.
Once a pointer has been given to a shared_ptr, that shared_ptr owns it. You must never again give that pointer to another shared pointer.
int * ptr = new int(1234);
{
std::shared_ptr<int> shp1(ptr); // shp1 owns ptr
std::shared_ptr<int> shp2(ptr); // shp2 owns ptr ???
}
// at this point ptr has been deleted twice
Note: it's preferable to not use new but to call std::make_shared and never give raw pointers to shared_ptr in the first place.
What you are doing to search for a child is exactly this problem. Passing in a raw pointer, you create a new owner for it. If that pointer is a child, it's already owned. You must not create shared pointers from raw pointers after they have been given to a shared pointer.
Also, the destructor you showed for Block isn't wrong, but it is completely unnecessary. All of what you coded there would happen automatically. Block is destroyed, it destroys the vector it holds (so clearing it is unnecessary.) The vector destroys its elements, so the shared pointers it holds are cleaned up too.
If block points at array code, this code is illegal, because for a new[] you have to call delete[], and std::shared_ptr<Block> would call delete. After that heap would be corrupted and further operations may fail. Same happens if blocks points to an element of array. If blocks points to object not located in heap, it also would result in error.
In general it's bad idea to delete a pointer passed to a function. There is no guarantee that the pointer was one returned by new, and even if it was: by which new?
To create a strong reference counter for an array, you have to use std::shared_ptr<Block[]>, but usually it's better idea to use some kind of container.
To find a value of pointer object in array of shared pointers:
auto it = std::find_if( children.begin(), children.end(), [=](auto& el) {
return el.get() == block;
});
If childrenis not static (that's not some kind of factory), then that destructor code is completely redundant. After call to ~Block() there will be calls to destructors of every member of Block, including that collection which would deallocate its resources and call destructor to every pointer, which would call destructor to every Block.
I accidentally found this issue on C++, but totally had no idea how it was happened, please check the code snippet below:
int main() {
int *aptr = new int(20); //Declare an integer space with 20, and aptr points to it
shared_ptr<int> a(aptr); //Declare a shared_ptr to points where aptr points
stringstream ss;
ss << a;
const char *chstr = ss.str().c_str(); // Save the address as string
void *address;
sscanf(chstr, "%p", (void **)&address); // Convert string back to pointer
a = NULL; // Free the shared pointer
cout << *reinterpret_cast<int*>(address) << endl; // Output: 0, 20 has gone
return 0;
}
Is there anybody could tell me why the address has been freed ?
I didn't manipulate the original integer pointer "aptr", but somehow it's space has disappeared, because of the shared_ptr ?
I'd like to know how it was happend, thank you all !
The whole purpose behind std::shared_ptr is to take ownership of the dynamically-allocated object. Once std::shared_ptr takes ownership of a dynamically-allocated object, via either std::make_shared or by directly assigning a pointer to it, std::shared_ptr owns it, lock stock and barrel. Owning it means automatically deleteing the dynamically scoped object when the last reference to the dynamically-scoped object goes out of scope. That's what the shared_ptr is for, and nothing else.
a = NULL;
This used shared_ptr's assignment operator to replace the shared_ptr-owned pointer(*). Since the original dynamically-scoped object that the shared_ptr owns has no other reference, the shared_ptr deletes the original pointer that was used to construct it.
The fact that you still have the original, native pointer to the int is irrelevant. shared_ptr doesn't care. The whole thing gets deleted.
If you don't want shared_ptr to delete whatever you newed, and use a native pointer for, either don't use shared_ptr, or make sure one is still around as long as you still need to use a native pointer to the underlying object.
(*) This actually implicitly constructs another shared_ptr, and uses the regular assignment operator.
This code does not compile in g++ 4.2.1 (but as Sam mentioned, it complies with version 6):
Georgioss-MacBook-Pro:~ gsamaras$ g++ -Wall main.cpp
main.cpp:17:11: error: no viable overloaded '='
a = NULL; // Free the shared pointer
~ ^ ~~~~
By the way, you should use shared_ptr::reset:
In all other cases, the shared_ptr acquires ownership of p with a use
count of 1, and -optionally- with del and/or alloc as deleter and
allocator, respectively.
Additionally, a call to this function has the same side effects as if
shared_ptr's destructor was called before its value changed (including
the deletion of the managed object if this shared_ptr was unique).
Also check string::c_str. You are saving the address of a temporary string, which is the start of something bad.
We have a function that returns a new allocated object as a output argument (ref to pointer).
MyFunc(MyObject*& obj)
{
obj = new MyObject();
}
Which is called like so:
Object* obj;
MyFunc(obj);
Internally the function does quite a bit and uses shared_ptr for memory management. When it is done, the object we would like to return is referenced by a shared_ptr. I am struggling on how to return our new allocated object as a regular pointer.
We would like to continue to use shared_ptr internally to reduce risks, but it does not seem to make sense to return a shared_ptr as the caller takes complete ownership over the returned value (the called function or object no longer needs or keeps a reference to the returned data) and we want them to have flexibility.
Does anyone have any suggestions for allowing us to use shared_ptr internally but have a regular pointer interface? Thanks
If for some reason you cannot/want not use std::unique_ptr or std::auto_ptr (for example if you need to have multiple owners internally during creation for some reason or your underlying methods require std::shared_ptr to be passed around), you can still make it work with std::shared_ptr by using custom deleter, as described here: https://stackoverflow.com/a/5995770/1274747
In the principle, after you're done before the return, you switch the deleter to not actually delete the instance (make the deleter "null") and then return by shared_ptr get(). Even after all shared_ptr objects are destroyed, the memory will not be deleted (as the nulled deleter will skip the deletion).
There is also a link in the comments not so well visible, which might be of your interest:
http://paste.ubuntu.com/23866812/
(not sure though if it would really work without the shared ownership of the switch in all cases, would need to test)
EDIT
As expected, with the linked simple disarmable deleter from the pastebin you need to be careful, because the deleter is actually copied for storing in std::shared_ptr.
But you can still make it work by using std::ref:
MyFunc(MyObject*& obj)
{
DisarmableDelete<MyObject> deleter;
std::shared_ptr<MyObject> ptr(new MyObject(), std::ref(deleter));
// do what is necessary to setup the object - protected by deleter
// ...
// disarm before return
deleter._armed = false;
obj = ptr.get();
// deleter disarmed - object not freed
}
And just for completeness (and to avoid a potential future broken link), here is the implementation of DisarmableDelete from http://paste.ubuntu.com/23866812/.
template <typename T, typename Deleter = typename std::default_delete<T> >
struct DisarmableDelete : private Deleter {
void operator()(T* ptr) { if(_armed) Deleter::operator()(ptr); }
bool _armed = true;
};
It depends on who "owns" the pointer, once it has been exposed to the 'outside world.' Ownership essentially boils down to: "who is responsible for freeing this memory, later?"
It can be answered with a simple question: when MyFunc is called, is the caller responsible for deleting the pointer when it's done?
If so, then MyFunc needs to 'release' the ownership, otherwise the shared_ptr will automatically delete the pointer, when it goes out of scope. This actually can't be done, using shared_ptr. You need to use a unique_ptr instead, and call unique_ptr::release().
If not - if MyFunc will simply use the resulting pointer and forget about it without delete-ing it - then you can simply return the 'raw' pointer using shared_ptr::get(). You must be careful, because this implies that the shared_ptr still exists elsewhere in your code.
I can see four alternatives, as highlighted below. They are all horrible, and short of switching your ownership to std::unique_ptr<T> and returning via obj = ptr.release(); I can only offer a hack where the argument is assigned to the pointer upon destruction, but you still need to catch the exception and test whether the pointer was assigned.
#include <iostream>
#include <memory>
#include <exception>
struct foo {
void bar() const { std::cout << this << " foo::bar()\n"; }
~foo() { std::cout << this << " deleted\n"; }
};
void f1(foo*& obj) {
obj = new foo;
// do stuff... if an exception is thrown before we return we are
// left with a memory leak
}
void f2(foo*& obj) {
auto holder = std::make_shared<foo>();
// do stuff.. if an exception is thrown the pointer will be
// correclty deleted.
obj = holder.get(); // awesome, I have a raw pointer!
} // oops, the destructor gets called because holder went out of
// scope... my pointer points to a deleted object.
void f3(foo*& obj) {
auto holder = std::make_unique<foo>();
// do stuff.. if an exception is thrown the pointer will be
// correclty deleted.
obj = holder.release(); // awesome, I have a raw pointer!
} // no problem whem holder goes out of scope because it does not own the pointer
void f4(foo*& obj) {
// a super-weird hack that assigns obj upon deletion
std::shared_ptr<foo> holder(new foo, [&obj](foo*& p){ obj = p; });
throw std::exception();
} // no problem whem holder goes out of scope because it does not own
// the pointer... but if an execption is throw we need to delete obj
int main() {
foo* p1;
f1(p1);
p1->bar();
foo* p2;
f2(p2);
// p2->bar(); // error
foo* p3;
f3(p3);
p3->bar();
foo* p4;
try {
f4(p4);
} catch(...) {
std::cout << "caught an exception... test whether p4 was assigned it\n";
}
p4->bar(); // I still need to delete this thing
}
The point of shared_ptr is to express shared ownership.
Anything that does not share in the ownership of an object -- that doesn't have the right to make an object lifetime last longer, and the object lifetime is the union of the shared owners request for object lifetime -- should not use a shared_ptr.
Here, you have a shared_ptr and you are going to return it. At that point, you are violating the assumptions of shared_ptr; anyone who kept a shared_ptr copy expects that its content can last as long as it requests.
Meanwhile, the calling code thinks it owns the MyObject* raw pointer you passed it.
This is an example of misuse of shared_ptr.
Saying "we have memory management issues, use shared_ptr" doesn't fix memory management issues. Proper use of shared_ptr requires care and design, and the design must be that when the end of the lifetime of the object in question is shared by 2 or more pieces of data and/or code.
The internal code, if it does not own the pointer, should use either something like an observer_ptr<T> or a raw T* (the first to make it clear it doesn't own the object).
Ownership should be explicit, and in a unique_ptr. It can then call .release() to pass ownership to a raw pointer if required; in practice, I would change your signature to take a unique_ptr&, or have it return a unique_ptr.
The caller would then call .release() when they want to use some other object lifetime management system, or that object lifetime management system should consume unique_ptrs (thus being extremely clear about taking ownership of things).
Use a non-hack solution.
Such as a std::shared_ptr<std::unique_ptr<T>>. In this case, you have shared ownership of a unique ownership.
The unique_ptr can have its ownership taken from it (via .release()). When it does so, all of the shared_ptrs that still exist will have their unique_ptr also be cleared.
This places the shared unique ownership front and center, instead of hacking a non-deleter into a shared_ptr and having dangling shared_ptrs that think they have ownership over data but do not.
The best approach is to use internally unique_ptr and call its .release() method before returning the raw pointer.
If you are stuck to use shared_ptr internally, an option is to create it specifying a custom, "noop" deleter, that just does nothing when shared_ptr is destroyed (instead of calling delete on the owned pointer). The get the raw pointer from shared_ptr as usual (.get() method).
An example of such a deleter can be found in the Boost library (null_deleter).
But please note that doing this effectively "disable" the usefulness of having a shared_ptr at all...
If your managing the lifespan of the allocated object internally with std::shared_ptr, and are returning a raw pointer for access and don't want this pointer to affect the ref count, you can return the raw pointer by calling shared_ptr.get().
It can be problematic to return smart pointers if your using a tool like Swig to generate wrappers for other languages.
always delete pointer even if it is just in function call stack?
Isn't it disappeared when function stack released?
// just Simple class
class CSimple{
int a;
}
// just simple function having pointer.
void simpleFunc(){
CSimple* cSimple = new CSimple();
cSimple->a = 10;
//.. do sth
delete cSimple; // <<< Always, do I have to delete 'cSimple' to prevent the leak of memory?
}
void main(){
for( int =0 ; i< 10 ; i++){
simpleFunc();
}
}
when function stack released?
It is true that "CSimple *csimple" goes away when the function returns.
However, there's a big difference between the pointer, and what it's pointed to.
When a pointer object gets destroyed, nothing happens to whatever the pointer is pointing to. There isn't just one, but two objects here:
The pointer.
What it's pointing to.
In this case, the pointer is pointing to an object in dynamic scope that was created with new.
Nothing is going to happen to this object, otherwise, so you will leak memory.
Therefore, this object needs to be deleted.
After you understand, and fully wrap your brain around this concept, your next step will be to open your C++ book to the chapter that talks about the std::unique_ptr and std::shared_ptr classes, which will take care of these pesky details, for you. You should learn how to use them. Modern C++ code rarely needs to delete something; rather these smart pointers do all the work.
Yes.
On scope exit (ex. when function exists or block { ... } finishes), all objects created on stack will be destroyed and memory will be freed.
This applies to your case, ie. the pointer will be destroyed and memory occupied by the pointer will be freed. The object pointed by the pointer will not be cleared.
This is a common problem and a nightmare when you deal with multiple flow paths (if-else ladders, many return statements) and exceptions.
To solve this problem, we employ 2 main strategies:
RAII
Smart pointers (std::unique_ptr, boost::scoped_ptr, legacy std::auto_ptr, etc).
RAII - without academic consideration - is just creating object on stack, like this:
{
std::string s;
fancy_object obj;
}
When we exit he scope, obj and s destructors will be called duing stack unwinding. Compiler ensures this for all flow paths and will keep proper order of deallocations for us.
If you need to allocate memory on heap, using new, use a smart pointer.
int foo()
{
std::unique_ptr<Object> o(new Object);
... some more code ...
if( something ) { return -1 }
... some more code ...
if( something_else ) { return -2 }
else { not yet }
return 0;
}
As you can see, we can leave the scope using 3 "exists". Normally, you'd need to clear your memory in all cases, which is prone to human errors.
Instead of clearing the object manually in all 3 palces, we rely on automatic destructor call for objects created on stack. Compiler will figure it out. When we leave the scope, std::unique_ptr destructor will be called, calling delete on Object.
Don't be affraid of smart poiners. They are not "slow", "bloat" or other nonsense. Smart poiners are designed to have no overhead on access, adding extra security.
Very similar technique is used for locks. Check out std::lock_guard class.
Yes, you must delete the data that is being pointed to.
The pointer itself is on the stack and does not need to be deleten.
You can, however, store cSimple on the stack, then you don't have to delete it:
void simpleFunc(){
CSimple cSimple; // no new
cSimple.a = 10; // "." instead of "->"
//.. do sth
// no deletion
}
So as to explain about pointers and references in this question I wrote this code.
MyClass& MyClass::MyInstance()
{
static MyClass & myLocalVariable = * new MyClass(/*parameters*/);
return myLocalVariable ;
}
one of the comments, by a really impressive high reputation SO user, simply states:
*new is always wrong. ALWAYS.
It is the first time I'm told about this: Is it a famous coding standard we all should know about ? What are the reasons behind ?
I'm normally pragmatic, however this is too much even for me!
static MyClass & myLocalVariable = * new MyClass(/*parameters*/);
Seriously? Why not simply:
static MyClass myLocalVariable{/*parameters*/};
The most obvious reason is that if you don't keep a copy of the pointer which new returned, you're not likely to ever call delete on it.
On a more human level, it will make people reading your code think less of you, and that's never a good thing either.
I believe the stated user meant that allocating a static object using new is dangerous as the memory will most probably be leaked. Even more importantly your variable is not a pointer but a reference so the chance that you never free the memory returned by new is even greater(how often do you delete the address of a reference?).
THE problem is more than just useless allocations.
If nobody calls delete on it, it won't be deleted. Sure, the memory will be released when the program ends but its destructor doesn't get called.
Compare the output of using Get() and Get2() in the code below:
#include <iostream>
struct A
{
~A(){std::cout << "Deleted\n";}
};
A& Get()
{
static A & a = *new A;
return a;
}
A& Get2()
{
static A a;
return a;
}
int main()
{
//Case 1
Get();
//Case 2
Get2();
}
The output of this program is nothing when calling Get and Deleted when calling Get2.
In other words, resources with nontrivial destructors (commit-on-close file handle for example) will not be destroyed properly at program termination in case 1, but will in case 2.
The problem is that a raw new does not specify ownership. If I new up an object and return it, who owns it? Does the creating function/object own it, or does the calling function? If you return smart pointers (std::shared_ptr and std::unique_ptr) you are specifying ownership.
Not specifying ownership is one of the easiest ways to leak memory. I have the hardest time, even with professional programmers, getting people to understand ownership and work with it. This is mostly prevented by using good types (smart pointers) that specify ownership, just by existing.
type* function(); // Unspecified ownership.
// Must be well documented and all users must read
// and follow the documentation.
std::unique_ptr<type> function(); // Calling function owns returned pointer.
// Single ownership.
std::shared_ptr<type> function(); // Calling function owns returned pointer.
// Shared ownership. Can have multiple owners.
std::weak_ptr<type> function(); // Calling function references returned pointer.
// Must lock pointer to get owned object, if not deleted.
// Shared ownership. Can have multiple owners.
These different types of pointers express ownership just by existing unlike raw pointers.
As for new always being wrong. That is an overbroad generalization. std::shared_ptr is created using the global function std::make_shared. As of C++11 there is no std::make_unique, but that will be fixed in C++14. The only way to create a std::unique_ptr is to use new and immediately assign the pointer to a std::unique_ptr.
There are also places where you would want a raw pointer and to manually use new and delete, but they tend to be very low level and most programmers will rarely encounter them.
What really has me cringing about your code is not that you are using new but that you are dereferencing the pointer and assigning it to a reference. It would be almost impossible to guarantee that the destructor will ever be called. It also tends to leak memory, though in the case of assigning to a static variable it will be deallocated at program termination so you aren't really looking at memory leaking.
MyClass& MyClass::MyInstance()
{
static MyClass & myLocalVariable = * new MyClass(/*parameters*/);
return myLocalVariable ;
}
I would prefer to create to have the static variable be by value than by reference. This prevents putting the object on the heap. Depending on MyClass is could also allow the object to be mapped to memory from the executable without having to run any code to initialize it.
MyClass& MyClass::MyInstance()
{
static MyClass myLocalVariable(/*parameters*/);
return myLocalVariable ;
}