Can you explain how the methods of the class are called? - c++

conv.h
class Base
{
public:
void foo();
};
class Derived: public Base
{
public:
void bar();
};
class A {};
class B
{
public:
void koko();
};
conv.cpp
void Base::foo()
{
cout<<"stamm";
}
void Derived::bar()
{
cout<<"bar shoudn't work"<<endl;
}
void B::koko()
{
cout<<"koko shoudn't work"<<endl;
}
main.cpp
#include "conv.h"
#include <iostream>
int main()
{
Base * a = new Base;
Derived * b = static_cast<Derived*>(a);
b->bar();
Derived * c = reinterpret_cast<Derived*>(a);
c->bar();
A* s1 = new A;
B* s2 = reinterpret_cast<B*>(s1);
s2->koko();
}
output:
bar shoudn't work
bar shoudn't work
koko shoudn't work
How come the method bar is succeeded to be called in run time despite that I have created a Base class not derived?? it works even with two types of conversions (static and reinterpret cast).
same question as above but with unrelated classes (A & B) ??

Undefined behaviour can do anything, including appear to work.

It's working (read: "compiling and not crashing") 'cause you never use the this pointer in your nominally "member" functions. If you tried to print out a member variable, for example, you'd get the garbage output or crashes you expect - but these functions as they are now don't depend on anything in the classes they're supposedly part of. this could even be NULL for all they care.

The compiler knows a Derived can use member functions foo() and bar() and knows where to find them. After you did your "tricks", you had pointers to Derived.
The fact that they were pointers of type Derived -- regardless of what data was associated with those pointers -- allowed them to call the functions foo() and kook() associated with Derived.
As has been mentioned, if you had actually used the data at the pointers (i.e. read or wrote data members relative to this belonging to the Derived class (which you don't have in this case), you would have been access memory that didn't belong to your objects.

Related

Regarding virtual function output [duplicate]

I was trying to figure out what happens when a derived class declares a virtual function as private. The following is the program that I wrote
#include <iostream>
using namespace std;
class A
{
public:
virtual void func() {
cout<<"A::func called"<<endl;
}
private:
};
class B:public A
{
public:
B()
{
cout<<"B constructor called"<<endl;
}
private:
void func() {
cout<<"B::func called"<<endl;
}
};
int main()
{
A *a = new B();
a->func();
return 0;
}
Surprisingly (for me) the output was:
B constructor called
B::func called
Isn't this violating the private access set for that function. Is this the expected behavior? Is this is a standard workaround or loophole? Are access levels bypassed when resolving function calls through the VTABLE?
Any insight in to this behavior would be greatly helpful.
Further it was mentioned that a privately overriding a virtual member would prevent further classes from inheriting it. Even this is having problems. Modifying the above program to include:
class C: public B
{
public:
void func() {
cout<<"C::func called"<<endl;
}
};
and the main test program to:
int main()
{
A *a = new C();
a->func();
return 0;
}
output is:
C::func called
This is well-defined behavior. If a were a B* this wouldn't compile. The reason is that member access is resolved statically by the compiler, not dynamically at run-time. Many C++ books suggest that you avoid coding like this because it confuses less experienced coders.
The behavior is correct. Whenever you declare your function as "virtual", you instruct the compiler to generate a virtual call, instead of the direct call to this function. Whenever you override the virtual function in the descendant class, you specify the behavior of this function (you do not change the access mode for those clients, who rely on the "parent's" interface).
Changing the access mode for the virtual function in the descendant class means that you want to hide it from those clients, who use the descendant class directly (who rely on the "child's" interface).
Consider the example:
void process(const A* object) {
object->func();
}
"process" function relies on the parent's interface. It is expected to work for any class, public-derived from A. You cannot public-derive B from A (saying "every B is A"), but hide a part of its interface. Those, who expect "A" must receive a fully functional "A".
Well, you are calling A::func() which is public though in a B object it is overridden by B::func(). This is a common pattern with the following implications:
func is not intended to be called on derived B objects
func cannot be overridden in classes derived from B

PostActive visibility of class methods

I have here this abstract base class called base_class defined as it follows:
class base_class
{
public:
virtual ~base_class() = 0 {}
virtual size_t area() const = 0;
protected:
base_class() {}
};
One derived class from with it:
template <typename T> class A : public base_class
{
public:
A();
~A();
size_t area() const;
void display();
(...) etc code
};
And another class still derived from it:
template <typename T> class B : public base_class
{
public:
B();
~B();
size_t area() const;
void set();
(...) etc code
};
Than I have this instantiation and function call:
base_class *p = new A<int>;
p->display();
delete p;
p = new B<float>;
p->set();
(...) code
As you might already have observed, is that the pointer p won't "see" display and set methods.
The question is: when using pointers of type base_class, is there a chance of letting a derived object call derived methods that are only defined in the class that it points to? Thus being able to access display and set methods without having to make them virtual in the base class.
Otherwise we would have to make 2 virtual functions in the base_class, display and set, and that's very inconvenient, because A doesn't have to inherit set method, and B the display method.
You can use dynamic_cast to downcast from base class to derived class, if could not determine the runtime type of the object.
base_class *p = new A<int>;
if (A<int> *pa = dynamic_cast<A<int> *>(p))
pa->display();
delete p;
p = new B<float>;
if (B<float> *pb = dynamic_cast<B<float> *>(p))
pb->set();
If the type of object could be confirmed at compile time, static_cast can do the cast too, but beware: You are telling the compiler that you know for a fact that what is being pointed to really is of that type. If you are wrong, then the cast cannot inform you of the problem (as could dynamic_cast, which would return a null pointer if the cast failed, or throw a std::bad_cast for a reference cast failure) and, at best, you will get spurious run-time errors and/or program crashes.
Anyway, the best practice should be rearrange the inheritance relationship, try to use virtual function, avoid downcasts.
I am not quite sure what you ultimately want to do but its not usually good practice to call a function from the derived class that is not virtual in the base class using a pointer to a base class. As was already mentioned, you can use type casting to achieve this, but you need to check if the dynamic_cast was possible before attempting to call the function.
Have you considered creating a pure virtual function in the base class such as:
public:
virtual void doIt() = 0;
Then you could implement this in the derived classes to call the function you want:
class A
{
void doIt()
{
display();
}
};
class B
{
void doIt()
{
set();
}
};
There's actually no way of accessing the members since for all the program knows it wouldn't have to be a derived class, and could just be the base class. This meaning casting as mentioned in the comments.
A pointer is simply an integer, for 32bit OS's it's a 32 bit int, for 64bit well i guess you could guess right? 64bit integer.
When it comes to typing pointers to actual classes and structures etc, it's up to the API to decide whether or not to display the function, it's more of a helper.
As for the program only knows it's a base class pointer you can only access it's variables. However if you are 100% sure what you are dealing with and you want to save performance here's something somewhat pseudo code.
typedef void (A::*func)(void*);
func f = &A::set;
base_classPointer->*f();
But to be safe and sound either from the beginning make the pointer of the actual class as it seems you will be sure of that it's actually an A class.
Or use yourself of the dynamic, static, casts.
if(B * b = static_cast or dynamic_cast<B*>(mypointer))
Now I do suggest that you use yourself of exact pointer types if you are completely sure of what it's going to be. Or use yourself of the casts. If you are really anxious about performance, try the simple delegate method.

Does a static_cast of a derived object to base always select most derived object?

In the artificial example below, if I static_cast to the base class, when I call the setSnapshot() function it still calls the actual object setSnapshot(). This is what I want to happen. My question is can I always rely on this to work?
In code I am working on, we have this class hierarchy and in the b class there are macros used which static cast to the b type. This is to downcast from a base type so that specialised function in b can be called.
#include <iostream>
class a {
};
class b: public a {
public:
virtual void setSnapshot() { std::cout << "setting b snapshot\n"; }
};
class c : public b {
public:
virtual void setSnapshot() { std::cout << "setting c snapshot\n"; }
};
int main() {
a* o = new c;
//specifically casting to b
static_cast<b*>(o)->setSnapshot(); //prints setting c snapshot - what I want to happen
delete o;
return 0;
}
The title suggests that you're misunderstanding what the case does. new c creates an object of type c, and it will remain a c until it's destructed.
If you were to cast it to an a, you'd create a copy. But yu're only casting pointers. That doesn't affect the original object. That's still a c, and that's why you end up calling c::setSnapshot().
As long as a function is virtual in the statically known type a call of it will go to the override that is most derived.
For single inheritance this can be understood as a search for an implementation up the base class chain, starting in the most derived class.
In practice, for C++, the dynamic search is not done, and the effect of the search is instead implemented as a simple table lookup.

Trouble understanding C++ `virtual`

I'm having trouble understanding what the purpose of the virtual keyword in C++. I know C and Java very well but I'm new to C++
From wikipedia
In object-oriented programming, a
virtual function or virtual method is
a function or method whose behavior
can be overridden within an inheriting
class by a function with the same
signature.
However I can override a method as seen below without using the virtual keyword
#include <iostream>
using namespace std;
class A {
public:
int a();
};
int A::a() {
return 1;
}
class B : A {
public:
int a();
};
int B::a() {
return 2;
}
int main() {
B b;
cout << b.a() << endl;
return 0;
}
//output: 2
As you can see below, the function A::a is successfully overridden with B::a without requiring virtual
Compounding my confusion is this statement about virtual destructors, also from wikipedia
as illustrated in the following example,
it is important for a C++ base class
to have a virtual destructor to ensure
that the destructor from the most
derived class will always be called.
So virtual also tells the compiler to call up the parent's destructors? This seems to be very different from my original understanding of virtual as "make the function overridable"
Make the following changes and you will see why:
#include <iostream>
using namespace std;
class A {
public:
int a();
};
int A::a() {
return 1;
}
class B : public A { // Notice public added here
public:
int a();
};
int B::a() {
return 2;
}
int main() {
A* b = new B(); // Notice we are using a base class pointer here
cout << b->a() << endl; // This will print 1 instead of 2
delete b; // Added delete to free b
return 0;
}
Now, to make it work like you intended:
#include <iostream>
using namespace std;
class A {
public:
virtual int a(); // Notice virtual added here
};
int A::a() {
return 1;
}
class B : public A { // Notice public added here
public:
virtual int a(); // Notice virtual added here, but not necessary in C++
};
int B::a() {
return 2;
}
int main() {
A* b = new B(); // Notice we are using a base class pointer here
cout << b->a() << endl; // This will print 2 as intended
delete b; // Added delete to free b
return 0;
}
The note that you've included about virtual destructors is exactly right. In your sample there is nothing that needs to be cleaned-up, but say that both A and B had destructors. If they aren't marked virtual, which one is going to get called with the base class pointer? Hint: It will work exactly the same as the a() method did when it was not marked virtual.
You could think of it as follows.
All functions in Java are virtual. If you have a class with a function, and you override that function in a derived class, it will be called, no matter the declared type of the variable you use to call it.
In C++, on the other hand, it won't necessarily be called.
If you have a base class Base and a derived class Derived, and they both have a non-virtual function in them named 'foo', then
Base * base;
Derived *derived;
base->foo(); // calls Base::foo
derived->foo(); // calls Derived::foo
If foo is virtual, then both call Derived::foo.
virtual means that the actual method is determined runtime based on what class was instantiated not what type you used to declare your variable.
In your case this is a static override it will go for the method defined for class B no matter what was the actual type of the object created
So virtual also tells the compiler to call up the parent's destructors? This seems to be very different from my original understanding of virtual as "make the function overridable"
Your original and your new understanding are both wrong.
Methods (you call them functions) are always overridable. No matter if virtual, pure, nonvirtual or something.
Parent destructors are always called. As are the constructors.
"Virtual" does only make a difference if you call a method trough a pointer of type pointer-to-baseclass. Since in your example you don't use pointers at all, virtual doesn't make a difference at all.
If you use a variable a of type pointer-to-A, that is A* a;, you can not only assign other variables of type pointer-to-A to it, but also variables of type pointer-to-B, because B is derived from A.
A* a;
B* b;
b = new B(); // create a object of type B.
a = b; // this is valid code. a has still the type pointer-to-A,
// but the value it holds is b, a pointer to a B object.
a.a(); // now here is the difference. If a() is non-virtual, A::a()
// will be called, because a is of type pointer-to-A.
// Whether the object it points to is of type A, B or
// something entirely different doesn't matter, what gets called
// is determined during compile time from the type of a.
a.a(); // now if a() is virtual, B::a() will be called, the compiler
// looks during runtime at the value of a, sees that it points
// to a B object and uses B::a(). What gets called is determined
// from the type of the __value__ of a.
As you can see below, the function A::a is successfully overridden with B::a without requiring virtual
It may, or it may not work. In your example it works, but it's because you create and use an B object directly, and not through pointer to A. See C++ FAQ Lite, 20.3.
So virtual also tells the compiler to call up the parent's destructors?
A virtual destructor is needed if you delete a pointer of base class pointing to an object of derived class, and expect both base and derived destructors to run. See C++ FAQ Lite, 20.7.
You need the virtual if you use a base class pointer as consultutah (and others while I'm typing ;) ) says it.
The lack of virtuals allows to save a check to know wich method it need to call (the one of the base class or of some derived). However, at this point don't worry about performances, just on correct behaviour.
The virtual destructor is particulary important because derived classes might declare other variables on the heap (i.e. using the keyword 'new') and you need to be able to delete it.
However, you might notice, that in C++, you tend to use less deriving than in java for example (you often use templates for a similar use), and maybe you don't even need to bother about that. Also, if you never declare your objects on the heap ("A a;" instead of "A * a = new A();") then you don't need to worry about it either. Of course, this will heavily depend on what/how you develop and if you plan that someone else will derive your class or not.
Try ((A*)&b).a() and see what gets called then.
The virtual keyword lets you treat an object in an abstract way (I.E. through a base class pointer) and yet still call descendant code...
Put another way, the virtual keyword "lets old code call new code". You may have written code to operate on A's, but through virtual functions, that code can call B's newer a().
Say you instantiated B but held it as an instance of an A:
A *a = new B();
and called function a() whose implementation of a() will be called?
If a() isn't virtual A's will be called. If a() was virtual the instantiated sub class version of a() would be called regardless of how you're holding it.
If B's constructor allocated tons of memory for arrays or opened files, calling
delete a;
would ensure B's destructor was called regardless as to how it was being held, be it by a base class or interface or whatever.
Good question by the way.
I always think about it like chess pieces (my first experiment with OO).
A chessboard holds pointers to all the pieces. Empty squares are NULL pointers. But all it knows is that each pointer points a a chess piece. The board does not need to know more information. But when a piece is moved the board does not know it is a valid move as each pice has different characteristica about how it moves. So the board needs to check with the piece if the move is valid.
Piece* board[8][8];
CheckMove(Point const& from,Point const& too)
{
Piece* piece = board[from.x][from.y];
if (piece != NULL)
{
if (!piece->checkValidMove(from,too))
{ throw std::exception("Bad Move");
}
// Other checks.
}
}
class Piece
{
virtual bool checkValidMove(Point const& from,Point const& too) = 0;
};
class Queen: public Piece
{
virtual bool checkValidMove(Point const& from,Point const& too)
{
if (CheckHorizontalMove(from,too) || CheckVerticalMoce(from,too) || CheckDiagonalMove(from,too))
{
.....
}
}
}

Multiple Inheritance

#include<iostream>
using namespace std;
class A
{
int a;
int b;
public:
void eat()
{
cout<<"A::eat()"<<endl;
}
};
class B: public A
{
public:
void eat()
{
cout<<"B::eat()"<<endl;
}
};
class C: public A
{
public:
void eat()
{
cout<<"C::eat()"<<endl;
}
};
class D: public B, C
{
};
int foo(A *ptr)
{
ptr->eat();
}
main()
{
D obj;
foo(&(obj.B)); //error. How do i call with D's B part.
}
The above foo call is a compile time error.
I want to call foo with obj's B part without using virtual inheritance. How do i do that.
Also, in case of virtual inheritance, why the offset information need to be stored in the vtable. This can be determined at the compile time itself. In the above case, if we pass foo with D's object, at compile time only we can calculate the offset of D's A part.
Inheriting twice
With double inheritance you have an ambiguity - the compiler cannot know which of the two A bases do you want to use. If you want to have two A bases (sometimes you may want to do this), you may select between them by casting to B or C. The most appropriate from default casts here is the static_cast (as the weakest available), however it is not realy needed (it is still stronger than your case needs), as you are not casting to a derived type. A custom safe_cast template should do the job:
/// cast using implicit conversions only
template <class To,class From>
inline To safe_cast( const From &from ) {return from;}
main()
{
D obj;
foo(safe_cast<B *>(&obj)); //error. How do i call with D's B part.
}
Compile time types - use templates
Also, in case of virtual inheritance,
why the offset information need to be
stored in the vtable. This can be
determined at the compile time itself.
In the above case, if we pass foo with
D's object, at compile time only we
can calculate the offset of D's A
part.
This is a misconception. The foo function as it is written now has no compile type information about ptr type other than it is A *, even if you pass B * or C*. If you want foo to be able to act based on the type passed compile time, you need to use templates:
template <class TypeDerivedFromA>
int foo(TypeDerivedFromA *ptr)
{
ptr->eat();
}
Virtual Inheritance
Your questions mentions virtual inheritance. If you want to use virtual inheritance, you need to specify so:
class B: public virtual A ...
class C: public virtual A ...
With this the code would compile, but with this solution there is no way you could select between B::A or C::A (there is only one A), therefore this is probably not what you are about.
Virtual functions
Furthermore, your questions seems to be confusing two different concepts, virtual inheritance (which means sharing one base class between two intermediate base classes) and virtual functions (which mean allowing derived class function to be called via base class pointer). If you want the B::eat to be called using A pointer, you can do this without virtual inheritance (actually virtual inheritance would prevent you doing so, as explained above), using virtual functions:
class A
{
int a;
int b;
public:
virtual void eat()
{
cout<<"A::eat()"<<endl;
}
};
If virtual functions are not acceptable for you, the compile time mechanism for this are templates, as explained above.
Use a cast - static_cast is required here to cast up the heirarchy.
main()
{
D obj;
foo(static_cast<B*>(&obj));
}
First of all, obj does not have a member named B. It Inherits from B, which means that it inherits all of B's members as its own.
You can call:
foo(static_cast<B*>(&obj)); to make it work.
I don't think the static_cast will work.
When you are on the foo function, all the compiler knows is that you have a pointer to A, whatever the type you passed as parameter.
If you don't use virtual inheritance, then I think there is no way to call a B function from a pointer to A.