Algorithm for index range of values in stl vector - c++

I have a table of data as shown below. Note here is that keyID can be duplicates. I have collected below data in vector structure, which is sorted.
struct myData {
int keyID;
int value;
}
vector<myData> vecReadFromFile;
Now user enters a particular keyID, and I have to check if that value exits in vector, if exits I have to return that value. If not I have to check between which values it fall for example if user enters 120030, value falls between 120028 and 120039 here I should get index of these values i.e., lowerIndex and upperIndex in this example '2' and '3' (as vector index starts at 0)
If user enters less keyID i.e., 120001 then return no value. Similarly user enters keyID greater than last key value then return an different error code.
Basically I want to find index range of given key value effectively. I have added code which is present seems not working for above example I mentioned what is bug?
I can change logic to use STL provided algortihms. Please suggest.
How we can achive this algorithm effectively in C++? Request with sample code as function. Note here I will call function many times in my project so it has to effective.
keyID Value
120002 10
120025 20
120028 25
120039 30
120042 -
120048 40
120052 50
120112 60
120117 70
120123 70
120126 80
120130 90
I have some code here
//==========================================================================
// FindBounds
bool FindBounds(const KEY& cTarget, UINT& uLower, UINT& uUpper)
{
uLower = -1;
uUpper = -1;
// start with full range of data.
uLower = 0;
uUpper = m_uCount-1; // Here I have m_uCount as vector.size()
// narrow the bounds as much as possible.
while (uUpper - uLower > 1 && cTarget != m_pKeys[uLower])
{
// split the range in half and discard the half that the key does not belong to.
UINT uBound = uUpper - (uUpper-uLower)/2;
// keep the lower range.
if (KeyInRange(uLower, uBound, cTarget))
{
uUpper = uBound;
}
// keep the upper range.
else
{
uLower = uBound;
}
}
}
bool KeyInRange(UINT uLower, UINT uUpper, const KEY& cTarget)
{
// check if target is within range.
if (m_pKeys[uLower] <= cTarget)
{
if (m_pKeys[uUpper] > cTarget || (m_pKeys[uLower] == cTarget && m_pKeys[uLower] == m_pKeys[uUpper]))
{
return true;
}
}
// target is not within range.
return false;
}
Thanks for your time and help

There is the std::equal_range algorithm.

std::lower_bound() from STL, <algorithm> header:
http://en.cppreference.com/w/cpp/algorithm/lower_bound

1)I think if you are going to lookup some values by their keys better to choose STL container multiset, which allows key duplicates.
2) see methods lower_bound() and upper_bound() they might be applicable to that you are trying to do

Related

Removing first three elements of 2d array C++

So here's my problem.. I have a 2d array of 2 char strings.
9D 5C 6S 9D KS 4S 9D
9S
If 3 found I need to delete the first 3 based on the first char.
card
My problem is I segfault almost anything i do...
pool is the 2d vector
selection = "9S";
while(col != GameBoard::pool.size() ){
while(GameBoard::pool[col][0].at(0) == selection.at(0) || cardsRem!=0){
if(GameBoard::pool[col].size() == 1){
GameBoard::pool.erase(GameBoard::pool.begin() + col);
cardsRem--;
}
else{
GameBoard::pool[col].pop_back();
cardsRem--;
}
}
if(GameBoard::pool[col][0].at(0) != selection.at(0)){
col++;
}
}
I've tried a series of for loops etc, and no luck! Any thoughts would save my sanity!
So I've tried to pull out a code segment to replicate it. But I can't...
If I run my whole program in a loop it will eventually throw a segfault. If I run that exact code in the same circumstance it doesn't... I'm trying to figure out what I'm missing. I'll get back in if I figure out exactly where my issue is..
So in the end the issue is not my code itself, i've got memory leaks or something somewhere that are adding up to eventually crash my program... That tends to be in the same method each time I guess.
The safer and most efficient way to erase some elements from a container is to apply the erase-remove idiom.
For instance, your snippet can be rewritten as the following (which is testable here):
using card_t = std::string;
std::vector<std::vector<card_t>> decks = {
{"9D", "5C", "6S", "9D", "KS", "4S", "9D"},
{"9S"}
};
card_t selection{"9S"};
// Predicate specifing which cards should be removed
auto has_same_rank = [rank = selection.at(0)] (card_t const& card) {
return card.at(0) == rank;
};
auto & deck = decks.at(0);
// 'std::remove_if' removes all the elements satisfying the predicate from the range
// by moving the elements that are not to be removed at the beginning of the range
// and returns a past-the-end iterator for the new end of the range.
// 'std::vector::erase' removes from the vector the elements from the iterator
// returned by 'std::remove_if' up to the end iterator. Note that it invalidates
// iterators and references at or after the point of the erase, including the
// end() iterator (it's the most common cause of errors in code like OP's).
deck.erase(std::remove_if(deck.begin(), deck.end(), has_same_rank),
deck.end());
So for anyone else in the future who comes across this...
The problem is I was deleting an element in the array in a loop, with the conditional stop was it's size. The size is set before hand, and while it was accounted for in the code it still left open the possibility for while(array.size() ) which would be locked in at 8 in the loop be treated as 6 in the code.
The solution was to save the location in the vector to delete and then delete them outside of the loop. I imagine there is a better, more technical answer to this, but it works as intended now!
for (double col = 0; col < size; ++col)
{
if(GameBoard::pool[col][0].at(0) == selection.at(0)){
while(GameBoard::pool[col][0].at(0) == selection.at(0) && cardsRem !=0){
if( GameBoard::pool[col].size() > 1 ){
GameBoard::pool[col].pop_back();
cardsRem--;
}
if(GameBoard::pool[col].size() <2){
toDel.insert ( toDel.begin() , col );
//GameBoard::pool.erase(GameBoard::pool.begin() + col);
cardsRem--;
size--;
}
}
}
}
for(int i = 0; i< toDel.size(); i++){
GameBoard::pool.erase(GameBoard::pool.begin() + toDel[i]);
}

Find minimum value different than zero given some conditions

I've started learning C++ Sets and Iterators and I can't figure if I'm doing this correctly since I'm relatively new to programming.
I've created a Set of a struct with a custom comparator that puts the items in a decreasing order. Before receiving the input I don't know how many items my Set will contain. It can contain any number of items from 0 to 1000.
Here are the Setdefinitions:
typedef struct Pop {
int value_one; int node_value;
} Pop;
struct comparator {
bool operator() (const Pop& lhs, const Pop& rhs) const {
if (rhs.value_one == lhs.value_one) {
return lhs.node_value < rhs.node_value;
} else { return rhs.value_one < lhs.value_one;}
}
};
set<Pop, comparator> pop;
set<Pop>::iterator it;
And this is the algorithm. It should find a minimum value and print that value. If it does not find (the function do_some_work(...) returns 0), it should print "Zero work found!\n":
int minimum = (INT_MAX) / 2; int result;
int main(int argc, char** argv) {
//....
//After reading input and adding values to the SET gets to this part
Pop next;
Pop current;
for (it = pop.begin(); it != pop.end() && minimum != 1; it++) {
current = *it;
temp_it = it;
temp_it++;
if (temp_it != pop.end()) {
next = *temp_it;
// This function returns a integer value that can be any number from 0 to 5000.
// Besides this, it checks if the value found is less that the minimum (declared as global) and different of 0 and if so
// updates the minimum value. Even if the set as 1000 items and at the first iteration the value
// found is 1, minimum is updated with 1 and we should break out of the for loop.
result = do_some_work(current.node_value);
if (result > 0 && next.value_one < current.value_one) {
break;
}
} else {
result = do_some_work(current.node_value);
}
}
if (minimum != (INT_MAX) / 2) {
printf("%d\n", minimum);
} else {
printf("Zero work found!\n");
}
return 0;
}
Here are some possible outcomes.
If the Set is empty it should print Zero work found!
If the Set as one item and do_some_work(current.node_value) returns a value bigger than 0 it should printf("%d\n", minimum); or Zero work found! otherwise.
Imagine I have this Set (first position value_one and second position node_value:
4 2
3 6
3 7
3 8
3 10
2 34
If in the first iteration do_some_work(current.node_value) returns a value bigger than 0, since all other items value_one are smaller, it should break the loop, print the minimum and exit the program.
If in the first iteration do_some_work(current.node_value) returns 0, I advance in the Set and since there are 4 items with value_one as 3 I must analyze this 4 items because any of these can return a possible valid minimum value. If any of these updates the minimum value to 1, it should break the loop, print the minimum and exit the program.
In this case, the last item of the Set is only analysed if all other items return 0 or minimum value is set to 1.
For me this is both an algorithmic problem and a programming problem.
With this code, am I analysing all the possibilities and if minimum is 1, breaking the loop since if 1 is returned there's no need to check any other items?

Recursive Function Error

Im trying to create a recursive function that contains a vector of numbers and has a key, which is the number we are looking for in the vector.
Each time the key is found the function should display a count for how many times the key appears in the vector.
For some reason my recursive function is only returning the number 1 (disregard the 10 I was just testing something)
Here's my code:
int recursive_count(const vector<int>& vec, int key, size_t start){
if (start == vec.size())
return true;
return (vec[start] == key? 23 : key)
&& recursive_count(vec, key, (start+1));
}
int main() {
vector <int> coco;
for (int i = 0; i<10; i++) {
coco.push_back(i);
}
cout << coco.size() << endl;
int j = 6;
cout << recursive_count(coco, j, 0) << endl;
}
Not sure what you are trying to do, but as is - your function will return false (0) if and only if the input key is 0 and it is in the vector. Otherwise it will return 1.
This is because you are basically doing boolean AND operation. The operands are true for all values that are not 0, and the only way to get a 0 - is if it is in the vector - and the key is 0.
So, unless you get a false (0) along the way, the answer to the boolean formula is true, which provides the 1.
EDIT:
If you are trying to do count how many times the key is in vec - do the same thing you did in iterative approach:
Start from 0 (make stop condition return 0; instead of return true;)
Increase by 1 whenever the key is found instead of using operator&&, use the operator+.
(I did not give a direct full answer because it seems like HW, try to follow these hints, and ask if you have more questions).
To me it seems that a recursive function for that is nonsense, but anyway...
Think about the recursion concepts.
What is the break condition? That the current character being checked is not in the string anymore. You got that right.
But the recursion case is wrong. You return some kind of bool (what's with the 23 by the way?
The one recursion round needs to return 1 if the current element equals key, and 0 otherwise.
Then we only need to add up the recursion results, and we're there!
Here's the code
int recursive_count(const vector<int>& vec, int key, size_t start) {
if (start >= vec.size()) {
return 0;
} else {
return
((vec[start] == key) ? 1 : 0) +
recursive_count(vec, key, start+1);
}
}
Since this is even tail-recursion, good compilers will remove the recursion for you by the way, and turn it into its iterative counterpart...
Your recursive_count function always evaluates to a bool
You are either explicitly returning true
if (start == vec.size())
return true;
or returning a boolean compare
return (vec[start] == key? 23 : key) // this term gets evaluated
&& // the term above and below get 'anded', which returns true or false.
recursive_count(vec, key, (start+1)) // this term gets evaluated
It then gets cast to your return type ( int ), meaning you will only ever get 0 or 1 returned.
As per integral promotion rules on cppreference.com
The type bool can be converted to int with the value false becoming
​0​ and true becoming 1.
With,
if (start == vec.size())
return true;
your function with return type int returns 1

Pointer comparision issue

I'm having a problem with a pointer and can't get around it..
In a HashTable implementation, I have a list of ordered nodes in each bucket.The problem I have It's in the insert function, in the comparision to see if the next node is greater than the current node(in order to inserted in that position if it is) and keep the order.
You might find this hash implementation strange, but I need to be able to do tons of lookups(but sometimes also very few) and count the number of repetitions if It's already inserted (so I need fasts lookups, thus the Hash , I've thought about self-balanced trees as AVL or R-B trees, but I don't know them so I went with the solution I knew how to implement...are they faster for this type of problem?),but I also need to retrieve them by order when I've finished.
Before I had a simple list and I'd retrieve the array, then do a QuickSort, but I think I might be able to improve things by keeping the lists ordered.
What I have to map It's a 27 bit unsigned int(most exactly 3 9 bits numbers, but I convert them to a 27 bit number doing (Sr << 18 | Sg << 9 | Sb) making at the same time their value the hash_value. If you know a good function to map that 27 bit int to an 12-13-14 bit table let me know, I currently just do the typical mod prime solution.
This is my hash_node struct:
class hash_node {
public:
unsigned int hash_value;
int repetitions;
hash_node *next;
hash_node( unsigned int hash_val,
hash_node *nxt);
~hash_node();
};
And this is the source of the problem
void hash_table::insert(unsigned int hash_value) {
unsigned int p = hash_value % tableSize;
if (table[p]!=0) { //The bucket has some elements already
hash_node *pred; //node to keep the last valid position on the list
for (hash_node *aux=table[p]; aux!=0; aux=aux->next) {
pred = aux; //last valid position
if (aux->hash_value == hash_value ) {
//It's already inserted, so we increment it repetition counter
aux->repetitions++;
} else if (hash_value < (aux->next->hash_value) ) { //The problem
//If the next one is greater than the one to insert, we
//create a node in the middle of both.
aux->next = new hash_node(hash_value,aux->next);
colisions++;
numElem++;
}
}//We have arrive to the end od the list without luck, so we insert it after
//the last valid position
ant->next = new hash_node(hash_value,0);
colisions++;
numElem++;
}else { //bucket it's empty, insert it right away.
table[p] = new hash_node(hash_value, 0);
numElem++;
}
}
This is what gdb shows:
Program received signal SIGSEGV, Segmentation fault.
0x08050b4b in hash_table::insert (this=0x806a310, hash_value=3163181) at ht.cc:132
132 } else if (hash_value < (aux->next->hash_value) ) {
Which effectively indicates I'm comparing a memory adress with a value, right?
Hope It was clear. Thanks again!
aux->next->hash_value
There's no check whether "next" is NULL.
aux->next might be NULL at that point? I can't see where you have checked whether aux->next is NULL.

Finding a nonexisting key in a std::map

Is there a way to find a nonexisting key in a map?
I am using std::map<int,myclass>, and I want to automatically generate a key for new items. Items may be deleted from the map in different order from their insertion.
The myclass items may, or may not be identical, so they can not serve as a key by themself.
During the run time of the program, there is no limit to the number of items that are generated and deleted, so I can not use a counter as a key.
An alternative data structure that have the same functionality and performance will do.
Edit
I trying to build a container for my items - such that I can delete/modify items according to their keys, and I can iterate over the items. The key value itself means nothing to me, however, other objects will store those keys for their internal usage.
The reason I can not use incremental counter, is that during the life-span of the program they may be more than 2^32 (or theoretically 2^64) items, however item 0 may theoretically still exist even after all other items are deleted.
It would be nice to ask std::map for the lowest-value non-used key, so i can use it for new items, instead of using a vector or some other extrnal storage for non-used keys.
I'd suggest a combination of counter and queue. When you delete an item from the map, add its key to the queue. The queue then keeps track of the keys that have been deleted from the map so that they can be used again. To get a new key, you first check if the queue is empty. If it isn't, pop the top index off and use it, otherwise use the counter to get the next available key.
Let me see if I understand. What you want to do is
look for a key.
If not present, insert an element.
Items may be deleted.
Keep a counter (wait wait) and a vector. The vector will keep the ids of the deleted items.
When you are about to insert the new element,look for a key in the vector. If vector is not empty, remove the key and use it. If its empty, take one from the counter (counter++).
However, if you neveer remove items from the map, you are just stuck with a counter.
Alternative:
How about using the memory address of the element as a key ?
I would say that for general case, when key can have any type allowed by map, this is not possible. Even ability to say whether some unused key exists requires some knowledge about type.
If we consider situation with int, you can store std::set of contiguous segments of unused keys (since these segments do not overlap, natural ordering can be used - simply compare their starting points). When a new key is needed, you take the first segment, cut off first index and place the rest in the set (if the rest is not empty). When some key is released, you find whether there are neighbour segments in the set (due to set nature it's possible with O(log n) complexity) and perform merging if needed, otherwise simply put [n,n] segment into the set.
in this way you will definitely have the same order of time complexity and order of memory consumption as map has independently on requests history (because number of segments cannot be more than map.size()+1)
something like this:
class TKeyManager
{
public:
TKeyManager()
{
FreeKeys.insert(
std::make_pair(
std::numeric_limits<int>::min(),
std::numeric_limits<int>::max());
}
int AlocateKey()
{
if(FreeKeys.empty())
throw something bad;
const std::pair<int,int> freeSegment=*FreeKeys.begin();
if(freeSegment.second>freeSegment.first)
FreeKeys.insert(std::make_pair(freeSegment.first+1,freeSegment.second));
return freeSegment.first;
}
void ReleaseKey(int key)
{
std:set<std::pair<int,int>>::iterator position=FreeKeys.insert(std::make_pair(key,key)).first;
if(position!=FreeKeys.begin())
{//try to merge with left neighbour
std::set<std::pair<int,int>>::iterator left=position;
--left;
if(left->second+1==key)
{
left->second=key;
FreeKeys.erase(position);
position=left;
}
}
if(position!=--FreeKeys.end())
{//try to merge with right neighbour
std::set<std::pair<int,int>>::iterator right=position;
++right;
if(right->first==key+1)
{
position->second=right->second;
FreeKeys.erase(right);
}
}
}
private:
std::set<std::pair<int,int>> FreeKeys;
};
Is there a way to find a nonexisting
key in a map?
I'm not sure what you mean here. How can you find something that doesn't exist? Do you mean, is there a way to tell if a map does not contain a key?
If that's what you mean, you simply use the find function, and if the key doesn't exist it will return an iterator pointing to end().
if (my_map.find(555) == my_map.end()) { /* do something */ }
You go on to say...
I am using std::map, and
I want to automatically generate a key
for new items. Items may be deleted
from the map in different order from
their insertion. The myclass items may, or may not be identical, so they can not serve as a key by themself.
It's a bit unclear to me what you're trying to accomplish here. It seems your problem is that you want to store instances of myclass in a map, but since you may have duplicate values of myclass, you need some way to generate a unique key. Rather than doing that, why not just use std::multiset<myclass> and just store duplicates? When you look up a particular value of myclass, the multiset will return an iterator to all the instances of myclass which have that value. You'll just need to implement a comparison functor for myclass.
Could you please clarify why you can not use a simple incremental counter as auto-generated key? (increment on insert)? It seems that there's no problem doing that.
Consider, that you decided how to generate non-counter based keys and found that generating them in a bulk is much more effective than generating them one-by-one.
Having this generator proved to be "infinite" and "statefull" (it is your requirement), you can create a second fixed sized container with say 1000 unused keys.
Supply you new entries in map with keys from this container, and return keys back for recycling.
Set some low "threshold" to react on key container reaching low level and refill keys in bulk using "infinite" generator.
The actual posted problem still exists "how to make efficient generator based on non-counter". You may want to have a second look at the "infinity" requirement and check if say 64-bit or 128-bit counter still can satisfy your algorithms for some limited period of time like 1000 years.
use uint64_t as a key type of sequence or even if you think that it will be not enough
struct sequence_key_t {
uint64_t upper;
uint64_t lower;
operator++();
bool operator<()
};
Like:
sequence_key_t global_counter;
std::map<sequence_key_t,myclass> my_map;
my_map.insert(std::make_pair(++global_counter, myclass()));
and you will not have any problems.
Like others I am having difficulty figuring out exactly what you want. It sounds like you want to create an item if it is not found. sdt::map::operator[] ( const key_type& x ) will do this for you.
std::map<int, myclass> Map;
myclass instance1, instance2;
Map[instance1] = 5;
Map[instance2] = 6;
Is this what you are thinking of?
Going along with other answers, I'd suggest a simple counter for generating the ids. If you're worried about being perfectly correct, you could use an arbitrary precision integer for the counter, rather than a built in type. Or something like the following, which will iterate through all possible strings.
void string_increment(std::string& counter)
{
bool carry=true;
for (size_t i=0;i<counter.size();++i)
{
unsigned char original=static_cast<unsigned char>(counter[i]);
if (carry)
{
++counter[i];
}
if (original>static_cast<unsigned char>(counter[i]))
{
carry=true;
}
else
{
carry=false;
}
}
if (carry)
{
counter.push_back(0);
}
}
e.g. so that you have:
std::string counter; // empty string
string_increment(counter); // now counter=="\x00"
string_increment(counter); // now counter=="\x01"
...
string_increment(counter); // now counter=="\xFF"
string_increment(counter); // now counter=="\x00\x00"
string_increment(counter); // now counter=="\x01\x00"
...
string_increment(counter); // now counter=="\xFF\x00"
string_increment(counter); // now counter=="\x00\x01"
string_increment(counter); // now counter=="\x01\x01"
...
string_increment(counter); // now counter=="\xFF\xFF"
string_increment(counter); // now counter=="\x00\x00\x00"
string_increment(counter); // now counter=="\x01\x00\x00"
// etc..
Another option, if the working set actually in the map is small enough would be to use an incrementing key, then re-generate the keys when the counter is about to wrap. This solution would only require temporary extra storage. The hash table performance would be unchanged, and the key generation would just be an if and an increment.
The number of items in the current working set would really determine if this approach is viable or not.
I loved Jon Benedicto's and Tom's answer very much. To be fair, the other answers that only used counters may have been the starting point.
Problem with only using counters
You always have to increment higher and higher; never trying to fill the empty gaps.
Once you run out of numbers and wrap around, you have to do log(n) iterations to find unused keys.
Problem with the queue for holding used keys
It is easy to imagine lots and lots of used keys being stored in this queue.
My Improvement to queues!
Rather than storing single used keys in the queue; we store ranges of unused keys.
Interface
using Key = wchar_t; //In my case
struct Range
{
Key first;
Key last;
size_t size() { return last - first + 1; }
};
bool operator< (const Range&,const Range&);
bool operator< (const Range&,Key);
bool operator< (Key,const Range&);
struct KeyQueue__
{
public:
virtual void addKey(Key)=0;
virtual Key getUniqueKey()=0;
virtual bool shouldMorph()=0;
protected:
Key counter = 0;
friend class Morph;
};
struct KeyQueue : KeyQueue__
{
public:
void addKey(Key)override;
Key getUniqueKey()override;
bool shouldMorph()override;
private:
std::vector<Key> pool;
friend class Morph;
};
struct RangeKeyQueue : KeyQueue__
{
public:
void addKey(Key)override;
Key getUniqueKey()override;
bool shouldMorph()override;
private:
boost::container::flat_set<Range,std::less<>> pool;
friend class Morph;
};
void morph(KeyQueue__*);
struct Morph
{
static void morph(const KeyQueue &from,RangeKeyQueue &to);
static void morph(const RangeKeyQueue &from,KeyQueue &to);
};
Implementation
Note: Keys being added are assumed to be key not found in queue
// Assumes that Range is valid. first <= last
// Assumes that Ranges do not overlap
bool operator< (const Range &l,const Range &r)
{
return l.first < r.first;
}
// Assumes that Range is valid. first <= last
bool operator< (const Range &l,Key r)
{
int diff_1 = l.first - r;
int diff_2 = l.last - r;
return diff_1 < -1 && diff_2 < -1;
}
// Assumes that Range is valid. first <= last
bool operator< (Key l,const Range &r)
{
int diff = l - r.first;
return diff < -1;
}
void KeyQueue::addKey(Key key)
{
if(counter - 1 == key) counter = key;
else pool.push_back(key);
}
Key KeyQueue::getUniqueKey()
{
if(pool.empty()) return counter++;
else
{
Key key = pool.back();
pool.pop_back();
return key;
}
}
bool KeyQueue::shouldMorph()
{
return pool.size() > 10;
}
void RangeKeyQueue::addKey(Key key)
{
if(counter - 1 == key) counter = key;
else
{
auto elem = pool.find(key);
if(elem == pool.end()) pool.insert({key,key});
else // Expand existing range
{
Range &range = (Range&)*elem;
// Note at this point, key is 1 value less or greater than range
if(range.first > key) range.first = key;
else range.last = key;
}
}
}
Key RangeKeyQueue::getUniqueKey()
{
if(pool.empty()) return counter++;
else
{
Range &range = (Range&)*pool.begin();
Key key = range.first++;
if(range.first > range.last) // exhausted all keys in range
pool.erase(pool.begin());
return key;
}
}
bool RangeKeyQueue::shouldMorph()
{
return pool.size() == 0 || pool.size() == 1 && pool.begin()->size() < 4;
}
void morph(KeyQueue__ *obj)
{
if(KeyQueue *queue = dynamic_cast<KeyQueue*>(obj))
{
RangeKeyQueue *new_queue = new RangeKeyQueue();
Morph::morph(*queue,*new_queue);
obj = new_queue;
}
else if(RangeKeyQueue *queue = dynamic_cast<RangeKeyQueue*>(obj))
{
KeyQueue *new_queue = new KeyQueue();
Morph::morph(*queue,*new_queue);
obj = new_queue;
}
}
void Morph::morph(const KeyQueue &from,RangeKeyQueue &to)
{
to.counter = from.counter;
for(Key key : from.pool) to.addKey(key);
}
void Morph::morph(const RangeKeyQueue &from,KeyQueue &to)
{
to.counter = from.counter;
for(Range range : from.pool)
while(range.first <= range.last)
to.addKey(range.first++);
}
Usage:
int main()
{
std::vector<Key> keys;
KeyQueue__ *keyQueue = new KeyQueue();
srand(time(NULL));
bool insertKey = true;
for(int i=0; i < 1000; ++i)
{
if(insertKey)
{
Key key = keyQueue->getUniqueKey();
keys.push_back(key);
}
else
{
int index = rand() % keys.size();
Key key = keys[index];
keys.erase(keys.begin()+index);
keyQueue->addKey(key);
}
if(keyQueue->shouldMorph())
{
morph(keyQueue);
}
insertKey = rand() % 3; // more chances of insert
}
}