Suitable storage method for huge amount of data - mapreduce

what kind of storage do you recommend for very huge amount of data? (≈ 50 milions records per day). Is this proper situation for systems like Hadoop or RDBMS is still sufficient for this purpose?

With the amount of data you are describing, you might indeed be pushing into the Big Data terrirtory. Based on the amount of the details you provided, I would suggest loading raw data into Hadoop cluster, running map/reduce jobs to parse it and to load into date-based directories. You can then define an external Hive table partitioned by date (daily? weekly?) mapped to the results of your map/reduce jobs.
Next step would depend on the complexity of your reports and needed response time. If you can easily express them in SQL, you can just run queries on your Hive table. If they are more elaborated, you might have to write custom map/reduce jobs. Many suggest Pig for it, but I am personally more comforatble with the straight Java.
If you don't care about the response time of the reports, you can run them on-demand. If you care, but open to wait for the results for, say, tens of seconds or a few minutes, you can store report results also in Hive. If you want your reports to show up fast, say, in web-based or mobile UI, you might want to store the report data in a relational database.

Related

Schema design for Google BigTable

In my project, Im using Google BigQuery that holds loots of data.
The BigQuery columns are:
account_id, session_id, transaction_id, username, event, timestamp.
In my dashboard, Im fetching the entire data based on time stamp (last 30 days).
Since I have very large data, the performance are pretty slow (13 sec to fetch the last 30 days data).
Lately, I try to look on Google BigTable and I saw they have an option to get data based on time.
In my tests, the performance of the BigTable are slower from the BigQuery.
Is any suggested schema that can improve the performance with BigTable?
This is example to my schema in BigTable:
const row = {
key: `transactions#${timestamp_micros}`,
data: {
identifiers: {
session_id: `session_id-${startCounter}`,
account_id: `acount-${startCounter}`,
device_id: `device-${startCounter}`,
transaction_id: `transaction_id-${startCounter}`,
runtime_id: 'AQW+2Xx5AQAAstvxskK0c8NTk+vP5eBM',
page_id: `page_id-${startCounter}`,
start_time: timestamp,
},
},
};
Is anyone can suggest a better schema that will help me to fetch the data (based on timestamp range) with the best performance?
A good schema results in excellent performance and scalability, and a bad schema can lead to a poorly performing system. However, no single schema design provides the best fit for all use cases and hence your question is opinionated and will vary from person to person. The patterns described on this page provide a starting point to decide a schema for BigTable. Your unique dataset and the queries you plan to use are the most important things to consider as you design a schema for your time-series data.
As you've discovered from our docs, the row key format is the biggest decision you make when using Bigtable, as it determines which access patterns can be performed efficiently. Having row key transaction_id#reverse_timestampgets your data sorted from the latest timestamp. This could avoid hotspotting issues, which is one of the big reasons for slow query results.
However, you're also coming from a SQL architecture, which isn't always a good fit for Bigtable's schema/query model. So here are some questions to get you started:
Are you planning to perform lots of ad hoc queries like "SELECT A
FROM Bigtable WHERE B=x"? If so, strongly prefer BigQuery. Bigtable
can't support this query without performing a full table scan. (hence
it is slower than BigQuery)
Will you require multi-row OLTP transactions? Again, use BigQuery, as
Bigtable only supports transactions within a single row.
Are you streaming in new events at high QPS? Bigtable is much better
for these sorts of high-volume updates. Do you want to perform any
sort of large-scale complex transformations on the data? Again,
Bigtable is likely better here, as you can stream data out and back
in faster.
You can also combine the two services if you need some combination of these features. For example, say you're receiving high-volume updates all the time, but want to be able to perform complex ad hoc queries. If you're alright working with a slightly delayed version of the data, it could make sense to write the updates to Bigtable, then periodically scan the table using Dataflow and export a post-processed version of the latest events into BigQuery. GCP also allows BigQuery to serve queries directly from Bigtable in a some regions: https://cloud.google.com/bigquery/external-data-bigtable
My personal choice for your use case is Big Query. You can leverage the pruning in Big Query where BigQuery scans the partitions that match the filter and skip the remaining partitions. Not only does it make it easier to manage and query your data. By dividing a large table into smaller partitions, you can improve query performance, and you can control costs by reducing the number of bytes read by a query. You can use time-unit column partitioning or ingestion time partitioning. When you create a table partitioned by ingestion time, BigQuery automatically assigns rows to partitions based on the time when BigQuery ingests the data. You can choose hourly, daily, monthly, or yearly granularity for the partitions.
So your query for fetching the entire data based on timestamp (last 30 days) should be something like this in BigQuery (when used partitioning):
SELECT
column
FROM
dataset.table
WHERE
_PARTITIONTIME BETWEEN TIMESTAMP('2016-01-01') AND TIMESTAMP('2016-01-02')

Use Case for Amazon Athena

We are building an web application to allow customers insight into their activity based on events currently streaming into ElasticSearch. A customer is an organisation sending messages to people.
A concern has been raised that a requirement to host this data for three years infers a very large amount of storage and high cost of implementation given Elasticsearch.
An alternative is to process each day's data into a report CSV stored in S3 and use something like Amazon Athena to perform the queries. Is Athena something that our application can send ad-hoc queries to in response to a web browser request? It is unlikely to generate a large volume of requests all the time, but I'm uncertain what the latency could be like.
Yes, Athena would be a possible solution to this use case – and done right it could also be fairly cheap.
Athena is not a low latency query engine, but for reporting purposes it's usually good enough. There's no way to say for sure without knowing more, but done right we're talking low single digit seconds.
You can approach this in different ways, either you do as you say and generate a CSV every day, store these for as long as you need, and run queries against them as needed. From your description it sounds like these CSVs would already be aggregates, and I assume they would be significantly less than a megabyte per customer per day. If you partition by customer and month you should be able to run queries for arbitrary time periods in seconds.
Another approach would be to store all your data on S3 and run queries on the full data set. As you stream data into ElasticSearch, stream it to S3 too. Depending on how you do that you probably need some ETL in the form of Lambda functions that partitions the data per customer and time (day or month depending on the volume). You can then run Athena queries on the full historical data set. The downside would be slower queries (double digit seconds for most queries, but I don't know your data volumes), but the upside would be full flexibility on what you can query.
With more details about the particulars of the use case I could help you with the details.
Athena is serverless. You can quickly query your data without having to set up and manage any servers or data warehouses. Just point to your data in Amazon S3, define the schema, and start querying using the built-in query editor.
Amazon Athena automatically executes queries in parallel, so most results come back within seconds/mins.

AWS Athena too slow for an api?

The plan was to get data from aws data exchange, move it to an s3 bucket then query it by aws athena for a data api. Everything works, just feels a bit slow.
No matter the dataset nor the query I can't get below 2 second in athena response time. Which is a lot for an API. I checked the best practices but seems that those are also above 2 sec.
So my question:
Is 2 sec the minimal response time for athena?
If so then I have to switch to postgres.
Athena is indeed not a low latency data store. You will very rarely see response times below one second, and often they will be considerably longer. In the general case Athena is not suitable as a backend for an API, but of course that depends on what kind of an API it is. If it's some kind of analytics service, perhaps users don't expect sub second response times? I have built APIs that use Athena that work really well, but those were services where response times in seconds were expected (and even considered fast), and I got help from the Athena team to tune our account to our workload.
To understand why Athena is "slow", we can dissect what happens when you submit a query to Athena:
Your code starts a query by using the StartQueryExecution API call
The Athena service receives the query, and puts it on a queue. If you're unlucky your query will sit in the queue for a while
When there is available capacity the Athena service takes your query from the queue and makes a query plan
The query plan requires loading table metadata from the Glue catalog, including the list of partitions, for all tables included in the query
Athena also lists all the locations on S3 it got from the tables and partitions to produce a full list of files that will be processed
The plan is then executed in parallel, and depending on its complexity, in multiple steps
The results of the parallel executions are combined and a result is serialized as CSV and written to S3
Meanwhile your code checks if the query has completed using the GetQueryExecution API call, until it gets a response that says that the execution has succeeded, failed, or been cancelled
If the execution succeeded your code uses the GetQueryResults API call to retrieve the first page of results
To respond to that API call, Athena reads the result CSV from S3, deserializes it, and serializes it as JSON for the API response
If there are more than 1000 rows the last steps will be repeated
A Presto expert could probably give more detail about steps 4-6, even though they are probably a bit modified in Athena's version of Presto. The details aren't very important for this discussion though.
If you run a query over a lot of data, tens of gigabytes or more, the total execution time will be dominated by step 6. If the result is also big, 7 will be a factor.
If your data set is small, and/or involves thousands of files on S3, then 4-5 will instead dominate.
Here are some reasons why Athena queries can never be fast, even if they wouldn't touch S3 (for example SELECT NOW()):
There will at least be three API calls before you get the response, a StartQueryExecution, a GetQueryExecution, and a GetQueryResults, just their round trip time (RTT) would add up to more than 100ms.
You will most likely have to call GetQueryExecution multiple times, and the delay between calls will puts a bound on how quickly you can discover that the query has succeeded, e.g. if you call it every 100ms you will on average add half of 100ms + RTT to the total time because on average you'll miss the actual completion time by this much.
Athena will writes the results to S3 before it marks the execution as succeeded, and since it produces a single CSV file this is not done in parallel. A big response takes time to write.
The GetQueryResults must read the CSV from S3, parse it and serialize it as JSON. Subsequent pages must skip ahead in the CSV, and may be even slower.
Athena is a multi tenant service, all customers are competing for resources, and your queries will get queued when there aren't enough resources available.
If you want to know what affects the performance of your queries you can use the ListQueryExecutions API call to list recent query execution IDs (I think you can go back 90 days at the most), and then use GetQueryExecution to get query statistics (see the documentation for QueryExecution.Statistics for what each property means). With this information you can figure out if your slow queries are because of queueing, execution, or the overhead of making the API calls (if it's not the first two, it's likely the last).
There are some things you can do to cut some of the delays, but these tips are unlikely to get you down to sub second latencies:
If you query a lot of data use file formats that are optimized for that kind of thing, Parquet is almost always the answer – and also make sure your file sizes are optimal, around 100 MB.
Avoid lots of files, and avoid deep hierarchies. Ideally have just one or a few files per partition, and don't organize files in "subdirectories" (S3 prefixes with slashes) except for those corresponding to partitions.
Avoid running queries at the top of the hour, this is when everyone else's scheduled jobs run, there's significant contention for resources the first minutes of every hour.
Skip GetQueryExecution, download the CSV from S3 directly. The GetQueryExecution call is convenient if you want to know the data types of the columns, but if you already know, or don't care, reading the data directly can save you some precious tens of milliseconds. If you need the column data types you can get the ….csv.metadata file that is written alongside the result CSV, it's undocumented Protobuf data, see here and here for more information.
Ask the Athena service team to tune your account. This might not be something you can get without higher tiers of support, I don't really know the politics of this and you need to start by talking to your account manager.

AWS Athena - Query over large external table generated from Glue crawler?

I have a large set of history log files on aws s3 that sum billions of lines,
I used a glue crawler with a grok deserializer to generate an external table on Athena, but querying it has proven to be unfeasible.
My queries have timed out and I am trying to find another way of handling this data.
From what I understand, through Athena, external tables are not actual database tables, but rather, representations of the data in the files, and queries are run over the files themselves, not the database tables.
How can I turn this large dataset into a query friendly structure?
Edit 1: For clarification, I am not interested in reshaping the hereon log files, those are taken care of. Rather, I want a way to work with the current file base I have on s3. I need to query these old logs and at its current state it's impossible.
I am looking for a way to either convert these files into an optimal format or to take advantage of the current external table to make my queries.
Right now, by default of the crawler, the external tables are only partitined by day and instance, my grok pattern explodes the formatted logs into a couple more columns that I would love to repartition on, if possible, which I believe would make my queries easier to run.
Your where condition should be on partitions (at-least one condition). By sending support ticket, you may increase athena timeout. Alternatively, you may use Redshift Spectrum
But you may seriously thing to optimize query. Athena query timeout is 30min. It means your query ran for 30mins before timed out.
By default athena times out after 30 minutes. This timeout period can be increased but raising a support ticket with AWS team. However, you should first optimize your data and query as 30 minutes is good time for executing most of the queries.
Here are few tips to optimize the data that will give major boost to athena performance:
Use columnar formats like orc/parquet with compression to store your data.
Partition your data. In your case you can partition your logs based on year -> month -> day.
Create larger and lesser number of files per partition instead of small and more number of files.
The following AWS article gives detailed information for performance tuning in amazon athena
Top 10 performance tuning tips for amazon-athena

Is AWS Glue + Athena/Hive right choice to replace complex SQL queries?

I have been using AWS Athena to query analytics data stored on S3 across several tables. Over a period of time I have come up with 2-3 complex SQL queries (involving several joins) for pulling relevant data. Since, Athena is for ad-hoc queries (and not predefined queries), besides prohibitive costs for processing several TB and 30 minute timeout, I am looking for alternatives.
Two alternatives that I can think of are:
Use Presto based EMR cluster and run existing query. It removes the 30 minute limit and (might) reduce costs ($5/TB). However, the cons are reprocessing the same data on successive runs.
Do ETL (such as through AWS Glue) and denormalise data. This should reduce repeated joins, as only incremental data is processed. Subsequently query the flattened data with some SQL interface - Athena/Hive. However, I am not sure if denormalisation is a good idea, besides the cost of storing redundant (huge) data.
Which of these is a better choice or is there a better standard technique for this issue?
I think it's best to do 2 (denormalization) and then 1 (run Presto over the optimized data layout).
Also, Presto with Cost-Based Optimizer might be worth a look: https://www.starburstdata.com/technical-blog/starburst-presto-on-aws-18x-faster-than-emr/
Denormalization of the Data depends on your use case but mostly preferred for s3/hdfs structures. you can follow this link for better Athena storing and performance:
https://aws.amazon.com/blogs/big-data/top-10-performance-tuning-tips-for-amazon-athena/