DebugView makes my application crash - c++

I have an application done in C++ with Visual Studio 2010 and it is firing a lot of debug info with OutputDebugStringW (about 50 per seconds which is obviously a lot).
If I open close DebugView 3 ou 4 times then my application gets unstable and either crashes or behaves erratically. I've tried the same with another application firing the same amount of debug prints (also in C++ done with VS 2010) and I experienced the same behavior, same thing if I try on another computer. Both computers are running Windows 7 32bits.
The length of those prints is controlled to be not more than 512 characters so I don't think there is a buffer overrun (OutputDebugStringW seems limitated to 4kb strings).
I've tried with Hoo Win Tail (which is a software similar to DebugView) and the problem doesn't occur.
Does anybody already experienced this problem?
Best regards,
Jet

I would assume you have a (subtle) race condition in your application that only exposes itself when your program runs at different "speeds".
DebugView will make your app run slower and so introduces different timings. That other tools, which also capture debug output, do not exhibit this behavior in your app, could be related to the fact that they introduce a somehow different (faster/slower) timing.

You could try DebugView++ (https://github.com/djeedjay/DebugViewPP/) it introduces near to no delay into the traced application.

Related

Why does my program run faster on first launch than on next launches?

I have been working for 2.5 years on a personal flight sim project on my leisure time, written in C++ and using Opengl on a windows 7 PC.
I recently had to move to windows 10. Hardware is exactly the same. I reinstalled Code::blocks.
It turns out that on first launch of my project after the system start, performance is OK, similar to what I used to see with windows 7. But, the second, third, and all next launches give me lower performance, with significant less fluidity in frame rate compared to the first run, detectable by eye. This never happened with windows 7.
Any time I start my system, first run is fast, next ones are slower.
I had a look at the task manager while doing some runs. The first run is handled by one of the 4 cores of my CPU (iCore5-6500) at approximately 85%. For the next runs, the load is spread accross the 4 cores. During those slower runs on 4 cores, I tried to modify the affinity and direct my program to only one core without significant improvement in performance. The selected core was working at full load, though.
My C++ code doesn't explicitly use any thread function at this stage. From my modest programmer's point of view, there is only one main thread run in the main(). On the task manager, I can see that some 10 to 14 threads are alive when my program runs. I guess (wrongly?) that they are implicitly created by the use of joysticks, track ir or other communication task with GPU...
Could it come from memory not being correctly freed when my program stops? I thought windows would free it properly, even if I forgot some 'delete' after using 'new'.
Has anyone encountered a similar situation? Any explanation coming to your minds?
Any suggestion to better understand these facts? Obviously, my ultimate goal is to have a consistent performance level whatever the number of launches.
trying to upload screenshots of second run as viewed by task manager:
trying to upload screenshots of first run as viewed by task manager:
Well I got a problems when switching to win10 for clients at my work too here few I encountered all because Windows10 has changed up scheduling of processes creating a lot of issues like:
older windowses blockless thread synchronizations techniques not working anymore
well placed Sleep() helps sometimes. Btw. similar problems was encountered when switching from w2k to wxp.
huge slowdowns and frequent freezes for few seconds on older single threaded apps
usually setting affinity to single core solves this. You can do this also in task manager just to check and if helps then you can do this in code too. Here an example on how to do it with winapi:
Cache size estimation on your system?
messed up drivers timings causing zombies processes even total freeze and or BSOD
I deal with USB in my work and its a nightmare sometimes on win10. On top of all this Win10 tends to enforce wrong drivers on devices (like gfx cards, custom USB systems etc ...)
auto freeze close app if it does not respond the wndproc in time
In Windows10 the timeout is much much smaller than in older versions. If the case You can try running in compatibility mode (set in icon properties on desktop) for older windows (however does not work for #1,#2), or change the apps code to speed up response. For example in VCL you can call Process Messages from inside of blocking code to remedy this... Or you can use threads for the heavy lifting ... just be careful with rendering and using winapi as accessing some winapi (any window/visual related stuff) functions from outside main thread causes havoc ...
On top of all this old IDEs (especially for MCUs) don't work properly anymore and new ones are usually much worse (or unusable because of lack of functionality that was present in older versions) to work with so I stayed faith full to Windows7 for developer purposes.
If none of above helps then try to log the times some of your task did need ... it might show you which part of code is the problem. I usually do this using timing graph like this:
both x,y axises are time and each task has its own color and row in graph. the graph is scrolling in time (to the left side in my case) and has changeable time scale. The numbers are showing actual and max (or sliding avg) value ...
This way I can see if some task is not taking too much time or even overlaps its next execution, peaks are also nicely visible and all runs during runtime without any debug tools which might change the behavior of execution.

Why the installed version of the program runs different from the one in debug mode?

I created a program that sends a bunch of text in to the COM port on the speed 9600. In debug mode the program sends all the data and than the COM port is closed. Bit if I create a installer project and than install it on the same machine it doesn't send the last symbols. It closes the port earlier than all data is transmitted. So my question is: Is the debug exe file slower or is it somehow slowed down by the IDE (Visual Studio)?
Also adding a Sleep(100); between the last transition command and the port closing line the problem disappeared.
Your observations correspond with a program written incorrectly, showing signs of a bug that is currently only detectable with a release build.
Release builds tend to run faster, as they are created at an enhanced optimisation level and with various debugging utilities turned off. They are designed for maximum production performance at the expense of development-time debuggability. Creating an installation package evidently created a release build (which makes sense).
This increased performance in turn affects the timing of your program. If you were accidentally relying on there being a long duration before the port was closed, giving your program enough time to transmit all its data only by chance, then when this process speeds up your bug becomes observable. There is no longer enough time for the data to get through. Adding a Sleep simulates the slower execution of the debug build, thus almost certainly confirming the existence of a timing bug.
This is good news! You have strong evidence of where the bug is and the form it takes. Now all you have to do is fix it!

Visual Studio - Program runs faster when profiling

I have been doing some profiling of a physics application I wrote, and I've noticed when I profile it, it runs faster and perhaps smoother than without the profiler. Note that I am NOT running the program in the debug configuration or with the debugger attached.
I measured the difference, and I found program runs ~50% faster under the profiler. I don't consider this a duplicate because the other question doesn't make it clear whether he/she was running it with the debugger attached, and the top answer assumes that's the case (And the 20x speedup strongly indicates it would be the correct answer in most cases).
Another answer suggests a "heisenburg" bug, but that's kind of a catchall hypothesis (I'm still going to investigate down this line).
Is it possible that Visual Studio does something that prevents other applications from interfering with my application's compute or memory resources (in order to get a "fairer" result)?
Visual Studio's "CPU Usage" profiler appears to disregard laptop power usage settings, so if you run an application on a laptop that is trying to conserve battery power, it will run slower than if you run the profiler on it.
I discovered this when I got home from work- I noticed the speed difference had disappeared. On a hunch, I unplugged my laptop and tried the test several more times. The speed difference returned. What's more, under the profiler, the application runs at about the same speed plugged in or not.
I was not able to find any sources on this, but I'll be happy to edit them in if someone can find some.
If you use threading in your code, this can be caused due to the System Timer Resolution in Windows.
Default windows timer resolution is 15.6ms
When you are running the profiler, this is reduced to 1ms and your program run fast.
Checkout this answer

Bizarre behavior with Visual Studio's debugger; "The network location cannot be reached" (ERROR_NETWORK_UNREACHABLE)

I've experienced this with every version of Visual Studio starting from 2012 (2012, 2013, 2015 Preview), on multiple computers and multiple projects, but I haven't figured out how to fix it:
Whenever I'm debugging a 64-bit(?) C++ console program, after a few minutes and seemingly completely randomly (when I'm not clicking or typing anything), the console window for the program spontaneously closes and I can no longer debug or step through the program with Visual Studio. When I press Stop and attempt to restart debugging, I usually get ERROR_NETWORK_UNREACHABLE:
// MessageId: ERROR_NETWORK_UNREACHABLE
// MessageText:
// The network location cannot be reached. For information about network troubleshooting, see Windows Help.
#define ERROR_NETWORK_UNREACHABLE 1231L
If I try to attach to the process manually I get the error:
Unable to attach to the process.
The only fix I've found for this is to restart Visual Studio. I can't find any other way to fix it, and I've tried running Process Monitor but haven't found anything.
What causes this problem and how can I fix it?
(?) Upon further checking it seems that this only happens in 64-bit mode, but I'm not 100% sure.
Ok, this is just so wrong
I also have issues with this bug, and in my case it occurred every other debug session. Which meant debug -> stop -> debug -> bug -> restart visual studio -> go to start (repeat every minute during the whole day).
Needless to say I was driven to find a solution. So yesterday I tried procmon, spend hours looking at API monitor differences, looked at plugins, netstat, etc, etc, etc. And found nothing. I gave up.
Today
Until today.
To track down a stupid bug in my program today, I launched appverifier. For my application, I ran the 'basics' tests and clicked save. After a few hours this led me to the bug in my program, which was something like this (extremely simplified version):
void* dst = _aligned_malloc(4096, 32);
memcpy(dst, src, 8192);
Obviously this is a bug and obviously it needed fixing. I noticed the error after putting a breakpoint on the memcpy line, which was not executed.
After a stop and 'debug' again I was surprised to find that I could actually debug the program for the second time. And now, several hours later, this annoying bug here hasn't re-emerged.
So what appears to be going on
So... apparently data from my program is bleeding through into the data or execution space of the debugger, which in turn appears to generate the bug.
I see you thinking: No, this shouldn't happen... you're right; but apparently it does.
So how to fix it? Basically fixing your program (more particular: heap corruption issues) seems to make the VS debugger bug go away. Using appverifier.exe (It's in Debugging tools for Windows) will give you a head start.
Why this works
Since VS2012, VC++ uses a different way to manage the heap. Hans Passant explains it here: Does msvcrt uses a different heap for allocations since (vs2012/2010/2013) .
What basically happens is that heap corruption will break your debugger. The AppVerifier basic settings will ensure that a breakpoint is triggered just before the application does something to corrupt the heap.
So, what happens now is that before the process will break the heap, a breakpoint will trigger instead, which usually means you will terminate the process. The net effect is that the heap will still be in-tact before you terminate your program, which means that your debugger will still function.
"Test"
Before using appverifier -- bug triggered every 2 minutes
While using appverifier -- VS debugger has been stable for 5 days (and counting)
This is an environmental problem of course. Always hard to troubleshoot, SysInternals' utilities like Process Monitor and Process Explorer are your primary weapons of choice. Some non-intuitive ways that a network error can be generated while debugging:
Starting with VS2012, the C runtime library had a pretty drastic modification that can cause very hard to diagnose mis-behavior if your program corrupts the heap. Much like #atlaste describes. Since time memorial, the CRT always created its own heap, underlying call was HeapCreate(). No more, it now uses GetProcessHeap(). This is very convenient, much easier now to deal with DLLs that were built with /MT. But with a pretty sharp edge, you can now easily corrupt the memory owned by Microsoft code. Not strongly indicated if you can't reattach a 64-bit program, you'd have to kill msvsmon.exe to clear up the corruption.
The Microsoft Symbol Server supplies PDBs for Microsoft executables. They normally have their source+line-number info stripped, but not all of them. Notably not for the CRT for example. Those PDBs were built on a build server owned by DevDiv in Redmond that had the source code on the F: drive. A few around that were built from the E: drive, Patterns+Practices uses that (unlikely in a C++ program). Your debugger will go look there to try to find source code. That usually ends well, it gives up quickly, but not if your machine uses those drive letters as well. Diagnose by clearing the symbol cache and disabling the symbol server with Tools + Options, Debugging, Symbols.
The winapi suffers from two nasty viral infections it inherited from another OS that add global state to any process. The PATH environmental variable and the default working directory. Use Control Panel + System + Advanced + Environment to have a look at PATH, copy/paste the content of the intentionally small textboxes into a text editor. Make sure it is squeaky clean, some paralysis at the usual mess is normal btw. Take no prisoners. Having trouble with the default directory is much harder to troubleshoot. Both should pop out when you use Process Monitor.
No slamdunk explanations, it is a tough problem, but dark corners you can look in.
I have the same problem. Thought it was related to 64 bit console apps, where it is very easily triggered with almost any debug session. But, it also happens on 64 bit windows apps too. Now I am seeing it on 32 bit windows apps. I am running Windows 8.1 pro on a single desktop with the latest version of vs 2013 and no remote debugging. My (added) extensions are Visual Assist, Advanced Installer, ClangFormat, Code Alignment, Code Compare, Duplicate Selection, Productivity Power Tools 2013, and Visual SVN.
I discovered that the "Visual Studio 2013\Settings\CurrentSettings.vssettings" file gets corrupted. You can delete this file and recreate it by restarting VS or you can try to edit the XML. I then keep a copy of a good settings file that I use to replace when it gets corrupted again.
In my case, the corrupted line begins with
</ToolsOptionsSubCategory><ToolsOptionsSubCategory name="XAML" RegisteredName="XAML"
... and it is extremely long (I think this is why it is prone to corruption).
I just disabled in the Menu
Tools > Options
Debugging > Edit and Continue
Native-only options > Enable native Edit and Continue
and now it does not give the that stupid error which was preventing the starting of the debuggee application.
I also had the same problem with VS2015. It was so frustrating that a simple Hello World program gave this error when I ran debugger for the second time. Tried uninstall and reinstall and didn't work.
Finally, the solution mentioned in https://social.msdn.microsoft.com/Forums/vstudio/en-US/8dce0952-234f-4c18-a71a-1d614b44f256/visual-studios-2012-cannot-findlaunch-project-exe?forum=vsdebug
worked. Reset all visual studio settings using Tools->Import and Export settings. Now the issue is not occurring.

Works when run from Visual C++ but sometimes not standalone

The actual question: what are the differences between running in Visual C++ 2010 (both release and debug mode) and standalone, excluding anything that couldn't cause the problem stated at the bottom of this post?
I have a very specific problem with my program, so I am not going to post the code. If you would like to know details of the problem to gain some understanding, I post them at the bottom. Instead, I ask: what are the differences in running in visual c++ and standalone?
I am using Visual C++ 2010, and my program is using SFML 2.0. It runs fine in studio (I am calling it studio because it is easier to type), but when run standalone on some computers only a bug will occur within the program, to do with movement being delayed but other parts not. I cannot find any links between the computer specs of the users who test it and whether they work or not.
All dlls and such are included (at least, I think they are - the program runs fine, as detailed at the bottom - maybe some users have some framework installed?). On my computer, it works all the time in studio but not standalone. On my netbook, it works, on my older computer, it doesn't. The only project settings I changed with vc++ directories and linker settings.
Problem details:
All the sounds sound slightly different and there is a possible high pitched background noise. Character movement, enemy movement and space bar delay which is supposed to be 0.5 seconds is increased to about 5 seconds but "generating pixels" (an aspect in the game with the arrow keys isn't.
I'm stressing again that it only happens on SOME COMPUTERS, mine included, but always works when run within studio. A number of people have tested the game, and some reported the problem and others different.
[NOT THE MAIN POINT OF THE QUESTION BUT HERE IS AN EXTRA BIT: If you are so willing to help me that you wish to look through the entire source code, it's here: http://dl.dropbox.com/u/53835113/EVERYTHING.zip [note: ignore the massive amount of bugs and memory leaks other than the problem described :P]]
EDIT: THE POINT ISN'T THAT I WANT MY PROGRAM DEBUGGED! That is an optional extra. The question: what are the differences in running in visual c++ and standalone?
More edits: Found that the problem is due to the frame time not being correct. Not sure if this provides some insight.
Thanks to anyone who tries to help me!
GetFrameTime() in SFML was removed in a recent version because it returns the time since last frame rather than the time since last update. As a result, the it may return 0.