Why is triangle law so important in Data Mining - data-mining

I am interested in knowing why triangle law is so important for a better data mining.As far as I know the triangle law helps us to define patterns and form clusters based on the distances between different objects.Does anyone have any other inputs for triangle law?

It is actually not that important. In data mining, we cannot generally assume to have a proper "mathematical" distance function. As soon as we allow duplicates, we already lose one of the key axioms - we can have two different objects with the distance 0. (And in classification, they may even have different classes in the worst case).
However, the triangle inequality can allow us to prune the search space. If we have a distance function that satisfies triangle inequality and use an appropriate index, we can skip a lot of computations, thus making the algorithm faster.
Note that a lot of research and implementations do not so much care about this kind of optimization. Many data miners working with R like building a distance matrix (which is in O(n^2)!) and then try to do as much as possible with matrix operations, because that is simple to program and R is quite fast at this kind of operations (using a highly optimized C code, instead of interpreted R code). But if you need to go beyond this, a key ingredient for performance is to exploit triangle inequality where possible.

Related

Integrallity in convex hull of a linear programming

How is it possible to formulate the convex hull of a linear programming (LP) problem to be integral? Are there any general techniques to perform this?
In the sense of a formulation, a linear program yields a polyhedron with (in general) fractional extreme points. If you want to solve exactly this problem, there is nothing to change /manipulate at the polyhedron.
If you have a (mixed) integer linear program (MIP), you may be interested in the description of the convex hull of its integer points. In general, this can be used for a fast solution process, since you can solve its linear relaxation without performing a branch and bound process afterwards.
This means, the linear relaxation of the MIP gives a polyhedron which contains this convex hull - and which itself needs not have integer extreme points. In many cases, you want to tighten this formulation towards the convex hull of the integer points, which is done by the usual solvers (e.g. by adding inequalities).
The aim is always to obtain a formulation of said convex hull. However, finding this formulation is generally NP-hard (so there are no known general techniques to obtain it easily). Especially this means, that the size of such a formulation (i.e., the amount of inequalities) can be exponential.
The are algorithms to compute convex hulls of integer points (or from general polyhedrons), but they are not simple and not "fast". Software, which can help you there is probably Porta or Polymake.
There are properties describing when polyhedrons/formulations are integer. E.g. one of these goes by the name of total (dual) unimodularity. Formulating your problem in such a way or identifying this property is not easy and I am not aware of any structural approaches for doing so.
I hope this helps :)
Kind regards,
Martin
To add a bit to Martin answer above (I think this is too long for a comment):
There is a general procedure that I know of, called Chvátal-Gomorry procedure, which allow to ultimately describe the convex hull by adding Gomorry cuts. This is very interesting theoretically; however, there is a well-known example where this procedure takes n step (a parameter in the LP) for a problem with two variables and two constraints, i.e. the number of cuts added cannot be bounded by the size of the problem.
Totally unimodular matrix are common in problems arising in graph theory, but it is certainly not a "general" method: you can convince yourself just by the definition that the coefficient of the A matrix must be 0, 1 or -1 in a TU matrix, which is usually not the case in a ILP of course.
Of course, since solving an LP is polynomial and solving an ILP is NP-complete, one cannot expect that there is a general efficient method to do what you expect, since that would almost reduce ILP to LP!
But if you are studiying a problem in particular, especially if it has a simple structure, it could be one of the "special cases" where one of the two methods above are effective.
I can provide further references at the end of the week if you are interested.

Nearest neighbour search on graphics hardware

Given a huge collection of points (float64) in 2d space...
Is there a way to determine the nearest neighbour using a feature of OpenGL or DirectX?
I've implemented a kd-tree, which is still not fast enough.
A kd-tree should work just fine. But here's some hints.
I implemented a kd-tree once for a million point data set once. Here's what I learned out of it:
Did you try profiling your code? You might find that there are easy optimizations to make such as common helper functions needing to be forced inline.
Did you actually test your code to validate that it was culling out tree branches for partitions that are easily identified as "too far away". If you aren't careful, you can easily have a bug that does needless distance computations on points too far away.
Easiest thing: Where comparing linear distance between points, you don't need to take the SQRT of (x2-x1)*(y2-y1).
Most of the time spent in my code was just building the tree from the original data set, including multiple full sorts on each iteration deciding which axis was the best to partition on. An easier algorithm would be to just alternate between partitioning on the x and y axis for each tree branch and to cache the sorting order for each axis. It may not build the most optimal search tree, but the overall savings can be enormous.

Assurance of ICP, internal Metrics

So I have an iterative closest point (ICP) algorithm that has been written and will fit a model to a point cloud. As a quick tutorial for those not in the know ICP is a simple algorithm that fits points to a model ultimately providing a homogeneous transform matrix between the model and points.
Here is a quick picture tutorial.
Step 1. Find the closest point in the model set to your data set:
Step 2: Using a bunch of fun maths (sometimes based on gradiant descent or SVD) pull the clouds closer together and repeat untill a pose is formed:
![Figure 2][2]
Now that bit is simple and working, what i would like help with is:
How do I tell if the pose that I have is a good one?
So currently I have two ideas, but they are kind of hacky:
How many points are in the ICP Algorithm. Ie, if I am fitting to almost no points, I assume that the pose will be bad:
But what if the pose is actually good? It could be, even with few points. I dont want to reject good poses:
So what we see here is that low points can actually make a very good position if they are in the right place.
So the other metric investigated was the ratio of the supplied points to the used points. Here's an example
Now we exlude points that are too far away because they will be outliers, now this means we need a good starting position for the ICP to work, but i am ok with that. Now in the above example the assurance will say NO, this is a bad pose, and it would be right because the ratio of points vs points included is:
2/11 < SOME_THRESHOLD
So thats good, but it will fail in the case shown above where the triangle is upside down. It will say that the upside down triangle is good because all of the points are used by ICP.
You don't need to be an expert on ICP to answer this question, i am looking for good ideas. Using knowledge of the points how can we classify whether it is a good pose solution or not?
Using both of these solutions together in tandem is a good suggestion but its a pretty lame solution if you ask me, very dumb to just threshold it.
What are some good ideas for how to do this?
PS. If you want to add some code, please go for it. I am working in c++.
PPS. Someone help me with tagging this question I am not sure where it should fall.
One possible approach might be comparing poses by their shapes and their orientation.
Shapes comparison can be done with Hausdorff distance up to isometry, that is poses are of the same shape if
d(I(actual_pose), calculated_pose) < d_threshold
where d_threshold should be found from experiments. As isometric modifications of X I would consider rotations by different angles - seems to be sufficient in this case.
Is poses have the same shape, we should compare their orientation. To compare orientation we could use somewhat simplified Freksa model. For each pose we should calculate values
{x_y min, x_y max, x_z min, x_z max, y_z min, y_z max}
and then make sure that each difference between corresponding values for poses does not break another_threshold, derived from experiments as well.
Hopefully this makes some sense, or at least you can draw something useful for your purpose from this.
ICP attempts to minimize the distance between your point-cloud and a model, yes? Wouldn't it make the most sense to evaluate it based on what that distance actually is after execution?
I'm assuming it tries to minimize the sum of squared distances between each point you try to fit and the closest model point. So if you want a metric for quality, why not just normalize that sum, dividing by the number of points it's fitting. Yes, outliers will disrupt it somewhat but they're also going to disrupt your fit somewhat.
It seems like any calculation you can come up with that provides more insight than whatever ICP is minimizing would be more useful incorporated into the algorithm itself, so it can minimize that too. =)
Update
I think I didn't quite understand the algorithm. It seems that it iteratively selects a subset of points, transforms them to minimize error, and then repeats those two steps? In that case your ideal solution selects as many points as possible while keeping error as small as possible.
You said combining the two terms seemed like a weak solution, but it sounds to me like an exact description of what you want, and it captures the two major features of the algorithm (yes?). Evaluating using something like error + B * (selected / total) seems spiritually similar to how regularization is used to address the overfitting problem with gradient descent (and similar) ML algorithms. Selecting a good value for B would take some experimentation.
Looking at your examples, it seems that one of the things that determines whether the match is good or not, is the quality of the points. Could you use/calculate a weighting factor in calculating your metric?
For example, you could weight down points which are co-linear / co-planar, or spatially close, as they probably define the same feature. That would perhaps allow your upside-down triangle to be rejected (as the points are in a line, and that not a great indicator of the overall pose) but the corner-case would be ok, as they roughly define the hull.
Alternatively, maybe the weighting should be on how distributed the points are around the pose, again trying to ensure you have good coverage, rather than matching small indistinct features.

Trajectory interpolation and derivative

I'm working on the analysis of a particle's trajectory in a 2D plane. This trajectory typically consists of 5 to 50 (in rare cases more) points (discrete integer coordinates). I have already matched the points of my dataset to form a trajectory (thus I have time resolution).
I'd like to perform some analysis on the curvature of this trajectory, unfortunately the analysis framework I'm using has no support for fitting a trajectory. From what I heard one can use splines/bezier curves for getting this done but I'd like your opinion and/or suggestions what to use.
As this is only an optional part of my work I can not invest a vast amount of time for implementing a solution on my own or understanding a complex framework. The solution has to be as simple as possible.
Let me specify the features I need from a possible library:
- create trajectory from varying number of points
- as the points are discrete it should interpolate their position; no need for exact matches for all points as long as the resulting distance between trajectory and point is less than a threshold
- it is essential that the library can yield the derivative of the trajectory for any given point
- it would be beneficial if the library could report a quality level (like chiSquare for fits) of the interpolation
EDIT: After reading the comments I'd like to add some more:
It is not necessary that the trajectory exactly matches the points. The points are created from values of a pixel matrix and thus they form a discrete matrix of coordinates with a space resolution limited by the number of pixel per given distance. Therefore the points (which are placed at the center of the firing pixel) do not (exactly) match the actual trajectory of the particle. Either interpolation or fit is fine for me as long as the solution can cope with a trajectory which may/most probably will be neither bijective nor injective.
Thus most traditional fit approaches (like fitting with polynomials or exponential functions using a least squares fit) can't fulfil my criterias.
Additionaly all traditional fit approaches I have tried yield a function which seems to describe the trajectory quite well but when looking at their first derivative (or at higher resolution) one can find numerous "micro-oscillations" which (from my interpretation) are a result of fitting non-straight functions to (nearly) straight parts of the trajectory.
Edit2: There has been some discussion in the comments, what those trajectories may look like. Essentially thay may have any shape, length and "curlyness", although I try to exclude trajectories which overlap or cross in the previous steps. I have included two examples below; ignore the colored boxes, they're just a representation of the values of the raw pixel matrix. The black, circular dots are the points which I'd like to match to a trajectory, as you can see they are always centered to the pixels and therefore may have only discrete (integer) values.
Thanks in advance for any help & contribution!
This MIGHT be the way to go
http://alglib.codeplex.com/
From your description I would say that a parametric spline interpolation may suit your requirements. I have not used the above library myself, but it does have support for spline interpolation. Using an interpolant means you will not have to worry about goodness of fit - the curve will pass through every point that you give it.
If you don't mind using matrix libraries, linear least squares is the easiest solution (look at the end of the General Problem section for the equation to use). You can also use linear/polynomial regression to solve something like this.
Linear least squares will always give the best solution, but it's not scalable, because matrix multiplication is moderately expensive. Regression is an iterative heuristic method, so you can just run it until you have a "sufficiently good" answer. I've seen guidelines for the cutoff at about 1000-10000 dimensions in your data. So, with your data set, I'd recommend linear least squares, unless you decide to make them highly dimensioned for some reason.

Large matrix inversion methods

Hi I've been doing some research about matrix inversion (linear algebra) and I wanted to use C++ template programming for the algorithm , what i found out is that there are number of methods like: Gauss-Jordan Elimination or LU Decomposition and I found the function LU_factorize (c++ boost library)
I want to know if there are other methods , which one is better (advantages/disadvantages) , from a perspective of programmers or mathematicians ?
If there are no other faster methods is there already a (matrix) inversion function in the boost library ? , because i've searched alot and didn't find any.
As you mention, the standard approach is to perform a LU factorization and then solve for the identity. This can be implemented using the LAPACK library, for example, with dgetrf (factor) and dgetri (compute inverse). Most other linear algebra libraries have roughly equivalent functions.
There are some slower methods that degrade more gracefully when the matrix is singular or nearly singular, and are used for that reason. For example, the Moore-Penrose pseudoinverse is equal to the inverse if the matrix is invertible, and often useful even if the matrix is not invertible; it can be calculated using a Singular Value Decomposition.
I'd suggest you to take a look at Eigen source code.
Please Google or Wikipedia for the buzzwords below.
First, make sure you really want the inverse. Solving a system does not require inverting a matrix. Matrix inversion can be performed by solving n systems, with unit basis vectors as right hand sides. So I'll focus on solving systems, because it is usually what you want.
It depends on what "large" means. Methods based on decomposition must generally store the entire matrix. Once you have decomposed the matrix, you can solve for multiple right hand sides at once (and thus invert the matrix easily). I won't discuss here factorization methods, as you're likely to know them already.
Please note that when a matrix is large, its condition number is very likely to be close to zero, which means that the matrix is "numerically non-invertible". Remedy: Preconditionning. Check wikipedia for this. The article is well written.
If the matrix is large, you don't want to store it. If it has a lot of zeros, it is a sparse matrix. Either it has structure (eg. band diagonal, block matrix, ...), and you have specialized methods for solving systems involving such matrices, or it has not.
When you're faced with a sparse matrix with no obvious structure, or with a matrix you don't want to store, you must use iterative methods. They only involve matrix-vector multiplications, which don't require a particular form of storage: you can compute the coefficients when you need them, or store non-zero coefficients the way you want, etc.
The methods are:
For symmetric definite positive matrices: conjugate gradient method. In short, solving Ax = b amounts to minimize 1/2 x^T A x - x^T b.
Biconjugate gradient method for general matrices. Unstable though.
Minimum residual methods, or best, GMRES. Please check the wikipedia articles for details. You may want to experiment with the number of iterations before restarting the algorithm.
And finally, you can perform some sort of factorization with sparse matrices, with specially designed algorithms to minimize the number of non-zero elements to store.
depending on the how large the matrix actually is, you probably need to keep only a small subset of the columns in memory at any given time. This might require overriding the low-level write and read operations to the matrix elements, which i'm not sure if Eigen, an otherwise pretty decent library, will allow you to.
For These very narrow cases where the matrix is really big, There is StlXXL library designed for memory access to arrays that are mostly stored in disk
EDIT To be more precise, if you have a matrix that does not fix in the available RAM, the preferred approach is to do blockwise inversion. The matrix is split recursively until each matrix does fit in RAM (this is a tuning parameter of the algorithm of course). The tricky part here is to avoid starving the CPU of matrices to invert while they are pulled in and out of disk. This might require to investigate in appropiate parallel filesystems, since even with StlXXL, this is likely to be the main bottleneck. Although, let me repeat the mantra; Premature optimization is the root of all programming evil. This evil can only be banished with the cleansing ritual of Coding, Execute and Profile
You might want to use a C++ wrapper around LAPACK. The LAPACK is very mature code: well-tested, optimized, etc.
One such wrapper is the Intel Math Kernel Library.