I am trying to delete an element in a vector of Objects. The vector is filled with instances of Object and at some point, I want to remove a certain element in a vector not by index, but by the element itself.
A simple example would be:
std::vector< string > strVector;
strVector.push_back( "abc" );
strVector.push_back( "def" );
strVector.push_back( "ghi" ); // So strVector should contain "abc", "def", and "ghi"
How do I remove "ghi" from that vector? Note that I don't know where "ghi" is in that vector.
// Something like this. Assume strVector = [ "abc", "cba", "ccb", "bac", "aaa" ]
strVector.removeElement( "ccb" );
A more relevant example to what I a working on:
class MyClass {
std::vector< Object > myObjVector;
void main( ARGS ) {
for ( int i = 0; i < 10; i++ ) {
Object myObject = Object( );
myObjVector.push_back( myObject );
}
int j = getANumber( ); // j could be any number within the size of the vector
Object myOtherObject = myObjectVector.at( j );
// How do I erase myOtherObject (which is an object inside the vector) ?
removeFromVector( myOtherObject );
}
}
I hope the question's clear. Thanks in advance.
EDIT: I figured it out, thanks to all those who answered. The trick was to give the class something unique that identifies it (like a name or a tag, as long as they are guaranteed to be unique) then use the erase-remove idiom to remove the object from the array.
If your use-case has no duplicates, then you are better off using an std::set and using the std::set::erase which takes a value.
std::set< string > strSet;
strSet.insert( "abc" );
strSet.insert( "def" );
strSet.insert( "ghi" );
strSet.insert( "ccb" );
strSet.erase("ccb");
If you need to cope with duplicates, then you have to specify the desired behaviour of the removal. Should it remove one or all of the elements matching a value? Do you care about preserving the order of the remaining elements? If you require using a vector, then lokk at the erase-remove idiom. But note that std::vector::erase has linear time complexity, whereas the relevant variant of std::set::erase has logarithmic time complexity. And erase-remove would remove all elements equal to the given value.
Note: if you want to use an std::set for a user defined type, you must provide either a less-than bool operator<(const UserType&) const or a comparison function or functor, implementing strict weak ordering.
If you must use a vector, then use erase(remove()):
#include <algorithm>
#include <string>
#include <vector>
strVector.erase(std::remove(strVector.begin(), strVector.end(), "ghi"),
strVector.end());
this will remove all instances of "ghi" from strVector.
If the objects in the vector support equality, and that's the condition
for removal, then you can use:
v.erase( std::remove( v.begin(), v.end(), "ghi" ), v.end() );
Otherwise, you'll need remove_if, with a functional object (or lambda,
if you have C++11) which returns true if the element is to be removed.
#include <iostream>
#include <vector>
class Object
{
public:
Object(int n){secret_num = n;}
virtual ~Object(){}
int getSecretNum(){return secret_num;}
private:
int secret_num;
};
int main()
{
int index= -1;
Object *urobj = new Object(104);
std::vector<Object*> urvector;
for(int i = 0; i < 10; ++i)
{
Object *obj = new Object(i+1);
urvector.push_back(obj);
}
urvector.push_back(urobj);
for(int j = 0; j < urvector.size(); ++j)
{
Object *tmp = urvector.at(j);
std::cout << tmp->getSecretNum() << std::endl;
if(urobj == tmp)
index = j;
}
if(index == -1)
std::cout << " not match " << std::endl;
else
std::cout << " match " << index << std::endl;
return 0;
}
Related
In the C++ Standard Map Library, a call to the iteration functions returns an iterator pointer,
std::map<int, int> map;
std::map<int, int>::iterator ite = map.find(1);
But, when the iterator is used, it must be accessed as a pointer variable,
int first = ite->first;
int second = ite->second;
Why is this the case when we are putting the obtained value from the find function into a non-pointer. Shouldn't the correct syntax be:
std::map<int, int>::iterator *pIte = map.find(1)
or if using the original syntax,
int first = ite.first;
int second = ite.second;
since we are obtaining a value, and not a pointer from the function's return value? It is also not clarified in the documentation. Why is this the case?
As #jaggedSpire suggested, iterators are supposed to act like ptrs, having defined the operators *, ->, etc. But the thing is, an iterator isn't an explicit pointer. The syntax you suggested:
std::map<int, int>::iterator *pIte = map.find(1);
Is a pointer to an iterator, not just an iterator. The reason when you wrote:
std::map<int, int>::iterator pIte = map.find(1);
you have to write: ite->first is because operator-> is defined for iterators. This means that iterators are supposed to act like pointers.
The call of the function
std::map<int, int>::iterator ite = map.find(1);
returns iterator that behaves like pointers.
So you need to use the syntax of accessing objects using pointers
int first = ite->first;
int second = ite->second;
Or you could write instead
int first = ( *ite ).first;
int second = ( *ite ).second;
Compare for example
#include <iostream>
#include <iterator>
#include <algorithm>
#include <utility>
int main()
{
const size_t N = 5;
std::pair<int, int> a[N] = { { 2, 2 }, { 4, 4 }, { 1, 1 }, { 3, 3 }, { 5, 5 } };
std::pair<int, int> *it = std::find( std::begin( a ), std::end( a ), std::make_pair( 1, 1 ) );
if ( it != std::end( a ) )
{
std::cout << it - a << ": "
<< "{ " << it->first << ", " << it->second << " }" << std::endl;
}
return 0;
}
The program output is
2: { 1, 1 }
Here it is explicitly declared like a pointer.
I am trying to copy a subset of a std::map structure to a new map structure in the most efficient way. I can only think to a plain vanilla solution like this:
// Example program
#include <iostream>
#include <string>
#include <map>
int main()
{
// build map
std::map<int, int> mymap;
size_t num_el = 10;
for(size_t i = 0; i < num_el; ++i)
{
mymap.insert(std::pair<int,int>(i,i));
}
// copy submap
int start_index = 5;
std::map<int,int> output_map;
std::map<int,int>::const_iterator it;
for(it = mymap.find(start_index); it != mymap.end(); ++it)
{
output_map.insert(*it);
}
//print result
std::map<int,int>::const_iterator pit;
for(pit = output_map.begin(); pit != output_map.end(); ++pit)
{
std::cout << pit->second << " , ";
}
std::cout << std::endl;
}
Is there a better way to do this?
The insert method allows you to specify a range like so:
auto range_start = mymap.find(5);
auto range_end = mymap.end();
output_map.insert(range_start, range_end);
If you want additional flexibility on choice of the copied elements, copy_if will provide it:
std::copy_if(
begin(mymap),
end(mymap),
std::inserter(output_map, begin(output_map)),
[&start_index](std::pair<int,int> p) { return p.first >= start_index; }
);
It's a bit tricky to use it for std::map (and also e.g. std::set), but std::inserter works nicely.
Of course the simpler std::copy could be used similarly to the range constructor.
You can use map range constructor (c++11):
std::map<int,int> output_map{mymap.find(start_index), mymap.end()};
and if you need older standard:
std::map<int,int> output_map( mymap.find(start_index), mymap.end() );
And insert works too
I want to collect keys of the same value in a map. What is the easiest way to do it using vector? That means all the keys having the same value can be collected in a vector.
You will have to do a linear search over the whole container, which is O(N).
std::vector<Value> values;
std::for_each(map.begin(), map.end(),
[&](std::map<Key,Value>::value_type const & x) {
if (x.second == value)
values.push_back(x.first);
});
If you want to extract all keys for which the value is not unique, the complexity of the code is higher, and you will need additional data, but you could do something like this:
std::map<Value, std::pair<Key, bool>> tracker;
// Maps a 'Value' to the first 'Key' that had it, and a 'bool'
// identifying if it has already been inserted into the vector.
std::vector<Key> keys;
for_each(m.begin(), m.end(),
[](std::map<Key, Value>::value_type const& x) {
auto r = tracker.insert(std::make_pair(x.second,
std::make_pair(x.first, false));
if (!r.second) {
// Not the first time we saw this value
if (!r.first->second) {
// First key not already inserted, insert now and update flag
keys.push_back(r.first);
r.first->second = true;
}
keys.push_back(x.first);
}
});
Although in real code I would avoid using std::pair and would create a named type that makes the code simpler to read. In the code above it is not obvious what all those first and second mean…
A different alternative, probably more efficient (measure and profile) would be to use transform to create a vector where the elements are swapped and then iterate over that vector extracting the values of interest.
You can do it the following way
#include <iostream>
#include <vector>
#include <string>
#include <map>
int main()
{
std::map<int, std::string> m
{
{ 1, "Monday" }, { 2, "Tuesday" }, { 9, "Monday" }
};
std::vector<int> v;
size_t n = 0;
std::string s( "Monday" );
for ( const auto &p : m )
{
if ( p.second == s ) ++n;
}
v.reserve( n );
for ( const auto &p : m )
{
if ( p.second == s ) v.push_back( p.first );
}
for ( const auto &x : v ) std::cout << x << ' ';
std::cout << std::endl;
return 0;
}
The output is
1 9
You can substitute the range based for statements for correspondingly std::count_if and std::for_each algorithms along with lambda expressions. But in my opiniion for this simple task it is better to use the range based for statements.
Where you are creating the map, consider creating a unordered_multimap with the key and value of the original map swapped.
This question already has answers here:
How can I sort two vectors in the same way, with criteria that uses only one of the vectors?
(9 answers)
Closed 9 months ago.
I have several std::vector, all of the same length. I want to sort one of these vectors, and apply the same transformation to all of the other vectors. Is there a neat way of doing this? (preferably using the STL or Boost)? Some of the vectors hold ints and some of them std::strings.
Pseudo code:
std::vector<int> Index = { 3, 1, 2 };
std::vector<std::string> Values = { "Third", "First", "Second" };
Transformation = sort(Index);
Index is now { 1, 2, 3};
... magic happens as Transformation is applied to Values ...
Values are now { "First", "Second", "Third" };
friol's approach is good when coupled with yours. First, build a vector consisting of the numbers 1…n, along with the elements from the vector dictating the sorting order:
typedef vector<int>::const_iterator myiter;
vector<pair<size_t, myiter> > order(Index.size());
size_t n = 0;
for (myiter it = Index.begin(); it != Index.end(); ++it, ++n)
order[n] = make_pair(n, it);
Now you can sort this array using a custom sorter:
struct ordering {
bool operator ()(pair<size_t, myiter> const& a, pair<size_t, myiter> const& b) {
return *(a.second) < *(b.second);
}
};
sort(order.begin(), order.end(), ordering());
Now you've captured the order of rearrangement inside order (more precisely, in the first component of the items). You can now use this ordering to sort your other vectors. There's probably a very clever in-place variant running in the same time, but until someone else comes up with it, here's one variant that isn't in-place. It uses order as a look-up table for the new index of each element.
template <typename T>
vector<T> sort_from_ref(
vector<T> const& in,
vector<pair<size_t, myiter> > const& reference
) {
vector<T> ret(in.size());
size_t const size = in.size();
for (size_t i = 0; i < size; ++i)
ret[i] = in[reference[i].first];
return ret;
}
typedef std::vector<int> int_vec_t;
typedef std::vector<std::string> str_vec_t;
typedef std::vector<size_t> index_vec_t;
class SequenceGen {
public:
SequenceGen (int start = 0) : current(start) { }
int operator() () { return current++; }
private:
int current;
};
class Comp{
int_vec_t& _v;
public:
Comp(int_vec_t& v) : _v(v) {}
bool operator()(size_t i, size_t j){
return _v[i] < _v[j];
}
};
index_vec_t indices(3);
std::generate(indices.begin(), indices.end(), SequenceGen(0));
//indices are {0, 1, 2}
int_vec_t Index = { 3, 1, 2 };
str_vec_t Values = { "Third", "First", "Second" };
std::sort(indices.begin(), indices.end(), Comp(Index));
//now indices are {1,2,0}
Now you can use the "indices" vector to index into "Values" vector.
Put your values in a Boost Multi-Index container then iterate over to read the values in the order you want. You can even copy them to another vector if you want to.
Only one rough solution comes to my mind: create a vector that is the sum of all other vectors (a vector of structures, like {3,Third,...},{1,First,...}) then sort this vector by the first field, and then split the structures again.
Probably there is a better solution inside Boost or using the standard library.
You can probably define a custom "facade" iterator that does what you need here. It would store iterators to all your vectors or alternatively derive the iterators for all but the first vector from the offset of the first. The tricky part is what that iterator dereferences to: think of something like boost::tuple and make clever use of boost::tie. (If you wanna extend on this idea, you can build these iterator types recursively using templates but you probably never want to write down the type of that - so you either need c++0x auto or a wrapper function for sort that takes ranges)
I think what you really need (but correct me if I'm wrong) is a way to access elements of a container in some order.
Rather than rearranging my original collection, I would borrow a concept from Database design: keep an index, ordered by a certain criterion. This index is an extra indirection that offers great flexibility.
This way it is possible to generate multiple indices according to different members of a class.
using namespace std;
template< typename Iterator, typename Comparator >
struct Index {
vector<Iterator> v;
Index( Iterator from, Iterator end, Comparator& c ){
v.reserve( std::distance(from,end) );
for( ; from != end; ++from ){
v.push_back(from); // no deref!
}
sort( v.begin(), v.end(), c );
}
};
template< typename Iterator, typename Comparator >
Index<Iterator,Comparator> index ( Iterator from, Iterator end, Comparator& c ){
return Index<Iterator,Comparator>(from,end,c);
}
struct mytype {
string name;
double number;
};
template< typename Iter >
struct NameLess : public binary_function<Iter, Iter, bool> {
bool operator()( const Iter& t1, const Iter& t2 ) const { return t1->name < t2->name; }
};
template< typename Iter >
struct NumLess : public binary_function<Iter, Iter, bool> {
bool operator()( const Iter& t1, const Iter& t2 ) const { return t1->number < t2->number; }
};
void indices() {
mytype v[] = { { "me" , 0.0 }
, { "you" , 1.0 }
, { "them" , -1.0 }
};
mytype* vend = v + _countof(v);
Index<mytype*, NameLess<mytype*> > byname( v, vend, NameLess<mytype*>() );
Index<mytype*, NumLess <mytype*> > bynum ( v, vend, NumLess <mytype*>() );
assert( byname.v[0] == v+0 );
assert( byname.v[1] == v+2 );
assert( byname.v[2] == v+1 );
assert( bynum.v[0] == v+2 );
assert( bynum.v[1] == v+0 );
assert( bynum.v[2] == v+1 );
}
A slightly more compact variant of xtofl's answer for if you are just looking to iterate through all your vectors based on the of a single keys vector. Create a permutation vector and use this to index into your other vectors.
#include <boost/iterator/counting_iterator.hpp>
#include <vector>
#include <algorithm>
std::vector<double> keys = ...
std::vector<double> values = ...
std::vector<size_t> indices(boost::counting_iterator<size_t>(0u), boost::counting_iterator<size_t>(keys.size()));
std::sort(begin(indices), end(indices), [&](size_t lhs, size_t rhs) {
return keys[lhs] < keys[rhs];
});
// Now to iterate through the values array.
for (size_t i: indices)
{
std::cout << values[i] << std::endl;
}
ltjax's answer is a great approach - which is actually implemented in boost's zip_iterator http://www.boost.org/doc/libs/1_43_0/libs/iterator/doc/zip_iterator.html
It packages together into a tuple whatever iterators you provide it.
You can then create your own comparison function for a sort based on any combination of iterator values in your tuple. For this question, it would just be the first iterator in your tuple.
A nice feature of this approach is that it allows you to keep the memory of each individual vector contiguous (if you're using vectors and that's what you want). You also don't need to store a separate index vector of ints.
This would have been an addendum to Konrad's answer as it an approach for a in-place variant of applying the sort order to a vector. Anyhow since the edit won't go through I will put it here
Here is a in-place variant with a slightly higher time complexity that is due to a primitive operation of checking a boolean. The additional space complexity is of a vector which can be a space efficient compiler dependent implementation. The complexity of a vector can be eliminated if the given order itself can be modified.
Here is a in-place variant with a slightly higher time complexity that is due to a primitive operation of checking a boolean. The additional space complexity is of a vector which can be a space efficient compiler dependent implementation. The complexity of a vector can be eliminated if the given order itself can be modified. This is a example of what the algorithm is doing.
If the order is 3 0 4 1 2, the movement of the elements as indicated by the position indices would be 3--->0; 0--->1; 1--->3; 2--->4; 4--->2.
template<typename T>
struct applyOrderinPlace
{
void operator()(const vector<size_t>& order, vector<T>& vectoOrder)
{
vector<bool> indicator(order.size(),0);
size_t start = 0, cur = 0, next = order[cur];
size_t indx = 0;
T tmp;
while(indx < order.size())
{
//find unprocessed index
if(indicator[indx])
{
++indx;
continue;
}
start = indx;
cur = start;
next = order[cur];
tmp = vectoOrder[start];
while(next != start)
{
vectoOrder[cur] = vectoOrder[next];
indicator[cur] = true;
cur = next;
next = order[next];
}
vectoOrder[cur] = tmp;
indicator[cur] = true;
}
}
};
Here is a relatively simple implementation using index mapping between the ordered and unordered names that will be used to match the ages to the ordered names:
void ordered_pairs()
{
std::vector<std::string> names;
std::vector<int> ages;
// read input and populate the vectors
populate(names, ages);
// print input
print(names, ages);
// sort pairs
std::vector<std::string> sortedNames(names);
std::sort(sortedNames.begin(), sortedNames.end());
std::vector<int> indexMap;
for(unsigned int i = 0; i < sortedNames.size(); ++i)
{
for (unsigned int j = 0; j < names.size(); ++j)
{
if (sortedNames[i] == names[j])
{
indexMap.push_back(j);
break;
}
}
}
// use the index mapping to match the ages to the names
std::vector<int> sortedAges;
for(size_t i = 0; i < indexMap.size(); ++i)
{
sortedAges.push_back(ages[indexMap[i]]);
}
std::cout << "Ordered pairs:\n";
print(sortedNames, sortedAges);
}
For the sake of completeness, here are the functions populate() and print():
void populate(std::vector<std::string>& n, std::vector<int>& a)
{
std::string prompt("Type name and age, separated by white space; 'q' to exit.\n>>");
std::string sentinel = "q";
while (true)
{
// read input
std::cout << prompt;
std::string input;
getline(std::cin, input);
// exit input loop
if (input == sentinel)
{
break;
}
std::stringstream ss(input);
// extract input
std::string name;
int age;
if (ss >> name >> age)
{
n.push_back(name);
a.push_back(age);
}
else
{
std::cout <<"Wrong input format!\n";
}
}
}
and:
void print(const std::vector<std::string>& n, const std::vector<int>& a)
{
if (n.size() != a.size())
{
std::cerr <<"Different number of names and ages!\n";
return;
}
for (unsigned int i = 0; i < n.size(); ++i)
{
std::cout <<'(' << n[i] << ", " << a[i] << ')' << "\n";
}
}
And finally, main() becomes:
#include <iostream>
#include <sstream>
#include <string>
#include <vector>
#include <algorithm>
void ordered_pairs();
void populate(std::vector<std::string>&, std::vector<int>&);
void print(const std::vector<std::string>&, const std::vector<int>&);
//=======================================================================
int main()
{
std::cout << "\t\tSimple name - age sorting.\n";
ordered_pairs();
}
//=======================================================================
// Function Definitions...
**// C++ program to demonstrate sorting in vector
// of pair according to 2nd element of pair
#include <iostream>
#include<string>
#include<vector>
#include <algorithm>
using namespace std;
// Driver function to sort the vector elements
// by second element of pairs
bool sortbysec(const pair<char,char> &a,
const pair<int,int> &b)
{
return (a.second < b.second);
}
int main()
{
// declaring vector of pairs
vector< pair <char, int> > vect;
// Initialising 1st and 2nd element of pairs
// with array values
//int arr[] = {10, 20, 5, 40 };
//int arr1[] = {30, 60, 20, 50};
char arr[] = { ' a', 'b', 'c' };
int arr1[] = { 4, 7, 1 };
int n = sizeof(arr)/sizeof(arr[0]);
// Entering values in vector of pairs
for (int i=0; i<n; i++)
vect.push_back( make_pair(arr[i],arr1[i]) );
// Printing the original vector(before sort())
cout << "The vector before sort operation is:\n" ;
for (int i=0; i<n; i++)
{
// "first" and "second" are used to access
// 1st and 2nd element of pair respectively
cout << vect[i].first << " "
<< vect[i].second << endl;
}
// Using sort() function to sort by 2nd element
// of pair
sort(vect.begin(), vect.end(), sortbysec);
// Printing the sorted vector(after using sort())
cout << "The vector after sort operation is:\n" ;
for (int i=0; i<n; i++)
{
// "first" and "second" are used to access
// 1st and 2nd element of pair respectively
cout << vect[i].first << " "
<< vect[i].second << endl;
}
getchar();
return 0;`enter code here`
}**
with C++11 lambdas and the STL algorithms based on answers from Konrad Rudolph and Gabriele D'Antona:
template< typename T, typename U >
std::vector<T> sortVecAByVecB( std::vector<T> & a, std::vector<U> & b ){
// zip the two vectors (A,B)
std::vector<std::pair<T,U>> zipped(a.size());
for( size_t i = 0; i < a.size(); i++ ) zipped[i] = std::make_pair( a[i], b[i] );
// sort according to B
std::sort(zipped.begin(), zipped.end(), []( auto & lop, auto & rop ) { return lop.second < rop.second; });
// extract sorted A
std::vector<T> sorted;
std::transform(zipped.begin(), zipped.end(), std::back_inserter(sorted), []( auto & pair ){ return pair.first; });
return sorted;
}
So many asked this question and nobody came up with a satisfactory answer. Here is a std::sort helper that enables to sort two vectors simultaneously, taking into account the values of only one vector. This solution is based on a custom RadomIt (random iterator), and operates directly on the original vector data, without temporary copies, structure rearrangement or additional indices:
C++, Sort One Vector Based On Another One
My question is related to this.
I wanted to perform a sort() operation over the set with the help of a lambda expression as a predicate.
My code is
#include <set>
#include <string>
#include <iostream>
#include <algorithm>
int main() {
using namespace std;
string s = "abc";
set<string> results;
do {
for (int n = 1; n <= s.size(); ++n) {
results.insert(s.substr(0, n));
}
} while (next_permutation(s.begin(), s.end()));
sort (results.begin(),results.end());[](string a, string b)->bool{
size_t alength = a.length();
size_t blength = b.length();
return (alength < blength);
});
for (set<string>::const_iterator x = results.begin(); x != results.end(); ++x) {
cout << *x << '\n';
}
return 0;
}
But the numbers and types of errors were so complex that I couldn't understand how to fix them. Can someone tell me whats wrong with this code.
Edit: Note that Steve Townsend's solution is actually the one you're searching for, as he inlines as a C++0x Lambda what I write as C++03 code below.
Another solution would be to customize the std::set ordering function:
The std::set is already ordered...
The std::set has its own ordering, and you are not supposed to change it once it is constructed. So, the following code:
int main(int argc, char* argv[])
{
std::set<std::string> aSet ;
aSet.insert("aaaaa") ;
aSet.insert("bbbbb") ;
aSet.insert("ccccccc") ;
aSet.insert("ddddddd") ;
aSet.insert("e") ;
aSet.insert("f") ;
outputSet(aSet) ;
return 0 ;
}
will output the following result:
- aaaaa
- bbbbb
- ccccccc
- ddddddd
- e
- f
... But you can customize its ordering function
Now, if you want, you can customize your set by using your own comparison function:
struct MyStringLengthCompare
{
bool operator () (const std::string & p_lhs, const std::string & p_rhs)
{
const size_t lhsLength = p_lhs.length() ;
const size_t rhsLength = p_rhs.length() ;
if(lhsLength == rhsLength)
{
return (p_lhs < p_rhs) ; // when two strings have the same
// length, defaults to the normal
// string comparison
}
return (lhsLength < rhsLength) ; // compares with the length
}
} ;
In this comparison functor, I did handle the case "same length but different content means different strings", because I believe (perhaps wrongly) that the behaviour in the original program is an error. To have the behaviour coded in the original program, please remove the if block from the code.
And now, you construct the set:
int main(int argc, char* argv[])
{
std::set<std::string, MyStringLengthCompare> aSet ;
aSet.insert("aaaaa") ;
aSet.insert("bbbbb") ;
aSet.insert("ccccccc") ;
aSet.insert("ddddddd") ;
aSet.insert("e") ;
aSet.insert("f") ;
outputSet(aSet) ;
return 0 ;
}
The set will now use the functor MyStringLengthCompare to order its items, and thus, this code will output:
- e
- f
- aaaaa
- bbbbb
- ccccccc
- ddddddd
But beware of the ordering mistake!
When you create your own ordering function, it must follow the following rule:
return true if (lhs < rhs) is true, return false otherwise
If for some reason your ordering function does not respect it, you'll have a broken set on your hands.
std::sort rearranges the elements of the sequence you give it. The arrangement of the sequence in the set is fixed, so the only iterator you can have is a const iterator.
You'll need to copy results into a vector or deque (or such) first.
vector sortable_results( results.begin(), results.end() );
You can customize the ordering of the elements in the set by providing a custom predicate to determine ordering of added elements relative to extant members. set is defined as
template <
class Key,
class Traits=less<Key>,
class Allocator=allocator<Key>
>
class set
where Traits is
The type that provides a function
object that can compare two element
values as sort keys to determine their
relative order in the set. This
argument is optional, and the binary
predicate less is the default
value.
There is background on how to use lambda expression as a template parameter here.
In your case this translates to:
auto comp = [](const string& a, const string& b) -> bool
{ return a.length() < b.length(); };
auto results = std::set <string, decltype(comp)> (comp);
Note that this will result in set elements with the same string length being treated as duplicates which is not what you want, as far as I can understand the desired outcome.
sort requires random access iterators which set doesn't provide (It is a bidirectional iterator). If you change the code to use vector it compiles fine.
You cannot sort a set. It's always ordered on keys (which are elements themselves).
To be more specific, std::sort requires random access iterators. The iterators provided by std::set are not random.
Since I wrote the original code you're using, perhaps I can expand on it... :)
struct cmp_by_length {
template<class T>
bool operator()(T const &a, T const &b) {
return a.length() < b.length() or (a.length() == b.length() and a < b);
}
};
This compares by length first, then by value. Modify the set definition:
set<string, cmp_by_length> results;
And you're good to go:
int main() {
using namespace std;
string s = "abc";
typedef set<string, cmp_by_length> Results; // convenience for below
Results results;
do {
for (int n = 1; n <= s.size(); ++n) {
results.insert(s.substr(0, n));
}
} while (next_permutation(s.begin(), s.end()));
// would need to add cmp_by_length below, if I hadn't changed to the typedef
// i.e. set<string, cmp_by_length>::const_iterator
// but, once you start using nested types on a template, a typedef is smart
for (Results::const_iterator x = results.begin(); x != results.end(); ++x) {
cout << *x << '\n';
}
// of course, I'd rather write... ;)
//for (auto const &x : results) {
// cout << x << '\n';
//}
return 0;
}
std::set is most useful to maintain a sorted and mutating list. It faster and smaller to use a vector when the set itself wont change much once it's been built.
#include <vector>
#include <string>
#include <iostream>
#include <algorithm>
int main() {
using namespace std;
string s = "abc";
vector<string> results;
do {
for (size_t n = 1; n <= s.size(); ++n) {
results.push_back(s.substr(0, n));
}
} while (next_permutation(s.begin(), s.end()));
//make it unique
sort( results.begin(), results.end() );
auto end_sorted = unique( results.begin(), results.end() );
results.erase( end_sorted, results.end() );
//sort by length
sort (results.begin(),results.end());
[](string lhs, string rhs)->bool
{ return lhs.length() < rhs.length(); } );
for ( const auto& result: results ) {
cout << result << '\n';
}
}
I used the classic, sort/unique/erase combo to make the results set unique.I also cleaned up your code to be a little bit more c++0x-y.