Creating a 'synchronization point' between threads - c++

I have a couple of boost::threads which all execute the same function.
void foo(){
//Lock Mutex
//Do some stuffs, part 1
//Unlock Mutex
//Do some stuffs, part 2
//Lock Mutex
//Do some stuffs, part 3
//Unlock Mutex
}
In order for my application to work, it is necessary that, before executing part 2 in parallel, all the threads have finished executing part 1.
I was not able to find any mechanism that would enable me to do that... am I missing something?
Thank you.

Use Boost barriers. Definition from official documentation:
A barrier is a simple concept. Also known as a rendezvous, it is a
synchronization point between multiple threads. The barrier is
configured for a particular number of threads (n), and as threads
reach the barrier they must wait until all n threads have arrived.
Once the n-th thread has reached the barrier, all the waiting threads
can proceed, and the barrier is reset.
extracted from here.

Related

Use multiple std::unique_lock on mutex, all threads in FIFO to wait process?

When I have three threads or more, if mutex unlock in one thread, which one will be the next to process? They are in FIFO rule? If not FIFO, several thread wait unlock(), will have a thread never process? Do they wait in a sorted queue and what is the rule to sort them?
Sample code:
//thread No.1
func1(){
std::unique_lock<mutex> lock(_mtx);
//do something, now in here,and will leave this thread then mutex will unlock
}
//thread No.2
func2(){
std::unique_lock<mutex> lock(_mtx);
//do something
}
//thread No.3
func3(){
std::unique_lock<mutex> lock(_mtx);
//do something
}
The operating system will decide on which thread getting the mutex is the most efficient. It is your responsibility to ensure that whatever thread gets scheduled does work that you need it to do.
Generally, it's not possible for a thread to be denied the mutex for very long because eventually all the other threads will either block or exhaust their timeslices, allowing that thread to acquire the mutex. But the platform doesn't provide any particular guarantee of fairness.
You wouldn't want FIFO. That would be a complete disaster. Imagine if each thread needed to acquire the lock 100 times. Now one thread gets the lock, releases it, and then tries to get the lock against almost immediately. Do you want it to stop and switch to one of the other threads every time? Do you want 300 context switches and start/stops? You definitely don't.

Stop thread from re-acquiring mutex after releasing it

I am making my own mutex to synchronize my threads and I am having the following issue:
The same thread seems to re-acquire the mutex right after it releases it
What I have tried:
Telling it to yield execution to another thread (SwitchToThread, Sleep, YieldProcessor)
Increasing delay between loops (Up to 1 second)
Here is how it works:
I have a structure with a state value:
volatile unsigned int state;
When I want to acquire the mutex, I check the state until it has been released (open), then acquire (close) it and break out of the infinite loop and do whatever needs to be done:
unsigned int previous = 0;
for (;;)
{
previous = InterlockedExchangeAdd(&mtx->state,
0);
if (STATE_OPEN == previous)
{
InterlockedExchange(&mtx->state,
STATE_CLOSED);
break;
}
Sleep(delay);
}
Then I simply release it for the next thread to acquire it:
InterlockedExchange(&mtx->state,
STATE_OPEN);
The way I am using it is I simply have one global volatile integer that I add 1 to in one thread and subtract 1 to in another one. Increasing the delay has helped with making it so that the number does not either go very low or very high and get stuck in a loop being executed in just a single thread, but a 1+ second delay is not going to work for my other purposes.
How could I go about making sure that all of the threads get a chance to acquire the mutex and not have it get stuck in a single thread?
The mutex does exactly what it is supposed to do: it prevents multiple threads from running at the same time.
To stop a thread from re-acquiring the mutex, the basic solution is to not access the shared resource which is protected by the mutex. The thread probably should be doing something else.
You may also have a design problem. If you have multiple resources protected by a single mutex, you may have false contention between threads. if each resource had its own mutex, multiple threads could each work on their own resource.

Why do both the notify and wait function of a std::condition_variable need a locked mutex

On my neverending quest to understand std::contion_variables I've run into the following. On this page it says the following:
void print_id (int id) {
std::unique_lock<std::mutex> lck(mtx);
while (!ready) cv.wait(lck);
// ...
std::cout << "thread " << id << '\n';
}
And after that it says this:
void go() {
std::unique_lock<std::mutex> lck(mtx);
ready = true;
cv.notify_all();
}
Now as I understand it, both of these functions will halt on the std::unqique_lock line. Until a unique lock is acquired. That is, no other thread has a lock.
So say the print_id function is executed first. The unique lock will be aquired and the function will halt on the wait line.
If the go function is then executed (on a separate thread), the code there will halt on the unique lock line. Since the mutex is locked by the print_id function already.
Obviously this wouldn't work if the code was like that. But I really don't see what I'm not getting here. So please enlighten me.
What you're missing is that wait unlocks the mutex and then waits for the signal on cv.
It locks the mutex again before returning.
You could have found this out by clicking on wait on the page where you found the example:
At the moment of blocking the thread, the function automatically calls lck.unlock(), allowing other locked threads to continue.
Once notified (explicitly, by some other thread), the function unblocks and calls lck.lock(), leaving lck in the same state as when the function was called.
There's one point you've missed—calling wait() unlocks the mutex. The thread atomically (releases the mutex + goes to sleep). Then, when woken by the signal, it tries to re-acquire the mutex (possibly blocking); once it acquires it, it can proceed.
Notice that it's not necessary to have the mutex locked for calling notify_*, only for wait*
To answer the question as posed, which seems necessary regarding claims that you should not acquire a lock on notification for performance reasons (isn't correctness more important than performance?): The necessity to lock on "wait" and the recommendation to always lock around "notify" is to protect the user from himself and his program from data and logical races. Without the lock in "go", the program you posted would immediately have a data race on "ready". However, even if ready were itself synchronized (e.g. atomic) you would have a logical race with a missed notification, because without the lock in "go" it is possible for the notify to occur just after the check for "ready" and just before the actual wait, and the waiting thread may then remain blocked indefinitely. The synchronization on the atomic variable itself is not enough to prevent this. This is why helgrind will warn when a notification is done without holding the lock. There are some fringe cases where the mutex lock is really not required around the notify. In all of these cases, there needs to be a bidirectional synchronization beforehand so that the producing thread can know for sure that the other thread is already waiting. IMO these cases are for experts only. Actually, I have seen an expert, giving a talk about multi-threading, getting this wrong — he thought an atomic counter would suffice. That said, the lock around the wait is always necessary for correctness (or, at least, an operation that is atomic with the wait), and this is why the standard library enforces it and atomically unlocks the mutex on entering the wait.
POSIX condition variables are, unlike Windows events, not "idiot-proof" because they are stateless (apart from being aware of waiting threads). The recommendation to use a lock on the notify is there to protect you from the worst and most common screwups. You can build a Windows-like stateful event using a mutex + condition var + bool variable if you like, of course.

C++ Mutexes- Check if another thread is waiting

Is it possible for a thread that already has a lock on a mutex to check whether another thread is already waiting, without releasing the mutex? For example, say a thread has 3 tasks to run on a block of data, but another thread may have a short task to run on the data as well. Ideally, I'd have the first thread check whether another thread is waiting between each of the three tasks and allow the other thread to execute its task before resuming the other two tasks. Does Boost have a type of mutex that supports this functionality (assuming the C++11 mutex or lock types don't support this), or can this be done with conditional variables?
You cannot check whether other threads are waiting on a mutex.
If you want to give other threads their chance to run, just release the mutex. No need to know if someone is waiting. Then re-acquire as necessary.
Conditional variables are events. Use them if you want to wait until something happens. To check whether something has happened you need a regular (mutex-protected or atomic) variable.
you can not check if other threads are waiting on a mutex.
if you do need such functionality, you need to implement your own.
a mutex with use_count will suffice your need.
class my_mutex{
public:
my_mutex() {count=0;}
void lock() {count++; mtx.lock();}
void unlock() {count--; mtx.unlock();}
size_t get_waiting_threads() {return count>1?count-1:0;}
private:
atomic_ulong count;
mutex mtx;
};
if you need to finish task 1 and 2 before task 3 is executed, you should use conditional_variable instead of mutex.
If two threads are waiting on a lock, the thread that started waiting first is not guaranteed to be the thread that gets it first when it becomes available. So if you're a tight-looping thread who does something like
while(true):
mutex.lock()
print "got the lock; releasing it"
mutex.unlock()
You might think you're being polite to all the other threads waiting for the lock, but you're not, the system might just give you the lock over and over again without letting any of the other threads jump in, no matter how long they've been waiting.
Condition variables are a reasonable way to solve this problem.

pthreads: thread starvation caused by quick re-locking

I have a two threads, one which works in a tight loop, and the other which occasionally needs to perform a synchronization with the first:
// thread 1
while(1)
{
lock(work);
// perform work
unlock(work);
}
// thread 2
while(1)
{
// unrelated work that takes a while
lock(work);
// synchronizing step
unlock(work);
}
My intention is that thread 2 can, by taking the lock, effectively pause thread 1 and perform the necessary synchronization. Thread 1 can also offer to pause, by unlocking, and if thread 2 is not waiting on lock, re-lock and return to work.
The problem I have encountered is that mutexes are not fair, so thread 1 quickly re-locks the mutex and starves thread 2. I have attempted to use pthread_yield, and so far it seems to run okay, but I am not sure it will work for all systems / number of cores. Is there a way to guarantee that thread 1 will always yield to thread 2, even on multi-core systems?
What is the most effective way of handling this synchronization process?
You can build a FIFO "ticket lock" on top of pthreads mutexes, along these lines:
#include <pthread.h>
typedef struct ticket_lock {
pthread_cond_t cond;
pthread_mutex_t mutex;
unsigned long queue_head, queue_tail;
} ticket_lock_t;
#define TICKET_LOCK_INITIALIZER { PTHREAD_COND_INITIALIZER, PTHREAD_MUTEX_INITIALIZER }
void ticket_lock(ticket_lock_t *ticket)
{
unsigned long queue_me;
pthread_mutex_lock(&ticket->mutex);
queue_me = ticket->queue_tail++;
while (queue_me != ticket->queue_head)
{
pthread_cond_wait(&ticket->cond, &ticket->mutex);
}
pthread_mutex_unlock(&ticket->mutex);
}
void ticket_unlock(ticket_lock_t *ticket)
{
pthread_mutex_lock(&ticket->mutex);
ticket->queue_head++;
pthread_cond_broadcast(&ticket->cond);
pthread_mutex_unlock(&ticket->mutex);
}
Under this kind of scheme, no low-level pthreads mutex is held while a thread is within the ticketlock protected critical section, allowing other threads to join the queue.
In your case it is better to use condition variable to notify second thread when it is required to awake and perform all required operations.
pthread offers a notion of thread priority in its API. When two threads are competing over a mutex, the scheduling policy determines which one will get it. The function pthread_attr_setschedpolicy lets you set that, and pthread_attr_getschedpolicy permits retrieving the information.
Now the bad news:
When only two threads are locking / unlocking a mutex, I can’t see any sort of competition, the first who runs the atomic instruction takes it, the other blocks. I am not sure whether this attribute applies here.
The function can take different parameters (SCHED_FIFO, SCHED_RR, SCHED_OTHER and SCHED_SPORADIC), but in this question, it has been answered that only SCHED_OTHER was supported on linux)
So I would give it a shot if I were you, but not expect too much. pthread_yield seems more promising to me. More information available here.
Ticket lock above looks like the best. However, to insure your pthread_yield works, you could have a bool waiting, which is set and reset by thread2. thread1 yields as long as bool waiting is set.
Here's a simple solution which will work for your case (two threads). If you're using std::mutex then this class is a drop-in replacement. Change your mutex to this type and you are guaranteed that if one thread holds the lock and the other is waiting on it, once the first thread unlocks, the second thread will grab the lock before the first thread can lock it again.
If more than two threads happen to use the mutex simultaneously it will still function but there are no guarantees on fairness.
If you're using plain pthread_mutex_t you can easily change your locking code according to this example (unlock remains unchanged).
#include <mutex>
// Behaves the same as std::mutex but guarantees fairness as long as
// up to two threads are using (holding/waiting on) it.
// When one thread unlocks the mutex while another is waiting on it,
// the other is guaranteed to run before the first thread can lock it again.
class FairDualMutex : public std::mutex {
public:
void lock() {
_fairness_mutex.lock();
std::mutex::lock();
_fairness_mutex.unlock();
}
private:
std::mutex _fairness_mutex;
};