Server-based embedded database - c++

I'm trying to figure out which database would suit my needs. My c++ project need a database that will be running on devices sold to customers. Mainly it would only log data and events to a database on local SSD disk. Write speed is the most important as logging frequency can be up to 1000Hz (1 write per 1ms). It must be possible to access data remotely from other devices to make graphic visualisations of data. I have tested sqlite with 3rd party server, mysql and postgres. Postgres seems to be quite slow compared to others. As I've read Postgres will become good if concurrency will increase, but in my case concurrency is and will be quite low.
I'm wondering is there any other database for such needs. It also feels that mysql and postgres will be a litte overkill for such requirements. Any suggestions?

PostgreSQL is an enterprise quality database, and not fit for embedded devices. MySQL while smaller will also be a tight fit in an embedded device. SQLite is the most common, and is widely used in embedded devices, even quite small.

Go for sqlite because your requirement states that you App will be running on DEVICES and mostly I guest they are mobile devices and almost all mobile devices support sqlite.... so go for it...

Consider BerkeleyDB. It is a small-footprint embedded DB with a big commercial backer if you needed support, etc. There are open source versions as well as commercially licensed ones. There's no support for SQL querying, but unless you're doing quite complex relational queries this should not be a problem. Concurrency support is excellent, though initial database configuration tends to be awkward.
There's a Microsoft-only alternative in the form of the Extensible Storage Engine, that's free and available on most versions of Windows. There are various other 'DBM'-like simple embedded databases out there, so long as you don't feel you need SQL.
You might also consider an in-memory 'NoSQL'-style database; something like Redis will be very performant.

RDM Embedded may be a good fit for you. I'm with Raima and this product allows you to access data remotely and you can utilize the in-memory or a hybrid on-disk/in-memory database capabilities (www.raima.com/in-memory-database) if you need to. What could be useful for you in this particular case is that RDM products can be used together to manage data between embedded, mobile, desktop or server devices. This can be easily setup through our products, RDM Embedded, RDM Mobile, RDM Workgroup and RDM Server.
If you want to test performance of our database quickly before downloading the full product, go to our Database Performance Popcorn Samples.

Related

How to get list of account that are changed in given time frame

We are planning to export data from universe and load them into sql(mirroring). But it will be great if we can load only the accounts that are changed.
UniVerse offers 2 technologies that can do this for you, so you don't need to reinvent the wheel.
Talk to your support provider about Replication with EDA.
EDA stands for 'External Database Access'. It is a built-in technology that will automatically send any record updates to a foreign database, such as Server SQL , DB2 or Oracle.
EDA by itself will convert your local UniVerse tables to remote SQL tables. Most people won't want this, they will still want UniVerse tables locally (for performance reasons). You can use Replication (or Single Server Replication) to achieve the best of both worlds.
You can read the EDA manual on Rocket's site.
Note, you will need to be on the latest version of UniVerse. Luckily, UniVerse is highly backwards compatible and Rocket's support are professional service teams are experienced in this.

Voltdb + gwan with c++

I have decided use GWAN like my application server and I wish use voltdb for storage the data. Anybody has employed both together?.
I will develop it in C++.
In a recent online Game demo presented at the ORACLE Open World expo in SFO, we did not use voltDB but rather ORACLE noSQL, which is a Java (distributed) KV store.
Since we used G-WAN as a Database cache accelerator for 100 millions of records updated in realtime (on one single server), I guess that this experience is relevant in your case because voltDB does not handle this kind of TPS rates.
You say very little about your project so I will describe what we did in our demo: the C servlet created worker threads. Some were used to update the position (direction, orientation, speed) of the bots, and others were used to push the modifications to the remote Java-based noSQL KV store.
This allowed this same servlet to reply in realtime to human players that sent their new position and queried the lists of all nearby bots (also parallelized).
This was made possible by the fact that G-WAN supports both C and Java servlets: C offered compact data structures for the cache (100 millions of records consume a fair amount of RAM) and Java allowed G-WAN to talk to the noSQL DB.
I don't know what your application will be doing but at least you have an example of such a case using G-WAN and a (huge) DB that had to react in realtime.
G-WAN supports C and C++ servlets so you can use your favorite C++ libraries.
I work at VoltDB. We aren't aware of anyone who has tried this, but we had a similar question recently on our forum: http://community.voltdb.com/node/1862.

What is the disadvantage of just using Redis instead of an RDBMS?

So if for example I am trying to implement something that looks like Facebook's Graph API that needs to be very quick and support millions of users, what is the disadvantage of just using Redis instead of a RDBMS?
Thanks!
Jonathan
There are plenty of potential benefits and potential drawbacks of using Redis instead of a classical RDBMS. They are very different beasts indeed.
Focusing only on the potential drawbacks:
Redis is an in-memory store: all your data must fit in memory. RDBMS usually stores the data on disks, and cache part of the data in memory. With a RDBMS, you can manage more data than you have memory. With Redis, you cannot.
Redis is a data structure server. There is no query language (only commands) and no support for a relational algebra. You cannot submit ad-hoc queries (like you can using SQL on a RDBMS). All data accesses should be anticipated by the developer, and proper data access paths must be designed. A lot of flexibility is lost.
Redis offers 2 options for persistency: regular snapshotting and append-only files. None of them is as secure as a real transactional server providing redo/undo logging, block checksuming, point-in-time recovery, flashback capabilities, etc ...
Redis only offers basic security (in term of access rights) at the instance level. RDBMS all provide fine grained per-object access control lists (or role management).
A unique Redis instance is not scalable. It only runs on one CPU core in single-threaded mode. To get scalability, several Redis instances must be deployed and started. Distribution and sharding are done on client-side (i.e. the developer has to take care of them). If you compare them to a unique Redis instance, most RDBMS provide more scalability (typically providing parallelism at the connection level). They are multi-processed (Oracle, PostgreSQL, ...) or multi-threaded (MySQL, Microsoft SQL Server, ... ), taking benefits of multi-cores machines.
Here, I have only described the main drawbacks, but keep in mind there are also plenty of benefits in using Redis (very fast, good concurrency support, low latency, protocol pipelining, good to easily implement optimistic concurrent patterns, good usability/complexity ratio, excellent support from Salvatore and Pieter, pragmatic no-nonsense approach, ...)
For your specific problem (graph), I would suggest to have a look at neo4J or OrientDB which are specifically designed to store graph-oriented data.
I have some additions:
There is a value length limitations in redis. When using redis, you always think about your redis K,V size, especially in redis cluster

Data Warehouse and Django

This is more of an architectural question than a technological one per se.
I am currently building a business website/social network that needs to store large volumes of data and use that data to draw analytics (consumer behavior).
I am using Django and a PostgreSQL database.
Now my question is: I want to expand this architecture to include a data warehouse. The ideal would be: the operational DB would be the current Django PostgreSQL database, and the data warehouse would be something additional, preferably in a multidimensional model.
We are still in a very early phase, we are going to test with 50 users, so something primitive such as a one-column table for starters would be enough.
I would like to know if somebody has experience in this situation, and that could recommend me a framework to create a data warehouse, all while mantaining the operational DB with the Django models for ease of use (if possible).
Thank you in advance!
Here are some cool Open Source tools I used recently:
Kettle - great ETL tool, you can use this to extract the data from your operational database into your warehouse. Supports any database with a JDBC driver and makes it very easy to build e.g. a star schema.
Saiku - nice Web 2.0 frontend built on Pentaho Mondrian (MDX implementation). This allows your users to easily build complex aggregation queries (think Pivot table in Excel), and the Mondrian layer provides caching etc. to make things go fast. Try the demo here.
My answer does not necessarily apply to data warehousing. In your case I see the possibility to implement a NoSQL database solution alongside an OLTP relational storage, which in this case is PostgreSQL.
Why consider NoSQL? In addition to the obvious scalability benefits, NoSQL offer a number of advantages that probably will apply to your scenario. For instance, the flexibility of having records with different sets of fields, and key-based access.
Since you're still in "trial" stage you might find it easier to decide for a NoSQL database solution depending on your hosting provider. For instance AWS have SimpleDB, Google App Engine provide their own DataStore, etc. However there are plenty of other NoSQL solutions you can go for that have nice Python bindings.

using SQLite in Django in production?

Sorry for this question, I dont know if i've understood the concept, but SQLite is Serverless, this means the database in in a local machine, and it's stored in one file, this file is only accessible on one mode: if one client reads it, it's made only for reading mode for other clients, and if a client writes, then all clients have the write mode, so only in one mode at once!
so imagine that i've made a django application, a blog for example; then how is this made using sqlite? since if a client enters to the blog he gots the reading mode to see the page and the blog entries, and if a registred client tries to add a comment then the file will be made as write mode, so how can sqlite handle this?
so, does SQLite is here just like the BaseHTTPServer (the server shipped with django), for testing and learning purpose?
Different databases manage concurrency in different ways, but in sqlite, the method used is a global database-level lock. Only one thread or process can make changes to a sqlite database at a time; all other, concurrent processes will be forced to wait until the currently running process has finished.
As your number of users grows; sqlite's simple locking strategy will lead to increasingly great lock contention, and you will need to migrate your data to another database, such as MySQL (Which can do row level locking, at least with InnoDB engine) or PostgreSQL (Which uses Multiversion Concurrency Control). If you anticipate that you will get a substantial number of users (on the level of say, more than 1 request per second for a good part of the day), you should migrate off of sqlite; and the sooner you do so, the easier it will be.
SQLite is not like BaseHTTPServer or anything basic like that. It's a fully featured embedded database. Quite fast too. Its SQL language might not have the most bells and whistles, but it's flexible enough. I haven't run into cases where I needed something it cannot do for the projects I was involved in (which aren't your typical web apps, truth be told).
Anyone that claims SQLite is good or bad for production without discussing the actual design is not telling you much. SQLite is pretty fast. In some cases, literally orders of magnitude faster than, say, Postgres, which comes up as a go-to alternative among Djangonauts. As someone pointed out, it also supports lots of concurrency. It's a matter of whether your app falls under the 'some cases' or not.
Now, there is one significant factor that has to be taken into account. SQLite is an in-process database. This is really important. If you are using something like gevent, you may run into edge cases where your app breaks. E.g., trying to do a transaction where you have a context switch in middle of it can possibly break the transaction in horrible ways. In other words, 'concurrency' really depends on your app, because SQLite is part of your app.
What you can't do with SQLite, though, in terms of scaling, is you can't make clusters of SQLite servers like you can with some of the other database engines, because it's in-process. Your app may or may not need to go to such lengths in terms of scaling, but my guess is that vast majority of apps out there don't anyway (wild guess).
On the other hand, being in-process means adding custom functions and aggregates to it is pretty trivial. I'm not sure if Django's ORM makes that any more difficult than it has to be, but you can come up with pretty good designs taking advantage of those features.
This issue in database theory is called concurrency and SQLite does support it in Windows versions > Win98 and elsewhere according to the FAQ:
http://www.sqlite.org/faq.html#q5
We are aware of no other embedded SQL database engine that supports as
much concurrency as SQLite. SQLite allows multiple processes to have
the database file open at once, and for multiple processes to read the
database at once. When any process wants to write, it must lock the
entire database file for the duration of its update. But that normally
only takes a few milliseconds. Other processes just wait on the writer
to finish then continue about their business. Other embedded SQL
database engines typically only allow a single process to connect to
the database at once.
Basically, do not worry about concurrency, any database worth its salt takes care of just fine. More information on as how SQLite3 manages this can be found here. You, as a developer, not a database designer, needn't care about it unless you are interested in the inner-workings.
SQLite will only work effectively in production from some specific situations. It's quite easy to get MySQL or PostgreSQL up and running, even on Windows, and have a database that works in most situations.
The real problem is that SQLite3 isn't threaded in Django so only one PAGE view can happen at a time on your server, see this bug https://code.djangoproject.com/ticket/12118 Fixed
I don't use SQLite3 even in development.
EDIT: I keep getting downvoted here but the Django documentation itself recommended not using SQLite3 in Production at the time I wrote this answer. The documentation still contains the following caveat:
SQLite provides an excellent development alternative for applications that are predominantly read-only or require a smaller installation footprint.
If you do not have a small foot print/read-only Django instance, do NOT use SQLite3. Feel free to continue to downvote this answer.
It is not impossible to use Django with Sqlite as database in production, primarily depending on your website/webapp traffic and how hard you hit your db (alongside what kind of operations you perform on it i.e. reads/writes/etc). In fact, approaching end of 2019, I have used it in several low volume applications with less than 5k daily interactions (these are more common than you might think).
Simply put for the current state of tech , at the moment Sqlite-3 supports unlimited concurrent reads (or as far as your machine / workers can handle), BUT only a single process can write to it at any point in time. Bear in mind, a well designed query/ops to the db will last only miliseconds!
Coming from experience in using sqlite as the only db for simple non-routine (by non-routine i mean that a typical user would not be using this app on a daily basis year-round) production web app for overseas job matching that deal with ~5000 registered students (stats show consistently less than 2k requests per day that involves hitting the database during peak season - 40% write 60% read), I've had no problems whatsoever with timeouts/performance issues.
It really boils down to being pragmatic about the development and the URS (client spec). If it becomes the next unicorn , one can always migrate the SQLITE to another RDBMS. For instance, see David d C e Freitas's take on migration in Quick easy way to migrate SQLite3 to MySQL?
Additionally the SQLITE website uses sqlite db at its backend .. see below...
The SQLite website (https://www.sqlite.org/) uses SQLite itself, of course, and as of this writing (2015) it handles about 400K to 500K HTTP requests per day, about 15-20% of which are dynamic pages touching the database. Dynamic content uses about 200 SQL statements per webpage. This setup runs on a single VM that shares a physical server with 23 others and yet still keeps the load average below 0.1 most of the time.
Bear in mind that the above quote is of course mainly referring to read operations, so the values may not be a applicable for write-heavy sites.
The example I gave above on the job matching application I built using sqlite as db is quite write heavy if you've noticed the numbers ... on average, 40% are short lived write operations (i.e. form submissions, etc etc) but bear in mind my volume hitting the db is only 2k per day during peak season.
Then again, if you realize that your sqlite.db is causing alot of timeout and bad user experience (408 !!! on form submission...), especially with Django throwing the OperationalError: database is locked error. (and then they have to key in the whole thing again)...You can always increase the timeout in your settings.py as per django docs as a temporary solution while you prepare for migrating the db.
'OPTIONS': {
# ...
'timeout': 20,
# ...
}
Again, it all boils down to pragmatic development and facing reality that the site may not attract as much activity as hoped , and is prone to over-engineering from the get-go.
There are many times that going for a simple solution enables faster time to market , essentially, to quickly test waters , and of course, be prepared If the piranhas do come in swarms and then its time to upgrade to another RDBMS.
With Django's ORM, for most cases you dont need to touch your models.py during migration to other supported sql db. Be VERY mindfull though that Sqlite does not support some more advanced functions or even fields that its bigger cousins MYSQL and POSTGRES do.
Late to the party, but the question is still relavant as of mid 2018.
"Client" of a blog site is a different term that a "database client". SQLite documentation refers to a client as a process opening a database file. Such process, say a django app, may handle many web app clients ("users") simultaneously and it still is going to be just one client from the standpoint of SQLiite.
The important consideration for choosing SQLite over proper RDBMS is whether your architecture is comprised of more than one software component connecting to a database. In such case, using SQLite may be a major performance bottleneck due to the fact that each app needs to access the same DB file, possibly over a network.
If multiple apps(database clients) is not the case, SQLite is a great production choice in 99% of cases. The remaining 1% is apps using specific DB features, apps under enormous load, etc.
Know your architecture.
The anwer to this question depends on the application that you want to deploy in production:
According to the how to use from the SQLite website, SQLite works great in production as the database engine for most website having low to medium traffic (which is to say, most websites).
They argue that the amount of web traffic that SQLite can handle depends on how heavily you use the database of your website. It is known that any site that gets fewer than 100K hits/day should work fine with SQLite. However, this 100K hits/day figure is a conservative estimate, not a hard upper bound.
In summary, SQLite might be a great choice for applications with fewer users and databases uses. Thus, use SQLite for website with fewer or medium interactions with the database and MySQL or PostgreSQL for website with higher interactions with the database.
Reference: sqlite.org