Texturing Opengl Terrain? - c++

What is the best way to texture terrain made from quads in OpenGL? I have around 30 different textures I want to have for my terrains (1 texture per terrain type, so 30 terrain types) and would like to have smooth transitions between any two of the terrains.
I have been doing some browsing on the web and found that there are many different methods, including 3d texturing, Alpha channels, blending, and using shaders. However, which of these is the most efficient and can handle the amount of textures I am looking to use? For example: This popular answer describes how to use some techniques, but since the mixmap only has 4 properties (RGBA) and so can only support 4 textures.
I should also note that I know nothing about shaders, so non-shader required techniques would be preferable.

Since you linked to an answer that describes texture splatting, and its question mentions the game Oblivion, I can provide some additional insight into that.
Basic texture splatting with an RGBA mixmap only supports four textures per terrain quad, but you can use different sets of textures for different quads. Oblivion divides its terrain into squares (called "cells") of 32 grid points (192 feet) per side, and each cell defines its own set of four terrain textures. So you can't have lots of texture diversity within a small area, but you can easily vary your textures over larger regions. If you prefer, you can define texture sets for smaller regions, even individual quads, at the expense of using more memory.
If you really need more than four textures in a quad, you can use multiple mixmaps. For each additional one, you just do another texture lookup to get four more blending factors, and blend in four more textures on top of the results from the previous mixmap. You can scale up to as many textures as you want, again at the expense of memory.
Texture splatting can be tricky to combine with with LOD techniques on the height map, because when a single low-detail terrain quad represents a group of high-detail quads, you have to sample several different mixmaps for different regions of the big quad. Oblivion sidesteps that problem by using texture splatting only for full-detail terrain; distant cells, rendered at lower resolution, use precomputed textures produced by the editor, which does the splatting and downscaling in advance.

One alternative to texture splatting is to use a clipmap to render a "megatexture". With this approach, you have a single large texture that represents your entire terrain, and you avoid filling up your RAM by loading different parts of it with only as much detail as is actually needed to render it based on the viewer's current position. (Distant parts of the terrain can't be seen at full detail, so there's no need to load them at full detail.)
The advantage of this approach is its artistic freedom: you can place fine details anywhere you want in the texture, without regard to the vertex grid. The disadvantage is that it's rather complex to implement, and the entire clipmap has to be stored somewhere, probably in a big file on disk, so that you can load parts of it into RAM as needed.

Related

OpenGL - How to render many different models?

I'm currently struggling with finding a good approach to render many (thousands) slightly different models. The model itself is a simple cube with some vertex offset, think of a skewed quad face. Each 'block' has a different offset of its vertices, so basically I have a voxel engine on steroids as each block is not a perfect cube but rather a skewed cuboid. To render this shape 48 vertices are needed but can be cut to 24 vertices as only 3 faces are visible. With indexing we are at 12 vertices (4 for each face).
But, now that I have the vertices for each block in the world, how do I render them?
What I've tried:
Instanced Rendering. Sounds good, doesn't work as my models are not the same.
I could simplify distant blocks to a cube and render them with glDrawArraysInstanced/glDrawElementsInstanced.
Put everything in one giant VBO. This has a better performance than rendering each cube individually, but has the downside of having one large mesh. This is not desireable as I need every cube to have different textures, lighting, etc... Selecting a single cube within that huge mesh is not possible.
I am aware of frustum culling and occlusion culling, but I already have problems with some cubes in front of me (tested with a 128x128 world).
My requirements:
Draw some thousand models.
Each model has vertices offsets to make the block less cubic, stored in another VBO.
Each block has to be an individual object, as you should be able to place/remove blocks.
Any good performance advices?
This is not desireable as I need every cube to have different textures, lighting, etc... Selecting a single cube within that huge mesh is not possible.
Programmers should avoid declaring that something is "impossible"; it limits your thinking.
Giving each face of these cubes different textures has many solutions. The Minecraft approach uses texture atlases. Each "texture" is really just a sub-section of one large texture, and you use texture coordinates to select which sub-section a particular face uses. But you can get more complex.
Array textures allow for a more direct way to solve this problem. Here, the texture coordinates would be the same, but you use a per-vertex integer to select the correct texture for a face. All of the vertices for a particular face would have an index. And if you're clever, you don't even really need texture coordinates. You can generate them in your vertex shader, based on per-vertex values like gl_VertexID and the like.
Lighting parameters would work the same way: use some per-vertex data to select parameters from a UBO or SSBO.
As for the "individual object" bit, that's merely a matter of how you're thinking about the problem. Do not confuse what happens in the player's mind with what happens in your code. Games are an elaborate illusion; just because something appears to the user to be an "individual object" doesn't mean it is one to your rendering engine.
What you need is the ability to modify your world's data to remove and add new blocks. And if you need to show a block as "selected" or something, then you simply need another per-block value (like the lighting parameters and index for the texture) which tells you whether to draw it as a "selected" block or as an "unselected" one. Or you can just redraw that specific selected block. There are many ways of handling it.
Any decent graphics card (since about 2010) is able to render a few millions vertices in a blinking.
The approach is different depending on how many changes per frame. In other words, how many data must be transferred to the GPU per frame.
For the case of small number of changes, storing the data in one big VBO or many smaller VBOs (and their VAOs), sending the changes by uniforms, and calling several glDraw***, shows similar performance. Different hardwares behave with little difference. Indexed data may improve the speed.
When most of the data changes in every frame and these changes are hard or impossible to do in the shaders, then your app is memory-transfer bound. Streaming is a good advise.

(Modern) OpenGL Different Colored Faces on a Cube - Using Shaders

A cube with different colored faces in intermediate mode is very simple. But doing this same thing with shaders seems to be quite a challenge.
I have read that in order to create a cube with different coloured faces, I should create 24 vertices instead of 8 vertices for the cube - in other words, (I visualies this as 6 squares that don't quite touch).
Is perhaps another (better?) solution to texture the faces of the cube using a real simple texture a flat color - perhaps a 1x1 pixel texture?
My texturing idea seems simpler to me - from a coder's point of view.. but which method would be the most efficient from a GPU/graphic card perspective?
I'm not sure what your overall goal is (e.g. what you're learning to do in the long term), but generally for high performance applications (e.g. games) your goal is to reduce GPU load. Every time you switch certain states (e.g. change textures, render targets, shader uniform values, etc..) the GPU stalls reconfiguring itself to meet your demands.
So, you can pass in a 1x1 pixel texture for each face, but then you'd need six draw calls (usually not so bad, but there is some prep work and potential cache misses) and six texture sets (can be very bad, often as bad as changing shader uniform values).
Suppose you wanted to pass in one texture and use that as a texture map for the cube. This is a little less trivial than it sounds -- you need to express each texture face on the texture in a way that maps to the vertices. Often you need to pass in a texture coordinate for each vertex, and due to the spacial configuration of the texture this normally doesn't end up meaning one texture coordinate for one spatial vertex.
However, if you use an environmental/reflection map, the complexities of mapping are handled for you. In this way, you could draw a single texture on all sides of your cube. (Or on your sphere, or whatever sphere-mapped shape you wanted.) I'm not sure I'd call this easier since you have to form the environmental texture carefully, and you still have to set a different texture for each new colors you want to represent -- or change the texture either via the GPU or in step with the GPU, and that's tricky and usually not performant.
Which brings us back to the canonical way of doing as you mentioned: use vertex values -- they're fast, you can draw many, many cubes very quickly by only specifying different vertex data, and it's easy to understand. It really is the best way, and how GPUs are designed to run quickly.
Additionally..
And yes, you can do this with just shaders... But it'd be ugly and slow, and the GPU would end up computing it per each pixel.. Pass the object space coordinates to the fragment shader, and in the fragment shader test which side you're on and output the corresponding color. Highly not recommended, it's not particularly easier, and it's definitely not faster for the GPU -- to change colors you'd again end up changing uniform values for the shaders.

Texture tiling with continuous random offset?

I have a texture and a mesh, if I apply the texture on the mesh, it tiles it continuously as one would expect. The offset for each tile is equal.
The problem:
Non-tilable texture or texture with some outstanding elements are looking repetitive and cheap.
Example:
Solution Attempt
My first attempt was to programatically generate a texture size of a mesh with randomised offsets for each tiles. Of course the size of the texture became a problem, let alone the GPU limitation of a single texture max size.
What I would like to do
I would like to know if there's a way to make a Unity shader or a material that would load a single texture and tile it with random offsets for each tile and do it only once to keep the performance high?
I believe you might try one of techniques invented by Inigo Quilez (http://www.iquilezles.org/www/articles/texturerepetition/texturerepetition.htm).
Basically, non-tilable textures and textures with some outstanding elements are different problems.
Non-tilable textures
There are 2 ways of solving it:
Fixing the texture itself;
Mirrored repeat can be used in some cases (see GL_MIRRORED_REPEAT)
Textures with some outstanding elements
This can be solved in the following ways (or conjunction of them):
Modifying the texture (this includes enlargement as well);
Using multitexturing;
Well, maybe mirrored repeat can be used as well in some cases.
Shifting texture coordinates randomly
Unfortunately, I can't think of any case of these 2 problems (except, maybe, white nose textures) where texture coordinates shifting is a solution.
You are looking at this problem the wrong way. All games face this issue. They hide it simply by a) varying textures a lot instead of texturing large areas with the same texture and b) through level design. Imagine this plane filled with barns, gras, trees, fences and what not - suddenly the mono-textured surface blends in with its surroundings. Also camera angle plays a huge role in this. Try changing your camera position close to the ground and the repeating texture is much less noticeable.
Your plane is just a very extreme example. You should not try to fix it at this point but rather continue to build your game. Or design your textures to repeat well without showing clear patterns. The extreme would be a flatcolored texture. But generally large outdoor terrain textures simply have very little structure, almost being like noise, plus they don't use colors with any contrast, just shades of the same color.
Your offset idea won't work. Perhaps it might work technically (it may be inefficient though). But random offsets can't cover up the patterns, instead it will create new ones because the textures won't smoothly interpolate at their edges anymore, so you could clearly see a grid of squares. That I guess would be even uglier and more noticeable.
Lastly you can increase texture size or scale (blurryness may need to be covered up as explained above). In relation to camera angle this would be the easiest, most effective fix. Or at least an improvement.
old thread, but relevant to many I think. You can do this in a shader, by randomizing the Vertex position on the XZ plane, (or better) the UV co-ordinates, based on the world space of the co-ordinates.
The texture will still tile.... but instead of being in a straight line... it will be in a random wiggly line. This is great for stuff like terrain, grass etc.... but obviously no good if you want to maintain straight lines in your textures.
A second option is diffuse-detail shader. It tiles one texture up close to camera, and another when further away (which you can make softer / more blurry
Third option... blend 2 textures together, with different UV tiling scale (non divisible. e.g not scale 2 and 4, but use 1 and 2.334556) on each, so the pattern is harder to see

Using Vertex Buffer Objects for a tile-based game and texture atlases

I'm creating a tile-based game in C# with OpenGL and I'm trying to optimize my code as best as possible.
I've read several articles and sections in books and all come to the same conclusion (as you may know) that use of VBOs greatly increases performance.
I'm not quite sure, however, how they work exactly.
My game will have tiles on the screen, some will change and some will stay the same. To use a VBO for this, I would need to add the coordinates of each tile to an array, correct?
Also, to texture these tiles, I would have to create a separate VBO for this?
I'm not quite sure what the code would look like for tiling these coordinates if I've got tiles that are animated and tiles that will be static on the screen.
Could anyone give me a quick rundown of this?
I plan on using a texture atlas of all of my tiles. I'm not sure where to begin to use this atlas for the textured tiles.
Would I need to compute the coordinates of the tile in the atlas to be applied? Is there any way I could simply use the coordinates of the atlas to apply a texture?
If anyone could clear up these questions it would be greatly appreciated. I could even possibly reimburse someone for their time & help if wanted.
Thanks,
Greg
OK, so let's split this into parts. You didn't specify which version of OpenGL you want to use - I'll assume GL 3.3.
VBO
Vertex buffer objects, when considered as an alternative to client vertex arrays, mostly save the GPU bandwidth. A tile map is not really a lot of geometry. However, in recent GL versions the vertex buffer objects are the only way of specifying the vertices (which makes a lot of sense), so we cannot really talked about "increasing performance" here. If you mean "compared to deprecated vertex specification methods like immediate mode or client-side arrays", then yes, you'll get a performance boost, but you'd probably only feel it with 10k+ vertices per frame, I suppose.
Texture atlases
The texture atlases are indeed a nice feature to save on texture switching. However, on GL3 (and DX10)-enabled GPUs you can save yourself a LOT of trouble characteristic to this technique, because a more modern and convenient approach is available. Check the GL reference docs for TEXTURE_2D_ARRAY - you'll like it. If GL3 cards are your target, forget texture atlases. If not, have a google which older cards support texture arrays as an extension, I'm not familiar with the details.
Rendering
So how to draw a tile map efficiently? Let's focus on the data. There are lots of tiles and each tile has the following infromation:
grid position (x,y)
material (let's call it "material" not "texture" because as you said the image might be animated and change in time; the "material" would then be interpreted as "one texture or set of textures which change in time" or anything you want).
That should be all the "per-tile" data you'd need to send to the GPU. You want to render each tile as a quad or triangle strip, so you have two alternatives:
send 4 vertices (x,y),(x+w,y),(x+w,y+h),(x,y+h) instead of (x,y) per tile,
use a geometry shader to calculate the 4 points along with texture coords for every 1 point sent.
Pick your favourite. Also note that directly corresponds to what your VBO is going to contain - the latter solution would make it 4x smaller.
For the material, you can pass it as a symbolic integer, and in your fragment shader - basing on current time (passed as an uniform variable) and the material ID for a given tile - you can decide on the texture ID from the texture array to use. In this way you can make a simple texture animation.

OpenGL, applying texture from image to isosurface

I have a program in which I need to apply a 2-dimensional texture (simple image) to a surface generated using the marching-cubes algorithm. I have access to the geometry and can add texture coordinates with relative ease, but the best way to generate the coordinates is eluding me.
Each point in the volume represents a single unit of data, and each unit of data may have different properties. To simplify things, I'm looking at sorting them into "types" and assigning each type a texture (or portion of a single large texture atlas).
My problem is I have no idea how to generate the appropriate coordinates. I can store the location of the type's texture in the type class and use that, but then seams will be horribly stretched (if two neighboring points use different parts of the atlas). If possible, I'd like to blend the textures on seams, but I'm not sure the best manner to do that. Blending is optional, but I need to texture the vertices in some fashion. It's possible, but undesirable, to split the geometry into parts for each type, or to duplicate vertices for texturing purposes.
I'd like to avoid using shaders if possible, but if necessary I can use a vertex and/or fragment shader to do the texture blending. If I do use shaders, what would be the most efficient way of telling it was texture or portion to sample? It seems like passing the type through a parameter would be the simplest way, but possible slow.
My volumes are relatively small, 8-16 points in each dimension (I'm keeping them smaller to speed up generation, but there are many on-screen at a given time). I briefly considered making the isosurface twice the resolution of the volume, so each point has more vertices (8, in theory), which may simplify texturing. It doesn't seem like that would make blending any easier, though.
To build the surfaces, I'm using the Visualization Library for OpenGL and its marching cubes and volume system. I have the geometry generated fine, just need to figure out how to texture it.
Is there a way to do this efficiently, and if so what? If not, does anyone have an idea of a better way to handle texturing a volume?
Edit: Just to note, the texture isn't simply a gradient of colors. It's actually a texture, usually with patterns. Hence the difficulty in mapping it, a gradient would've been trivial.
Edit 2: To help clarify the problem, I'm going to add some examples. They may just confuse things, so consider everything above definite fact and these just as help if they can.
My geometry is in cubes, always (loaded, generated and saved in cubes). If shape influences possible solutions, that's it.
I need to apply textures, consisting of patterns and/or colors (unique ones depending on the point's "type") to the geometry, in a technique similar to the splatting done for terrain (this isn't terrain, however, so I don't know if the same techniques could be used).
Shaders are a quick and easy solution, although I'd like to avoid them if possible, as I mentioned before. Something usable in a fixed-function pipeline is preferable, mostly for the minor increase in compatibility and development time. Since it's only a minor increase, I will go with shaders and multipass rendering if necessary.
Not sure if any other clarification is necessary, but I'll update the question as needed.
On the texture combination part of the question:
Have you looked into 3d textures? As we're talking marching cubes I should probably immediately say that I'm explicitly not talking about volumetric textures. Instead you stack all your 2d textures into a 3d texture. You then encode each texture coordinate to be the 2d position it would be and the texture it would reference as the third coordinate. It works best if your textures are generally of the type where, logically, to transition from one type of pattern to another you have to go through the intermediaries.
An obvious use example is texture mapping to a simple height map — you might have a snow texture on top, a rocky texture below that, a grassy texture below that and a water texture at the bottom. If a vertex that references the water is next to one that references the snow then it is acceptable for the geometry fill to transition through the rock and grass texture.
An alternative is to do it in multiple passes using additive blending. For each texture, draw every face that uses that texture and draw a fade to transparent extending across any faces that switch from one texture to another.
You'll probably want to prep the depth buffer with a complete draw (with the colour masks all set to reject changes to the colour buffer) then switch to a GL_EQUAL depth test and draw again with writing to the depth buffer disabled. Drawing exactly the same geometry through exactly the same transformation should produce exactly the same depth values irrespective of issues of accuracy and precision. Use glPolygonOffset if you have issues.
On the coordinates part:
Popular and easy mappings are cylindrical, box and spherical. Conceptualise that your shape is bounded by a cylinder, box or sphere with a well defined mapping from surface points to texture locations. Then for each vertex in your shape, start at it and follow the normal out until you strike the bounding geometry. Then grab the texture location that would be at that position on the bounding geometry.
I guess there's a potential problem that normals tend not to be brilliant after marching cubes, but I'll wager you know more about that problem than I do.
This is a hard and interesting problem.
The simplest way is to avoid the issue completely by using 3D texture maps, especially if you just want to add some random surface detail to your isosurface geometry. Perlin noise based procedural textures implemented in a shader work very well for this.
The difficult way is to look into various algorithms for conformal texture mapping (also known as conformal surface parametrization), which aim to produce a mapping between 2D texture space and the surface of the 3D geometry which is in some sense optimal (least distorting). This paper has some good pictures. Be aware that the topology of the geometry is very important; it's easy to generate a conformal mapping to map a texture onto a closed surface like a brain, considerably more complex for higher genus objects where it's necessary to introduce cuts/tears/joins.
You might want to try making a UV Map of a mesh in a tool like Blender to see how they do it. If I understand your problem, you have a 3D field which defines a solid volume as well as a (continuous) color. You've created a mesh from the volume, and now you need to UV-map the mesh to a 2D texture with texels extracted from the continuous color space. In a tool you would define "seams" in the 3D mesh which you could cut apart so that the whole mesh could be laid flat to make a UV map. There may be aliasing in your texture at the seams, so when you render the mesh it will also be discontinuous at those seams (ie a triangle strip can't cross over the seam because it's a discontinuity in the texture).
I don't know any formal methods for flattening the mesh, but you could imagine cutting it along the seams and then treating the whole thing as a spring/constraint system that you drop onto a flat surface. I'm all about solving things the hard way. ;-)
Due to the issues with texturing and some of the constraints I have, I've chosen to write a different algorithm to build the geometry and handle texturing directly in that as it produces surfaces. It's somewhat less smooth than the marching cubes, but allows me to apply the texcoords in a way that works for my project (and is a bit faster).
For anyone interested in texturing marching cubes, or just blending textures, Tommy's answer is a very interesting technique and the links timday posted are excellent resources on flattening meshes for texturing. Thanks to both of them for their answers, hopefully they can be of use to others. :)