This question already has answers here:
Closed 10 years ago.
Possible Duplicate:
Why can't I edit a char in a char*?
char *k ;
void ffill()
{
char *d="ddddd";
*k=*d; //expecting to copy "ddddd" to *k
cout<<k<<"\n";
*d[1]=5; // trying to change array element
cout<<k<<"\n";
}
int _tmain(int argc, _TCHAR* argv[])
{
ffill();
cout<<k<<"\n";
}
procedure fill initializes character array k with help of local variable. I'm not sure it copies "ddddd" variable pointer (that is wrong, because after automatic destruction of d memory is not safe) or it copies value and after this *k is initialized correctly.
How to aces *d array element? Compiler is not happy about *d[1]=5;
(Disclaimer: this answer only covers C++. It is not recommended to ask for both C and C++, as both languages are quite different)
Prologue
char *k ;
This declares a pointer to a character.
"ddddd"
This expression has type char const[6], that is, an array of six constant characters. Expressions of this type can be implicitly converted to a pointer to the first element of the array. The type of that pointer is char const*, that is, a pointer to a constant character. A char const* is not convertible to a char*, because char* permits modification of the character it points to, while char const* doesn't.
char *d="ddddd";
Due to the rules outlined above, this statement is not correct. You should turn on the warnings on your compiler and it will warn you against this (ideally it would actually be an error, not just a warning). It should be char const* d = "ddddd"; if you really want a pointer or char d[] = "ddddd"; if you want an array. The second form doesn't need const because it makes a copy, and thus runs no risk of changing the original data, which is const.
*d
This expression involves the implicit conversion to char const* mentioned above, and then the indirection operator (the *) is applied to it, resulting in an expression of type char const&, that is, a reference to a constant character.
*k
Similar to *d, this performs indirection on a pointer. In this case, k is of type char*, so the resulting expression has type char&.
*k=*d; //expecting to copy "ddddd" to *k
The assignment assigns a single character, because it's assignment from a reference to a constant character into a reference to a character. It ends up assigning the first character of the string to the character pointed by k, which is... wait.
Where does k point to? It was never initialized! This is bound to end in tragedy.
Chapter 1
So, how do we get k to point somewhere? And how do we copy the whole string from d into that space?
To copy the six characters of the d array into k, we need space for six characters. The simplest way of doing this is to just make an array of six characters.
char k[6];
Now, how to copy the six elements? We can use the C library function strcpy, which copies null-terminated strings. This function needs a lot of care to use because:
It requires the source to have a null ('\0') character marking the end; if the source does not have such a character, the behaviour is undefined and anything can happen. This is why the string "ddddd" has six characters and not 5: there's an implicit \0 character at the end that the compiler inserts for you.
It requires the destination to have enough space for the whole source string including the null terminator. If the destination doesn't have enough space, the behaviour is also undefined and anything can happen.
This is how this function could be used to make a copy of the string:
std::strcpy(k, d);
Failure to meet either point #1 or #2 can result in anything, from the program seemingly working (if you're unlucky), to acting randomly in strange way, to simply crashing (if you're lucky).
Epilogue
Man, that was a lot of information. Do C++ programmers have to care about these matters all the time? That must be tiresome.
Well, C++ programmers can use std::string instead of character arrays and get a lot less hassle with this: we can make copies with the assignment operator, we don't need to track the correct sizes, we don't need to care for having the null terminators in place, we don't need to limit the size at compile time, and a bunch of other advantages.
std::string k;
void ffill()
{
std::string d="ddddd";
k = d;
cout<<k<<"\n";
d[1]=5;
cout<<k<<"\n";
}
With C programming langage, you should use an array rather than a pointer (because it may point to a read-only string). For example :
char *k;
void
fill(void)
{
char d[] = "ddddd";
k = d;
d[1] = '5'; // Did you mean '5' ?
}
Like Martinho Fernandes already stated: It seems like you're trying to use 'std:string', instead of char arrays.
char k[20] ; //*k doesn't allocate any memory for you to use.
void ffill()
{
char *d="ddddd"; //This works, since it points to the constant character string in your code. But it can not be altered in any way. (It's a 'const char *')
strcpy(k, d); //This standard function copies the content of one pointer to another.
cout<<k<<"\n"; //Not too sure, but it should work,
k[1]=5; //k is the 'changeable memory, not 'd'.
cout<<k<<"\n";
}
There are several things going on here that you need to be aware of. Let me try to explain:
char *k ;
This line declares a variable called k which is a pointer to a character. However, it is not initialized to point to anything. Trying to use an uninitialized pointer will result in undefined behavior.
void ffill()
{
char *d="ddddd";
This line declares a variable named d which is also a pointer to a character. At the same time, you initialize the pointer to point to a constant character array (also called a c-string) that contains 5 'd' characters and a terminating NULL character (so the array has 6 elements).
*k=*d; //expecting to copy "ddddd" to *k
This line uses the dereference operator (*). This operator copys the character pointed to by d and places it at the address pointed to by k. As I noted above, this will result in undefined behavior since the address in the pointer k has not been initialized.
cout<<k<<"\n";
*d[1]=5; // trying to change array element
First of all, you are trying to assign an int to a char. Both C and C++ allow this, but you probably won't get what you expect. In this case, you are trying to replace the second 'd' character with the character code 5. In ASCII, this is a non-printing character.
Also, since d points to a c-string constant, trying to change its elements results in undefined behavior.
cout<<k<<"\n";
}
int _tmain(int argc, _TCHAR* argv[])
{
ffill();
cout<<k<<"\n";
}
There are some other issues with copying one c-string to another, but this is all the detail I will go into here. As other people mention, using std::string is simpler. However, I also believe that learning how to use c-strings is very educational and can improve your coding skills.
Let's see:
*k=*d; //expecting to copy "ddddd" to *k
This won't copy the "string", only tries to set the memory pointed by k to the first character of d. If it is not initialized, then it will fail badly.
*d[1]=5; // trying to change array element
This will also fail. First of all, this is a double indirection. The d[1] = 5; would be betted, but that would also fail, because the string is most probably stored in read-only memory.
Use string instead.
You need to declare d as an array and not a pointer.:
char d[]
d[1] = '5'; // d is a char array, so did you mean the character '5'?
And change
*k=*d; to k = d; //This will copy the value of the pointer
Related
I'm trying to set a pointer array to a char array in class Tran, however it only applies the first letter of the string. I've tried many other ways but can't get the whole string to go into name.
edit: name is a private variable
char name[MAX_NAME + 1];
Trying to output it using cout << name << endl;
the input is:
setTran("Birth Tran", 1);
help would be appreciated, thank youu
namee[0] == NULL
name[0] = NULL;
These are bugs. NULL is for pointers. name[0] as well as namee[0] is a char. It may work (by work, I mean it will assign the first character to be the null terminator character) on some systems because 0 is both a null pointer constant and an integer literal and thus convertible to char, and NULL may be defined as 0. But NULL may also be defined as nullptr in which case the program will be ill-formed.
Use name[0] = '\0' instead.
name[0] = *namee;
however it only applies the first letter of the string.
Well, you assign only the first character, so this is to be expected.
If you would like to copy the entire string, you need to assign all of the characters. That can be implemented with a loop. There are standard functions for copying a string though; You can use std::strncpy.
That said, constant length arrays are usually problematic because it is rarely possible to correctly predict the maximum required size. std::string is a more robust alternative.
The underlying issue you are trying to assign a const char* to an char* const. When declaring
char name[MAX_NAME + 1];
You are declaring a constant memory address containing mutable char data (char* const). When you are passing a const char* to your function, you are passing a mutable pointer containing constant data. This will not compile. You should be doing a deep copy of the char array by using:
strcpy_s(dst, buffer_size, src);
This copy function will make sure that your array does not overflow, and that it is null terminated.
In order to be able to assign a pointer to a char array, it would need to be allocated on the heap with
char* name = new char[MAX_NAME + 1];
This would allow assigning a char* or char* const to it afterwards. You however need to manage the memory dynamically at this point, and I would advise against this in your case, as passing "Birth Tran" would lead to undefined behaviours as soon as char* const namee goes out of scope.
If you have a look at the code
#include <iostream>
enum Type
{
INT,
FLOAT,
STRING,
};
void Print(void *pValue, Type eType)
{
using namespace std;
switch (eType)
{
case INT:
cout << *static_cast<int*>(pValue) << endl;
break;
case FLOAT:
cout << *static_cast<float*>(pValue) << endl;
break;
case STRING:
cout << static_cast<char*>(pValue) << endl;
break;
}
}
int main()
{
int nValue = 5;
float fValue = 7.5;
char *szValue = "Mollie";
Print(&nValue, INT);
Print(&fValue, FLOAT);
Print(szValue, STRING);
return 0;
}
The line char *szValue = "Mollie";is what confuses me. From what I have been learning is that a pointer is a variable that holds the address of another variable. My issues with that line obviously is that
How come this code accepts a string into a char? We have not specified that this char is an array. Then how come?
How come we are assigning a STRING to a pointer? I thought we could only assign other addresses to them. Where is that pointer getting its address from? Where is it storing the value?
I am still new to C++ but any help would be appreciated.
Update: from what I have understood from the answers below is that when we say "it assigns each letter to the memory addresses in the vicinity of szValue". The rest of the Chars in the string are stored in +1 addresses. How does C++ know how many char / addresses are in the original string? Since szvalue only contains the address of the first char. Not the others right?
Source: LearnCPP - Void Pointers
In a nutshell, in C++ pointers and arrays are almost the same thing. For compiler there is no difference when you define *szValue or szValue[].
A string literal is stored by compiler in memory and first symbol address is actually the value of the string. When you assign a string to char * you might get different use of the that block of memory (i.e. just pass this address into some function or iterate over symbols)
Mind examining more pages of the online tutorial you found pointers-arrays-and-pointer-arithmetic. However I consider the best for learning C++ is reading Bjarne Stroustrup
EDIT: (credits to seand)
Pointers and arrays are almost, but not exactly the same. Take, char *x, and char y[5]. 'y' is like a pointer that points to something fixed, but 'x' may be reassigned. sizeof y yields 5. When passing x or y into functions the arrayness of 'y' disappears
How come we are assigning a STRING to a pointer? I thought we could only assign other addresses to them. Where is that pointer getting its address from? Where is it storing the value?
So, two things.
Except when it is the operand of the sizeof or the unary & operators (along with a couple of others), or is a string literal being used to initialize another array in a declaration, an expression of type "N-element array of T" will be converted ("decay") to an expression of type "pointer toT", and the value of the expression will be the address of the first element of the array.
A string literal is an expression of type "N+1 element array of const char" (plain char in C) where N is the number of characters in the string.
Putting that together,
char *szValue = "Mollie";
the string literal "Mollie" is an expression of type "7-element array of const char". Since it isn't the operand of the sizeof or unary & operators, and since it isn't being used to initialize an array, it is converted to an expression of type "pointer of const char", and its value is the address of the first element.
This is an important point - arrays are not pointers. Arrays do not store a pointer value anywhere. Under certain circumstances the compiler will substitute a pointer expression for an array, but otherwise they're two completely different animals.
The previous two answers have covered the gist of the matter. There are strong similarities between pointers and arrays (arrays can be considered pointers to a memory location themselves). For example, when an array name is used as an argument for a function the memory address of the first element is passed to the function as opposed to the value at that location (which would be the case for an ordinary variable).
The code above assigns a string literal "Mollie" to the char pointer szValue. Therefore starting from the "M" (which is treated as a char not a string) in "Mollie" it assigns each letter to the memory addresses in the vicinity of szValue. Therefore the pointer variable szValue would point to the first element of the string, equivalent to saying szValue[0] (if szValue were declared as a char array).
Hope this helps.
Edit:
Just to be more specific szValue points to the memory address of the first element in the string "Mollie" which is equivalent to using &szValue[0].
The line char* s = "Mollie", in C and C++, means this:
s is a pointer to a character.
It is initialized pointing to the first character in a static character array containing the characters M, o, ... e, and a null character \0.
A pointer is a pointer to a piece of memory containing a type.
That piece of memory is not necessarily a variable.
How come this code accepts a string into a char?
Your code isn't actually doing that, instead it's assigning the address of the first character element to the value of the pointer. Viz, the pointer points to the beginning of the string, incrementing the pointer by 1 will now refer to the next character in the array, and so on.
We have not specified that this char is an array. Then how come?
You have char*, not char, that's the difference. Also, semantically char[] and char* are the same.
Where is that pointer getting its address from?
The compiler sticks the literal string "Mollie" in a read-only portion of the program's memory that is loaded when the program is executed by the operating system. The value of szValue is equal to the address of that string literal. You'll find it's read-only and if you attempt to modify it you'll get a segfault (on *nix) or an Access Violation on Windows.
char *foo declares a char pointer, which in C is how arrays are represented.
So:
char *foo = "ABCD";
foo[1] == 'B'
which also means:
*(foo + 1) == 'B'
The actual type of "Mollie" is const char*. You can think about it as about an array of chars. Thats why you can write something like this:
const char c = szValue[4];
Here, szValue is just a pointer to the first character of the string. Hence, szValue + 1 will be a pointer to the second character and so on.
You should know that when you use char *szValue = "Mollie";, it means you assign the address of constant string "Mollie" to szValue and you can't change value through szValue, because "MOllie" is a constant value stored in constant area.
I can't figure out how this works.
// This doesn't work (obviously)
char a;
a = "aaa";
// This works
char* a;
a = "aaa";
How come this works ?
Since char type stores only one character or 1 byte number, how can you store more characters in it when you access it through a pointer ?
You're not putting characters into the char*. You're creating an array of characters in a part of memory determined by your compiler, and pointing the char* at the first character of that array.
The array is actually const, so you shouldn't be able to assign it to a non-const pointer. But due to historical reasons, you still can in many C++ implementations. However, it was officially made illegal in C++11.
The second one is a pointer to a string of chars, not a single char. Tutorial.
The nearest question on this website to the one I have had a few answers that didn't satisfy me.
Basically, I have 2 related questions :
Q. If I do something like :
char a[]= "abcde"; //created a string with 'a' as the array name/pointer to access it.
a[0]='z'; //works and changes the first character to z.
But
char *a="abcde";
a[0]='z'; //run-time error.
What is the difference? There is no "const" declaration, so I should be free to change contents, right?
Q. If I do something like :
int i[3];
i[0]=10; i[1]=20; i[2]=30;
cout<<*++i; //'i' is a pointer to i[0], so I'm incrementing it and want to print 20.
This gives me a compile-time error, and I don't understand why.
On the other hand, this works :
int *i=new int[3];
i[0]=10; i[1]=20; i[2]=30;
cout<<*++i; //Prints 20.
Thanks for the help.
Q
char *a="abcde";
a[0]='z'; //run-time error.
Ans - Here a is pointing to string literal stored in read only location. You cannot modify string literal
Q
int i[3];
i[0]=10; i[1]=20; i[2]=30;
cout<<*++i;
Ans- Array and Pointers are not same thing. Here i is not a pointer.
You need lvalue for increment operand
You can do :
int *p = &i[0];
std::cout<<*++p;
In last case operator new returns a pointer to a allocated memory space, so its possible.
Question 1
The trouble is that it is still const.
A string literal actually has the type char const*.
But when they designed C++03 they decided (unfortunately) that conversion from char const* to char* is not an error. Thus the code:
char *a="abcde";
Actually compiles without error (even though the string is const). BUT the string literal is still a const even though it is being pointed at via a non const pointer. Thus making it very dangerous.
The good news is that most compilers will generate a warning:
warning: deprecated conversion from string constant to ‘char*’
Question 2
cout<<*++i; //'i' is a pointer to i[0], so I'm incrementing it and want to print 20.
At this point i is not a pointer. It's type is still an array.
It is not a valid operation to increment array.
The thing you are thinking about; is that arrays decay into pointers at the drop of a hat (like when you pass them to functions). Unfortunately that is not happening in this situation and thus you are trying to increment an array (which does not make sense).
This question already has answers here:
Closed 11 years ago.
Possible Duplicate:
Why does cout print char arrays differently from other arrays?
If I have this code:
char myArray[] = { 'a', 'b', 'c' };
cout << myArray;
It gives me this output:
abc
However, if I have this code:
int myArray[] = { 1, 2, 3 };
cout << myArray;
It gives me this output:
0x28ff30
Why does it not print out 123?
The reason that the first piece of code works is that the compiler is implicitly converting the array into a const char * character pointer, which it's then interpreting as a C-style string. Interestingly, this code is not safe because your array of characters is not explicitly null-terminated. Printing it will thus start reading and printing characters until you coincidentally find a null byte, which results in undefined behavior.
In the second case, the compiler is taking the int array and implicitly converting it into an int * pointer to the first element, then from there to a const void * pointer to the first element. Printing a const void * pointer with cout just prints its address, hence the output you're getting.
Hope this helps!
There is an operator << that knows about basic_ostream instances (such as cout) on the left-hand-side and const char*s on the right.
There is no such operator defined for const int* (or const int[]). Although you are perfectly at liberty to create one.
Just be sure to specify a sentinel at the end of your arrays to prevent running off the end of your buffer.
The reason you see the pointer value is because there is an basic_ostream::operator<<(const void*) which will print this.
std::cout is an instance of std::ostream, and there are several overloaded operators provided.
For example:
std::ostream& operator << (std::ostream&, char*);
When you type std::cout << somevar; compiler looks up best matching overload. First for exact type of the variable, then for anything it can be implicitly converted to (not to mention member functions/free functions/template functions, etc).
Here is a random article on C++ Overload Resolution
When you use myArray in the context cout << myArray;, it decays to a pointer. The operator<< which takes a char* as its second argument outputs a string; the one which takes other types of pointer just outputs an address. Hence the observed behaviour.
Your char array is actually not null-terminated, so I guess what you're seeing in the first case is really just undefined behaviour which happens to do 'the right thing' in this instance.
You haven't passed it an array of ints; you've passed it a pointer to an int. When faced with a pointer, it prints out the address that it points to. It has no way of printing out an array because it doesn't know how many elements it has (if any).
The reason it worked when you used a pointer to a character is that it knows that all arrays of characters are terminated by a NUL (\0) character, so it doesn't matter that you haven't told it the number of characters in your array. Keep in mind that your array is not terminated by a NUL, so it's only by luck that you got abc and no extra garbage characters on the end.
Because it has no way of knowing that your array is an array, or what kind of data is in it. When you do cout << myArray, 'myArray' is treated as a pointer type, which may point to anything. So instead of trying to dereference the pointer (and potentially crashing the app if the pointer has not been initialized), the address that the pointer is pointing to gets printed.