Is there a way to relink a solution without rebuilding any project? - c++

I have a big C++ solution in Visual Studio 2008 with many projects, that links to other libraries.
sometimes I want to link the solution to different libraries, and for doing so and create a new exe file I need to re-linking the solution.
But, the re-linking can be done only if at least one of projects need a rebuild. so I manually change one line in the code and change it back...
Is there a better way to only redo the linking process?

Isn't there an option in the context menĂ¼ of the project? Only Project -> link only ?
Sorry I just translated it from my german dev studio 2008.

You could delete the exe. Thus it needs to be rebuilt which is a simple link.
Although if you use different libraries do you need different headers for them if so you need to delete objects - in this case probably best to dop a rebuild of the main project.
Probably the most complete alternative but most difficult to implement is to touch (ie change the modification timestamp) the library and headers you want to use and then Visual Studio build will do the minimum build.

Related

How to make Visual Studio 2017 C++ project more portable between computers?

I am developing a project on C++ which relies on many of third-party libraries (*.lib files and *.h files). I store these libraries in a folder which is not dependant to project, like C:/thirdpartylib. Relative paths is not an option, since it becomes way too long. I have defined connections to libraries in linker setting and in general C++ settings.
But when I pass the project to supervisor he has to reset all paths to libraries to match his environment. We use git, and the project file is being tracked. He stores thirdparty libraries in another way than me.
Is there any way to make a project more portable? Maybe it is possible to store paths in some sort of config files?
As #gaurav says, the way to deal with this in Visual Studio is with property sheets. It's unfortunate that this term is used for two different things in VS, but I guess they just ran out of names (spoiler alert).
These are very powerful, once you learn how they work, and they're just what you need here because they let you define macros, and these macros can in turn be used in the rest of your project to refer to the (volatile) location of your various libraries. This is a trick that everyone who uses VS should know, but it seems that a lot of people don't.
I don't think it's worth me trying to walk you through the mechanics of setting one up here because Microsoft already document it in the Visual Studio help file. Suffice to say, you do it in the Property Manager, that should help you track down the relevant information.
There is also an excellent blog post here which I recommend you read before you do anything else:
http://www.dorodnic.com/blog/2014/03/20/visual-studio-macros/
It's also on Wayback Machine here:
https://web.archive.org/web/20171203113027/http://www.dorodnic.com/blog/2014/03/20/visual-studio-macros/
OK, so now we know how to define a macro, what can we do with it?
Well, that's actually the easy part. If we have a macro called, say, FOO, then wherever we want to expand that macro in some project setting or other we can just use $(FOO). There's also a bunch of macros built into the IDE as listed here:
https://msdn.microsoft.com/en-us/library/c02as0cs.aspx
So, you, I imagine, will want to define macros for the include and lib directories for each of your external libraries and you can then use these to replace the hard-coded paths you are currently using in your project.
And that, I reckon, should sort you out, because the definitions of the macros themselves are stored in a separate file, external to your project file, and different users / build machines can use different files. IIRC, these have extension .props.
Also, you can define a macro in terms of another macro or macros, and that makes the job easier still.
So, who still thinks that Microsoft don't know how to create a build system? Visual Studio is a fantastic piece of software once you get used to it, there's just a bit of a learning curve.
The way to go for large project is to use a package manager. There are some good options out there. Perhaps in windows and visual studio you can use vcpkg or NuGet unmanaged.
If you cannot use a package manager for some reason, the next thing to do is to commit all the dependencies to the GIT repo. If you only target windows platforms like windows 8 or 10 and want to support only VS2017 then committing the compiled dependencies is not a problem. The downside is that the repo will become huge.
For a tiny school project the latter option is viable.

VC++2008 project always "out of date"

In one Solution, I have two VC++ projects. Project A has linker inputs that are .obj files compiled by project B.
Visual Studio (2008) always tells me that project A is "out of date," and prompts me to ask if I want to rebuild it, every time I want to run/debug/build/etc. Even immediately after building the entire Solution: I do a successful full build, and then click Build again, and it wants to re-link Project A.
How can I prevent this from happening? Anyone understand what's going on here?
I think that the solution is to stop using .obj files from the other project. Instead, factor the code that is common to both A and B projects into own static library C and link both A and B to it.
I just had this problem with Visual Studio 2010 (both with and without SP1) and thanks to Ted Nugent I was able to fix it. The trick is to check whether all C++ header files listed in the project still exist, and remove the non-existing ones. Apparently this is a bug in the compiler.
Had something similar occur. I was working with code that used the system time and during the debug I was twiddling with it quite a lot. Somehow the files got some bad timestamps. In the build, it shows which files are getting recompiled, so I just opened each, forced a change (add space, delete a space) and then re-saved.
Similar to the old unix "touch".
In one project I had to do the same to its include files. But after 'touching' the files like that, the problem went away.

Using Tortoise SVN with C++ in Visual Studio 2008

I have an online repository with some .h and .cpp files that make up part of a project. I'm trying to check these out and use them in a new project, but am getting errors (C4627 and C1010). All the files have been added to the project (with Add>Existing Item...), and the subdirectories that contain these files have been added to the "Additional include directories" of the project.
Would I be better off having the entire project tree in the repository? My reason for not doing so is that my colleague and I are working on different parts of the code and so want to use different main methods to test things as we go, and I didn't see any need to be passing around any compiled code etc. since I assumed that given the .h and .cpp files (with the correct settings), visual studio would be able to compile the project.
What's the best way to make Visual Studio 2008 and TortoiseSVN work well together (without spending any money)?
Would I be better off having the entire project tree in the repository?
Most certainly yes. You should be able to check out and build without much effort. Creating a new project every time you want to build the source and having to configure it is way too much work.
My reason for not doing so is that my colleague and I are working on different parts of the code and so want to use different main methods to test things as we go, and I didn't see any need to be passing around any compiled code etc.
Ok, just put more than one project in the solution. There's no reason you can't have separate executable projects for separate tests.
I assumed that given the .h and .cpp files (with the correct settings), visual studio would be able to compile the project.
If all of the settings are the same, then, yes, it should compile fine, but why bother with the hassle when you don't have to?
Also AnkhSVN which isn't too bad and it's free. Also, lots of the windows it displays look like TFS (if you're familiar with it)
What's the best way to make Visual Studio 2008 and TortoiseSVN work well together (without spending any money)?
There are a bunch of programs that integrate SVN into Visual Studio. VisualSVN is one of them.
Apologies for the VisualSVN recommendation. We used to use it in an old project and I'm positive it was free then. Maybe they changed their license?

Building both DLL and static libs from the same project

I have a number of native C++ libraries (Win32, without MFC) compiling under Visual Studio 2005, and used in a number of solutions.
I'd like to be able to choose to compile and link them as either static libraries or DLLs, depending on the needs of the particular solution in which I'm using them.
What's the best way to do this? I've considered these approaches:
1. Multiple project files
Example: "foo_static.vcproj" vs "foo_dll.vcproj"
Pro: easy to generate for new libraries, not too much manual vcproj munging.
Con: settings, file lists, etc. in two places get out of sync too easily.
2. Single project file, multiple configurations
Example: "Debug | Win32" vs "Debug DLL | Win32", etc.
Pro: file lists are easier to keep in sync; compilation options are somewhat easier to keep in sync
Con: I build for both Win32 and Smart Device targets, so I already have multiple configurations; I don't want to make my combinatorial explosion worse ("Static library for FooPhone | WinMobile 6", "Dynamic library for FooPhone | WinMobile 6", "Static library for BarPda | WinMobile 6", etc.
Worse Con: VS 2005 has a bad habit of assuming that if you have a configuration defined for platform "Foo", then you really need it for all other platforms in your solution, and haphazardly inserts all permutations of configuration/platform configurations all over the affected vcproj files, whether valid or not. (Bug filed with MS; closed as WONTFIX.)
3. Single project file, selecting static or dynamic via vsprops files
Example: store the appropriate vcproj fragments in property sheet files, then apply the "FooApp Static Library" property sheet to config/platform combinations when you want static libs, and apply the "FooApp DLL" property sheet when you want DLLs.
Pros: This is what I really want to do!
Cons: It doesn't seem possible. It seems that the .vcproj attribute that switches between static and dynamic libraries (the ConfigurationType attribute of the Configuration element) isn't overrideable by the .vsprops file. Microsoft's published schema for these files lists only <Tool> and <UserMacro> elements.
EDIT: In case someone suggests it, I've also tried a more "clever" version of #3, in which I define a .vsprops containing a UserMacro called "ModuleConfigurationType" with a value of either "2" (DLL) or "4" (static library), and changed the configuration in the .vcproj to have ConfigurationType="$(ModuleConfigurationType)". Visual Studio silently and without warning removes the attribute and replaces it with ConfigurationType="1". So helpful!
Am I missing a better solution?
I may have missed something, but why can't you define the DLL project with no files, and just have it link the lib created by the other project?
And, with respect to settings, you can factor them out in vsprop files...
There is an easy way to create both static and dll lib versions in one project.
Create your dll project. Then do the following to it:
Simply create an nmake makefile or .bat file that runs the lib tool.
Basically, this is just this:
lib /NOLOGO /OUT:<your_lib_pathname> #<<
<list_all_of_your_obj_paths_here>
<<
Then, in your project, add a Post Build Event where the command just runs the .bat file (or nmake or perl). Then, you will always get both a dll and a static lib.
I'll refrain from denigrating visual studio for not allowing the tool for this to exist in a project just before Linker (in the tool flow).
I think the typical way this is done is choice 2 above. It is what I use and what I have seen done by a number of libraries and companies.
If you find it does not work for you then by all means use something else.
Good luck.
I prefer 2 configurations way.
Setup all common settings via 'All configurations' item in a project properties windows. After it separated settings. And it's done. Let's go coding.
Also there is very good feature named 'Batch build', which builds specified configurations by turn.
Multiple projects are the best way to go - this is the configuration i have most widely seen in umpteen no of projects that i have come across.
That said, it might be also possible to implement the third option by modifying your vcproj files on the fly from external tools(like a custom vbscript), that you could invoke from a make file. You can use shell variables to control the behavior of the tool.
Note that you should still use use visual studio to make the build, the makefile should only launch your external tool if required to make the mods and then follow that by the actual build command
I use Visual Studio 6.0 (Still) due to issues that are preventing us from Migrating to VS2005 or newer. Rebuilding causes severe issues (everything breaks)... so many of us are considering lobbying a migration to GnuC++ moving forward in a structured way to eventually get us off of licensed Visual Studio products and onto Eclipse and Linux.
In Unix/Linux it is easy to build for all configurations.. so I can't believe what a time and productivity sink it is to try and accomplish the same task in Visual Studio. For VS6.0 I have so far found that only having two separate projects seems to be workable. I haven't yet tried the multiple configuration technique, but will see if it works in the older VS6.0.
Why not go for version 1 and generate the second set of project files from the first using a script or something. That way you know that the differences are JUST the pieces required to build a dll or static lib.

Complex builds in Visual Studio

I have a few things that I cannot find a good way to perform in Visual Studio:
Pre-build step invokes a code generator that generates some source files which are later compiled. This can be solved to a limited extent by adding blank files to the project (which are later replaced with real generated files), but it does not work if I don't know names and/or the number of auto-generated source files. I can easily solve it in GNU make using $(wildcard generated/*.c). How can I do something similar with Visual Studio?
Can I prevent pre-build/post-build event running if the files do not need to be modified ("make" behaviour)? The current workaround is to write a wrapper script that will check timestamps for me, which works, but is a bit clunky.
What is a good way to locate external libraries and headers installed outside of VS? In *nix case, they would normally be installed in the system paths, or located with autoconf. I suppose I can specify paths with user-defined macros in project settings, but where is a good place to put these macros so they can be easily found and adjusted?
Just to be clear, I am aware that better Windows build systems exist (CMake, SCons), but they usually generate VS project files themselves, and I need to integrate this project into existing VS build system, so it is desirable that I have just plain VS project files, not generated ones.
If you need make behavior and are used to it, you can create visual studio makefile projects and include them in your project.
If you want less clunky, you can write visual studio macros and custom build events and tie them to specific build callbacks / hooks.
You can try something like workspacewhiz which will let you setup environment variables for your project, in a file format that can be checked in. Then users can alter them locally.
I've gone through this exact problem and I did get it working using Custom Build Rules.
But it was always a pain and worked poorly. I abandoned visual studio and went with a Makefile system using cygwin. Much better now.
cl.exe is the name of the VS compiler.
Update: I recently switched to using cmake, which comes with its own problems, and cmake can generate a visual studio solution. This seems to work well.
Specifically for #3, I use property pages to designate 3rd party library location settings (include paths, link paths, etc.). You can use User Macros from a parent or higher level property sheet to designate the starting point for the libraries themselves (if they are in a common root location), and then define individual sheets for each library using the base path macro. It's not automatic, but it is easy to maintain, and every developer can have a different root directory if necessary (it is in our environment).
One downside of this approach is that the include paths constructed this way are not included in the search paths for Visual Studio (unless you duplicate the definitions in the Projects and Directories settings for VS). I spoke to some MS people at PDC08 about getting this fixed for VS2010, and improving the interface in general, but no solid promises from them.
(1). I don't know a simple answer to this, but there are workarounds:
1a. If content of generated files does not clash (i.e. there is no common static identifiers etc.), you can add to the project a single file, such as AllGeneratedFiles.c, and modify your generator to append a #include "generated/file.c" to this file when it produces generated/file.c.
1b. Or you can create a separate makefile-based project for generated files and build them using nmake.
(2). Use a custom build rule instead of post-build event. You can add a custom build rule by right-clicking on the project name in the Solution Explorer and selecting Custom Build Rules.
(3). There is no standard way of doing this; it has to be defined on a per-project basis. One approach is to use environment variables to locate external dependencies. You can then use those environment variables in project properties. Add a readme.txt describing required tools and libraries and corresponding environment variables which the user has to set, and it should be easy enough for anyone to set up.
Depending on exactly what you are trying to do, you can sometimes have some luck with using a custom build step and setting your dependencies properly. It may be helpful to put all the generated code into its own project and then have your main project depend on it.