Sequential nonlinear optimization libraries in C++ WITH constraints - c++

Are there any good libraries in c++ for sequential nonlinear optimization with constraints?
I am looking for inequality constraints and/or upper and lower bounds.
There is a stackoverflow question already for this but not all of them have constraints.
I know of NLopt, but it doesn't work well for my specific problem. Are there any others?
I finally found the solution that i was looking for if any one else is interested lpOpt

One SQP algorithm that you could try is DONLP2. It was originally written in Fortran 77 but there is an ANSI C version as well. It uses dense algebra, so it is primarily suitable for small to medium-sized problems. It is free for academic use. You need to request the code directly from the author, follow the instructions in the link.
UPDATE Sequential Quadratic Programming is only one approach to solving non-linear objective functions with constraints, there is also for example interior point methods. One very good large-scale open-source C++ alternative that applies the interior point approach is Ipopt (already mentioned in another answer). There is also for example the commercial package KNITRO. If you cannot or do not want to provide objective function and constraints gradients, you could also have a look at COBYLA2, of which a C version can be downloaded here.
For further inspiration, you could also consult the Decision Tree For Optimization Software, which lists different optimization codes suitable for a wide range of different problems.

Related

Fast gradient-descent implementation in a C++ library? [duplicate]

I'm looking to run a gradient descent optimization to minimize the cost of an instantiation of variables. My program is very computationally expensive, so I'm looking for a popular library with a fast implementation of GD. What is the recommended library/reference?
GSL is a great (and free) library that already implements common functions of mathematical and scientific interest.
You can peruse through the entire reference manual online. Poking around, this starts to look interesting, but I think we'd need to know more about the problem.
It sounds like you're fairly new to minimization methods. Whenever I need to learn a new set of numeric methods, I usually look in Numerical Recipes. It's a book that provides a nice overview of the most common methods in the field, their tradeoffs, and (importantly) where to look in the literature for more information. It's usually not where I stop, but it's often a helpful starting point.
For example, if your function is costly, then your goal is to minimization the number of evaluations to need to converge. If you have analytical expressions for the gradient, then a gradient-based method will probably work to your advantage, assuming that the function and its gradient are well-behaved (lack singularities) in the domain of interest.
If you don't have analytical gradients, then you're almost always better off using an approach like downhill simplex that only evaluates the function (not its gradients). Numerical gradients are expensive.
Also note that all of these approaches will converge to local minima, so they're fairly sensitive to the point at which you initially start the optimizer. Global optimization is a totally different beast.
As a final thought, almost all of the code you can find for minimization will be reasonably efficient. The real cost of minimization is in the cost function. You should spend time profiling and optimizing your cost function, and select an algorithm that will minimize the number of times you need to call it (methods like downhill simplex, conjugate gradient, and BFGS all shine on different kinds of problems).
In terms of actual code, you can find a lot of nice routines at NETLIB, in addition to the other libraries that have been mentioned. Most of the routines are in FORTRAN 77, but not all; to convert them to C, f2c is quite useful.
One of the best respected libraries for this kind of optimization work is the NAG libraries. These are used all over the world in universities and industry. They're available for C / FORTRAN. They're very non-free, and contain a lot more than just minimisation functions - A lot of general numerical mathematics is covered.
Anyway I suspect this library is overkill for what you need. But here are the parts pertaining to minimisation: Local Minimisation and Global Minimization.
Try CPLEX which is available for free for students.

Genetic programming in c++, library suggestions? [closed]

Closed. This question is opinion-based. It is not currently accepting answers.
Want to improve this question? Update the question so it can be answered with facts and citations by editing this post.
Closed 3 years ago.
Improve this question
I'm looking to add some genetic algorithms to an Operations research project I have been involved in. Currently we have a program that aids in optimizing some scheduling and we want to add in some heuristics in the form of genetic algorithms. Are there any good libraries for generic genetic programming/algorithms in c++? Or would you recommend I just code my own?
I should add that while I am not new to c++ I am fairly new to doing this sort of mathematical optimization work in c++ as the group I worked with previously had tended to use a proprietary optimization package.
We have a fitness function that is fairly computationally intensive to evaluate and we have a cluster to run this on so parallelized code is highly desirable.
So is c++ a good language for this? If not please recommend some other ones as I am willing to learn another language if it makes life easier.
thanks!
I would recommend rolling your own. 90% of the work in a GP is coding the genotype, how it gets operated on, and the fitness calculation. These are parts that change for every different problem/project. The actual evolutionary algorithm part is usually quite simple.
There are several GP libraries out there ( http://en.wikipedia.org/wiki/Symbolic_Regression#Implementations ). I would use these as examples and references though.
C++ is a good choice for GP because they tend to be very computationally intensive. Usually, the fitness function is the bottleneck, so it's worthwhile to at least make this part compiled/optimized.
I use GAUL
it's a C library with all you want.
( pthread/fork/openmp/mpi )
( various crossover / mutation function )
( non GA optimisation: Hill-Climbing, N-M Simplex, Simulated annealling, Tabu, ... )
Why build your own library when there is such powerful tools ???
I haven't used this personally yet, but the Age Layered Population Structure (ALPS) method has been used to generate human competitive results and has been shown to outperform several popular methods in finding optimal solutions in rough fitness landscapes. Additionally, the link contains source code in C++ FTW.
I have had similar problems. I used to have a complicated problem and defining a solution in terms of a fixed length vector was not desirable. Even a variable length vector does not look attractive. Most of the libraries focus on cases where the cost function is cheap to calculate which did not match my problem. Lack of parallelism is their another pitfall. Expecting the user to allocate memory for being used by the library is adding insult into injury. My cases were even more complicated because most of the libraries check the nonlinear conditions before evaluation. While, I needed to check the nonlinear condition during or after the evaluation based on the result of the evaluation. It is also undesirable when I needed to evaluate the solution to calculate its cost and then I had to recalculate the solution to present it. In most of the cases, I had to write the cost function two times. Once for GA and once for presentation.
Having all of these problems, I eventually, designed my own openGA library which is now mature.
This library is based on C++ and distributed with free Mozilla Public License 2.0. It guarantees that using this library does not limit your project and it can be used for commercial or none commercial purposes for free without asking for any permission. Not all libraries are transparent in this sense.
It supports three modes of single objective, multiple objective (NSGA-III) and Interactive Genetic Algorithm (IGA).
The solution is not mandated to be a vector. It can be any structure with any customized design containing any optional values with variable length. This feature makes this library suitable for Genetic Programming (GP) applications.
C++11 is used. Template feature allows flexibility of the solution structure design.
The standard library is enough to use this library. There is no dependency beyond that. The entire library is also a single header file for ease of use.
The library supports parallelism by default unless you turn it off. If you have an N-core CPU, the number of threads are set to N by default. You can change the settings. You can also set if the solution evaluations are distributed between threads equally or they are assigned to any thread which has finished its job and is currently idle.
The solution evaluation is separated from calculation of the final cost. It means that your evaluation function can simulate the system and keep a lot of information. Your cost function is called later and reports the cost based on the evaluation. While your evaluation results are kept to be used later by the user. You do not need to re-calculate it again.
You can reject a solution at any time during the evaluation. No waste of time. In fact, the evaluation and constraint check are integrated.
The GA assist feature help you to produce the C++ code base from the information you provide.
If these features match what you need, I recommend having a look at the user manual and the examples of openGA.
The number of the readers and citation of the related publication as well as its github favorite marks is increasing and its usage is keep growing.
I suggest you have a look into the matlab optimization toolkit - it comes with GAs out of the box, you only haver to code the fitness function (and a function to generate inital population eventually) and I believe matlab has some C++ interoperability so you could code you functions in C++. I am using it for my experiments and a very nice feature is that you get all sorts of charts out of the box as well.
Said so - if your aim is to learn about genetic algorithms you're better off coding it, but if you just want to run experiments matlab and C++ (or even just matlab) is a good option.

What are the most widely used C++ vector/matrix math/linear algebra libraries, and their cost and benefit tradeoffs? [closed]

Closed. This question does not meet Stack Overflow guidelines. It is not currently accepting answers.
We don’t allow questions seeking recommendations for books, tools, software libraries, and more. You can edit the question so it can be answered with facts and citations.
Closed 5 years ago.
Improve this question
It seems that many projects slowly come upon a need to do matrix math, and fall into the trap of first building some vector classes and slowly adding in functionality until they get caught building a half-assed custom linear algebra library, and depending on it.
I'd like to avoid that while not building in a dependence on some tangentially related library (e.g. OpenCV, OpenSceneGraph).
What are the commonly used matrix math/linear algebra libraries out there, and why would decide to use one over another? Are there any that would be advised against using for some reason? I am specifically using this in a geometric/time context*(2,3,4 Dim)* but may be using higher dimensional data in the future.
I'm looking for differences with respect to any of: API, speed, memory use, breadth/completeness, narrowness/specificness, extensibility, and/or maturity/stability.
Update
I ended up using Eigen3 which I am extremely happy with.
There are quite a few projects that have settled on the Generic Graphics Toolkit for this. The GMTL in there is nice - it's quite small, very functional, and been used widely enough to be very reliable. OpenSG, VRJuggler, and other projects have all switched to using this instead of their own hand-rolled vertor/matrix math.
I've found it quite nice - it does everything via templates, so it's very flexible, and very fast.
Edit:
After the comments discussion, and edits, I thought I'd throw out some more information about the benefits and downsides to specific implementations, and why you might choose one over the other, given your situation.
GMTL -
Benefits: Simple API, specifically designed for graphics engines. Includes many primitive types geared towards rendering (such as planes, AABB, quatenrions with multiple interpolation, etc) that aren't in any other packages. Very low memory overhead, quite fast, easy to use.
Downsides: API is very focused specifically on rendering and graphics. Doesn't include general purpose (NxM) matrices, matrix decomposition and solving, etc, since these are outside the realm of traditional graphics/geometry applications.
Eigen -
Benefits: Clean API, fairly easy to use. Includes a Geometry module with quaternions and geometric transforms. Low memory overhead. Full, highly performant solving of large NxN matrices and other general purpose mathematical routines.
Downsides: May be a bit larger scope than you are wanting (?). Fewer geometric/rendering specific routines when compared to GMTL (ie: Euler angle definitions, etc).
IMSL -
Benefits: Very complete numeric library. Very, very fast (supposedly the fastest solver). By far the largest, most complete mathematical API. Commercially supported, mature, and stable.
Downsides: Cost - not inexpensive. Very few geometric/rendering specific methods, so you'll need to roll your own on top of their linear algebra classes.
NT2 -
Benefits: Provides syntax that is more familiar if you're used to MATLAB. Provides full decomposition and solving for large matrices, etc.
Downsides: Mathematical, not rendering focused. Probably not as performant as Eigen.
LAPACK -
Benefits: Very stable, proven algorithms. Been around for a long time. Complete matrix solving, etc. Many options for obscure mathematics.
Downsides: Not as highly performant in some cases. Ported from Fortran, with odd API for usage.
Personally, for me, it comes down to a single question - how are you planning to use this. If you're focus is just on rendering and graphics, I like Generic Graphics Toolkit, since it performs well, and supports many useful rendering operations out of the box without having to implement your own. If you need general purpose matrix solving (ie: SVD or LU decomposition of large matrices), I'd go with Eigen, since it handles that, provides some geometric operations, and is very performant with large matrix solutions. You may need to write more of your own graphics/geometric operations (on top of their matrices/vectors), but that's not horrible.
So I'm a pretty critical person, and figure if I'm going to invest in a library, I'd better know what I'm getting myself into. I figure it's better to go heavy on the criticism and light on the flattery when scrutinizing; what's wrong with it has many more implications for the future than what's right. So I'm going to go overboard here a little bit to provide the kind of answer that would have helped me and I hope will help others who may journey down this path. Keep in mind that this is based on what little reviewing/testing I've done with these libs. Oh and I stole some of the positive description from Reed.
I'll mention up top that I went with GMTL despite it's idiosyncrasies because the Eigen2 unsafeness was too big of a downside. But I've recently learned that the next release of Eigen2 will contain defines that will shut off the alignment code, and make it safe. So I may switch over.
Update: I've switched to Eigen3. Despite it's idiosyncrasies, its scope and elegance are too hard to ignore, and the optimizations which make it unsafe can be turned off with a define.
Eigen2/Eigen3
Benefits: LGPL MPL2, Clean, well designed API, fairly easy to use. Seems to be well maintained with a vibrant community. Low memory overhead. High performance. Made for general linear algebra, but good geometric functionality available as well. All header lib, no linking required.
Idiocyncracies/downsides: (Some/all of these can be avoided by some defines that are available in the current development branch Eigen3)
Unsafe performance optimizations result in needing careful following of rules. Failure to follow rules causes crashes.
you simply cannot safely pass-by-value
use of Eigen types as members requires special allocator customization (or you crash)
use with stl container types and possibly other templates required
special allocation customization (or you will crash)
certain compilers need special care to prevent crashes on function calls (GCC windows)
GMTL
Benefits: LGPL, Fairly Simple API, specifically designed for graphics engines.
Includes many primitive types geared towards rendering (such as
planes, AABB, quatenrions with multiple interpolation, etc) that
aren't in any other packages. Very low memory overhead, quite fast,
easy to use. All header based, no linking necessary.
Idiocyncracies/downsides:
API is quirky
what might be myVec.x() in another lib is only available via myVec[0] (Readability problem)
an array or stl::vector of points may cause you to do something like pointsList[0][0] to access the x component of the first point
in a naive attempt at optimization, removed cross(vec,vec) and
replaced with makeCross(vec,vec,vec) when compiler eliminates
unnecessary temps anyway
normal math operations don't return normal types unless you shut
off some optimization features e.g.: vec1 - vec2 does not return a
normal vector so length( vecA - vecB ) fails even though vecC = vecA -
vecB works. You must wrap like: length( Vec( vecA - vecB ) )
operations on vectors are provided by external functions rather than
members. This may require you to use the scope resolution everywhere
since common symbol names may collide
you have to do
length( makeCross( vecA, vecB ) )
or
gmtl::length( gmtl::makeCross( vecA, vecB ) )
where otherwise you might try
vecA.cross( vecB ).length()
not well maintained
still claimed as "beta"
documentation missing basic info like which headers are needed to
use normal functionalty
Vec.h does not contain operations for Vectors, VecOps.h contains
some, others are in Generate.h for example. cross(vec&,vec&,vec&) in
VecOps.h, [make]cross(vec&,vec&) in Generate.h
immature/unstable API; still changing.
For example "cross" has moved from "VecOps.h" to "Generate.h", and
then the name was changed to "makeCross". Documentation examples fail
because still refer to old versions of functions that no-longer exist.
NT2
Can't tell because they seem to be more interested in the fractal image header of their web page than the content. Looks more like an academic project than a serious software project.
Latest release over 2 years ago.
Apparently no documentation in English though supposedly there is something in French somewhere.
Cant find a trace of a community around the project.
LAPACK & BLAS
Benefits: Old and mature.
Downsides:
old as dinosaurs with really crappy APIs
For what it's worth, I've tried both Eigen and Armadillo. Below is a brief evaluation.
Eigen
Advantages:
1. Completely self-contained -- no dependence on external BLAS or LAPACK.
2. Documentation decent.
3. Purportedly fast, although I haven't put it to the test.
Disadvantage:
The QR algorithm returns just a single matrix, with the R matrix embedded in the upper triangle. No idea where the rest of the matrix comes from, and no Q matrix can be accessed.
Armadillo
Advantages:
1. Wide range of decompositions and other functions (including QR).
2. Reasonably fast (uses expression templates), but again, I haven't really pushed it to high dimensions.
Disadvantages:
1. Depends on external BLAS and/or LAPACK for matrix decompositions.
2. Documentation is lacking IMHO (including the specifics wrt LAPACK, other than changing a #define statement).
Would be nice if an open source library were available that is self-contained and straightforward to use. I have run into this same issue for 10 years, and it gets frustrating. At one point, I used GSL for C and wrote C++ wrappers around it, but with modern C++ -- especially using the advantages of expression templates -- we shouldn't have to mess with C in the 21st century. Just my tuppencehapenny.
If you are looking for high performance matrix/linear algebra/optimization on Intel processors, I'd look at Intel's MKL library.
MKL is carefully optimized for fast run-time performance - much of it based on the very mature BLAS/LAPACK fortran standards. And its performance scales with the number of cores available. Hands-free scalability with available cores is the future of computing and I wouldn't use any math library for a new project doesn't support multi-core processors.
Very briefly, it includes:
Basic vector-vector, vector-matrix,
and matrix-matrix operations
Matrix factorization (LU decomp, hermitian,sparse)
Least squares fitting and eigenvalue problems
Sparse linear system solvers
Non-linear least squares solver (trust regions)
Plus signal processing routines such as FFT and convolution
Very fast random number generators (mersenne twist)
Much more.... see: link text
A downside is that the MKL API can be quite complex depending on the routines that you need. You could also take a look at their IPP (Integrated Performance Primitives) library which is geared toward high performance image processing operations, but is nevertheless quite broad.
Paul
CenterSpace Software ,.NET Math libraries, centerspace.net
What about GLM?
It's based on the OpenGL Shading Language (GLSL) specification and released under the MIT license.
Clearly aimed at graphics programmers
I've heard good things about Eigen and NT2, but haven't personally used either. There's also Boost.UBLAS, which I believe is getting a bit long in the tooth. The developers of NT2 are building the next version with the intention of getting it into Boost, so that might count for somthing.
My lin. alg. needs don't exteed beyond the 4x4 matrix case, so I can't comment on advanced functionality; I'm just pointing out some options.
I'm new to this topic, so I can't say a whole lot, but BLAS is pretty much the standard in scientific computing. BLAS is actually an API standard, which has many implementations. I'm honestly not sure which implementations are most popular or why.
If you want to also be able to do common linear algebra operations (solving systems, least squares regression, decomposition, etc.) look into LAPACK.
I'll add vote for Eigen: I ported a lot of code (3D geometry, linear algebra and differential equations) from different libraries to this one - improving both performance and code readability in almost all cases.
One advantage that wasn't mentioned: it's very easy to use SSE with Eigen, which significantly improves performance of 2D-3D operations (where everything can be padded to 128 bits).
Okay, I think I know what you're looking for. It appears that GGT is a pretty good solution, as Reed Copsey suggested.
Personally, we rolled our own little library, because we deal with rational points a lot - lots of rational NURBS and Beziers.
It turns out that most 3D graphics libraries do computations with projective points that have no basis in projective math, because that's what gets you the answer you want. We ended up using Grassmann points, which have a solid theoretical underpinning and decreased the number of point types. Grassmann points are basically the same computations people are using now, with the benefit of a robust theory. Most importantly, it makes things clearer in our minds, so we have fewer bugs. Ron Goldman wrote a paper on Grassmann points in computer graphics called "On the Algebraic and Geometric Foundations of Computer Graphics".
Not directly related to your question, but an interesting read.
FLENS
http://flens.sf.net
It also implements a lot of LAPACK functions.
I found this library quite simple and functional (http://kirillsprograms.com/top_Vectors.php). These are bare bone vectors implemented via C++ templates. No fancy stuff - just what you need to do with vectors (add, subtract multiply, dot, etc).

Matrix classes in c++

I'm doing some linear algebra math, and was looking for some really lightweight and simple to use matrix class that could handle different dimensions: 2x2, 2x1, 3x1 and 1x2 basically.
I presume such class could be implemented with templates and using some specialization in some cases, for performance.
Anybody know of any simple implementation available for use? I don't want "bloated" implementations, as I'll running this in an embedded environment where memory is constrained.
Thanks
You could try Blitz++ -- or Boost's uBLAS
I've recently looked at a variety of C++ matrix libraries, and my vote goes to Armadillo.
The library is heavily templated and header-only.
Armadillo also leverages templates to implement a delayed evaluation framework (resolved at compile time) to minimize temporaries in the generated code (resulting in reduced memory usage and increased performance).
However, these advanced features are only a burden to the compiler and not your implementation running in the embedded environment, because most Armadillo code 'evaporates' during compilation due to its design approach based on templates.
And despite all that, one of its main design goals has been ease of use - the API is deliberately similar in style to Matlab syntax (see the comparison table on the site).
Additionally, although Armadillo can work standalone, you might want to consider using it with LAPACK (and BLAS) implementations available to improve performance. A good option would be for instance OpenBLAS (or ATLAS). Check Armadillo's FAQ, it covers some important topics.
A quick search on Google dug up this presentation showing that Armadillo has already been used in embedded systems.
std::valarray is pretty lightweight.
I use Newmat libraries for matrix computations. It's open source and easy to use, although I'm not sure it fits your definition of lightweight (it includes over 50 source files which Visual Studio compiles it into a 1.8MB static library).
CML matrix is pretty good, but may not be lightweight enough for an embedded environment. Check it out anyway: http://cmldev.net/?p=418
Another option, altough may be too late is:
https://launchpad.net/lwmatrix
I for one wasn't able to find simple enough library so I wrote it myself: http://koti.welho.com/aarpikar/lib/
I think it should be able to handle different matrix dimensions (2x2, 3x3, 3x1, etc) by simply setting some rows or columns to zero. It won't be the most fastest approach since internally all operations will be done with 4x4 matrices. Although in theory there might exist that kind of processors that can handle 4x4-operations in one tick. At least I would much rather believe in existence of such processors that than go optimizing those low level matrix calculations. :)
How about just store the matrix in an array, like
2x3 matrix = {2,3,val1,val2,...,val6}
This is really simple, and addition operations are trivial. However, you need to write your own multiplication function.

Open source C++ library for vector mathematics

I would need some basic vector mathematics constructs in an application. Dot product, cross product. Finding the intersection of lines, that kind of stuff.
I can do this by myself (in fact, have already) but isn't there a "standard" to use so bugs and possible optimizations would not be on me?
Boost does not have it. Their mathematics part is about statistical functions, as far as I was able to see.
Addendum:
Boost 1.37 indeed seems to have this. They also gracefully introduce a number of other solutions at the field, and why they still went and did their own. I like that.
Re-check that ol'good friend of C++ programmers called Boost. It has a linear algebra package that may well suits your needs.
I've not tested it, but the C++ eigen library is becoming increasingly more popular these days. According to them, they are on par with the fastest libraries around there and their API looks quite neat to me.
Armadillo
Armadillo employs a delayed evaluation
approach to combine several operations
into one and reduce (or eliminate) the
need for temporaries. Where
applicable, the order of operations is
optimised. Delayed evaluation and
optimisation are achieved through
recursive templates and template
meta-programming.
While chained operations such as
addition, subtraction and
multiplication (matrix and
element-wise) are the primary targets
for speed-up opportunities, other
operations, such as manipulation of
submatrices, can also be optimised.
Care was taken to maintain efficiency
for both "small" and "big" matrices.
I would stay away from using NRC code for anything other than learning the concepts.
I think what you are looking for is Blitz++
Check www.netlib.org, which is maintained by Oak Ridge National Lab and the University of Tennessee. You can search for numerical packages there. There's also Numerical Recipes in C++, which has code that goes with it, but the C++ version of the book is somewhat expensive and I've heard the code described as "terrible." The C and FORTRAN versions are free, and the associated code is quite good.
There is a nice Vector library for 3d graphics in the prophecy SDK:
Check out http://www.twilight3d.com/downloads.html
For linear algebra: try JAMA/TNT . That would cover dot products. (+matrix factoring and other stuff) As far as vector cross products (really valid only for 3D, otherwise I think you get into tensors), I'm not sure.
For an extremely lightweight (single .h file) library, check out CImg. It's geared towards image processing, but has no problem handling vectors.