watershed segmentation opencv xcode - c++

I am now learning a code from the opencv codebook (OpenCV 2 Computer Vision Application Programming Cookbook): Chapter 5, Segmenting images using watersheds, page 131.
Here is my main code:
#include "opencv2/opencv.hpp"
#include <string>
using namespace cv;
using namespace std;
class WatershedSegmenter {
private:
cv::Mat markers;
public:
void setMarkers(const cv::Mat& markerImage){
markerImage.convertTo(markers, CV_32S);
}
cv::Mat process(const cv::Mat &image){
cv::watershed(image,markers);
return markers;
}
};
int main ()
{
cv::Mat image = cv::imread("/Users/yaozhongsong/Pictures/IMG_1648.JPG");
// Eliminate noise and smaller objects
cv::Mat fg;
cv::erode(binary,fg,cv::Mat(),cv::Point(-1,-1),6);
// Identify image pixels without objects
cv::Mat bg;
cv::dilate(binary,bg,cv::Mat(),cv::Point(-1,-1),6);
cv::threshold(bg,bg,1,128,cv::THRESH_BINARY_INV);
// Create markers image
cv::Mat markers(binary.size(),CV_8U,cv::Scalar(0));
markers= fg+bg;
// Create watershed segmentation object
WatershedSegmenter segmenter;
// Set markers and process
segmenter.setMarkers(markers);
segmenter.process(image);
imshow("a",image);
std::cout<<".";
cv::waitKey(0);
}
However, it doesn't work. How could I initialize a binary image? And how could I make this segmentation code work?
I am not very clear about this part of the book.
Thanks in advance!

There's a couple of things that should be mentioned about your code:
Watershed expects the input and the output image to have the same size;
You probably want to get rid of the const parameters in the methods;
Notice that the result of watershed is actually markers and not image as your code suggests; About that, you need to grab the return of process()!
This is your code, with the fixes above:
// Usage: ./app input.jpg
#include "opencv2/opencv.hpp"
#include <string>
using namespace cv;
using namespace std;
class WatershedSegmenter{
private:
cv::Mat markers;
public:
void setMarkers(cv::Mat& markerImage)
{
markerImage.convertTo(markers, CV_32S);
}
cv::Mat process(cv::Mat &image)
{
cv::watershed(image, markers);
markers.convertTo(markers,CV_8U);
return markers;
}
};
int main(int argc, char* argv[])
{
cv::Mat image = cv::imread(argv[1]);
cv::Mat binary;// = cv::imread(argv[2], 0);
cv::cvtColor(image, binary, CV_BGR2GRAY);
cv::threshold(binary, binary, 100, 255, THRESH_BINARY);
imshow("originalimage", image);
imshow("originalbinary", binary);
// Eliminate noise and smaller objects
cv::Mat fg;
cv::erode(binary,fg,cv::Mat(),cv::Point(-1,-1),2);
imshow("fg", fg);
// Identify image pixels without objects
cv::Mat bg;
cv::dilate(binary,bg,cv::Mat(),cv::Point(-1,-1),3);
cv::threshold(bg,bg,1, 128,cv::THRESH_BINARY_INV);
imshow("bg", bg);
// Create markers image
cv::Mat markers(binary.size(),CV_8U,cv::Scalar(0));
markers= fg+bg;
imshow("markers", markers);
// Create watershed segmentation object
WatershedSegmenter segmenter;
segmenter.setMarkers(markers);
cv::Mat result = segmenter.process(image);
result.convertTo(result,CV_8U);
imshow("final_result", result);
cv::waitKey(0);
return 0;
}
I took the liberty of using Abid's input image for testing and this is what I got:

Below is the simplified version of your code, and it works fine for me. Check it out :
#include "opencv2/objdetect/objdetect.hpp"
#include "opencv2/highgui/highgui.hpp"
#include "opencv2/imgproc/imgproc.hpp"
using namespace cv;
using namespace std;
int main ()
{
Mat image = imread("sofwatershed.jpg");
Mat binary = imread("sofwsthresh.png",0);
// Eliminate noise and smaller objects
Mat fg;
erode(binary,fg,Mat(),Point(-1,-1),2);
// Identify image pixels without objects
Mat bg;
dilate(binary,bg,Mat(),Point(-1,-1),3);
threshold(bg,bg,1,128,THRESH_BINARY_INV);
// Create markers image
Mat markers(binary.size(),CV_8U,Scalar(0));
markers= fg+bg;
markers.convertTo(markers, CV_32S);
watershed(image,markers);
markers.convertTo(markers,CV_8U);
imshow("a",markers);
waitKey(0);
}
Below is my input image :
Below is my output image :
See the code explanation here : Simple watershed Sample in OpenCV

I had the same problem as you, following the exact same code sample of the cookbook (great book btw).
Just to place the matter I was coding under Visual Studio 2013 and OpenCV 2.4.8. After a lot of searching and no solutions I decided to change the IDE.
It's still Visual Studio BUT it's 2010!!!! And boom it works!
Becareful of how you configure Visual Studio with OpenCV. Here's a great tutorial for installation here
Good day to all

Related

How to copy a rectangular area of a Mat a new Mat of the same size?

How can I save an area of one image in a new image with the same size as the first image?
For example if I had an image like this:
I want to create another image like this:
This is what I tried:
#include <opencv2/opencv.hpp>
#include "iostream"
using namespace cv;
using namespace std;
int main()
{
Mat src = imread("1.png");
Mat dst;
src(Rect(85, 45, 100, 100)).copyTo(dst);
imshow("tmask", dst);
waitKey(0);
return 0;
}
But the result will be like this:
which is not what I wanted.
It is necessary for the program to not initialize the size of Mat dst for reasons that are too long to write here.
How can I generate the second image above (dst) without initializing the size of it?
create a new image and copy the subimage to roi
cv:: Mat img = cv::imread(...);
cv::Rect roi(x,y,w,h);
cv::Mat subimage= img(roi); // embedded
cv::Mat subimageCopied = subimage.clone(); // copied
cv::Mat newImage=cv::Mat::zeros(img.size(), img.type);
img(roi).copyTo(newImage(roi)); // this line is what you want.
If you have access to the original image, but are not allowed to use its siute information, you can use .copyTo with a mask, but then you have to use the size information to create the mask...

Isolate image shadow with OpenCV C++

I have seen some algorithms on how to remove a shadow from an image using OpenCV with C++. I have looked around but haven't find the way to not just erase the shadow, but store it on a new image alone.
What I am doing with this code is to convert the original image (that I obtained from the Internet) to the HSV color space, change the value of V=180, which somehow removes the shadow, and then converting the image back to the BGR color space. I am clueless on how to 'extract' the removed shadow and save it to a different image...
#include <opencv2/core/core.hpp>
#include <opencv2/highgui/highgui.hpp>
#include <opencv2/imgproc.hpp>
using namespace cv;
using namespace std;
int main()
{
Mat srcImg;
Mat hsvImg;
Mat bgrImg;
srcImg = imread("pcb-2008.jpg");
cvtColor(srcImg, hsvImg, CV_BGR2HSV);
imwrite("1.hsv.jpg", hsvImg);
Mat channel[3];
split(hsvImg, channel);
channel[2] = Mat(hsvImg.rows, hsvImg.cols, CV_8UC1, 180);
merge(channel, 3, hsvImg);
imwrite("2.hsvNoShadow.jpg", hsvImg);
cvtColor(hsvImg, bgrImg, CV_HSV2BGR);
imwrite("3.backToBgr.jpg", bgrImg);
return 0;
}
Sample image of a PCB

OpenCV SIFT key points extraction isuue

I tried to extract SIFT key points. It is working fine for a sample image I downloaded (height 400px width 247px horizontal and vertical resolutions 300dpi). Below image shows the extracted points.
Then I tried to apply the same code to a image that was taken and edited by me (height 443px width 541px horizontal and vertical resolutions 72dpi).
To create the above image I rotated the original image then removed its background and resized it using Photoshop, but my code, for that image doesn't extract features like in the first image.
See the result :
It just extract very few points. I expect a result as in the first case.
For the second case when I'm using the original image without any edit the program gives points as the first case.
Here is the simple code I have used
#include<opencv\cv.h>
#include<opencv\highgui.h>
#include<opencv2\nonfree\nonfree.hpp>
using namespace cv;
int main(){
Mat src, descriptors,dest;
vector<KeyPoint> keypoints;
src = imread(". . .");
cvtColor(src, src, CV_BGR2GRAY);
SIFT sift;
sift(src, src, keypoints, descriptors, false);
drawKeypoints(src, keypoints, dest);
imshow("Sift", dest);
cvWaitKey(0);
return 0;
}
What I'm doing wrong here? what do I need to do to get a result like in the first case to my own image after resizing ?
Thank you!
Try set nfeatures parameter (may be other parameters also need adjustment) in SIFT constructor.
Here is constructor definition from reference:
SIFT::SIFT(int nfeatures=0, int nOctaveLayers=3, double contrastThreshold=0.04, double edgeThreshold=10, double sigma=1.6)
Your code will be:
#include<opencv\cv.h>
#include<opencv\highgui.h>
#include<opencv2\nonfree\nonfree.hpp>
using namespace cv;
using namespace std;
int main(){
Mat src, descriptors,dest;
vector<KeyPoint> keypoints;
src = imread("D:\\ImagesForTest\\leaf.jpg");
cvtColor(src, src, CV_BGR2GRAY);
SIFT sift(2000,3,0.004);
sift(src, src, keypoints, descriptors, false);
drawKeypoints(src, keypoints, dest);
imshow("Sift", dest);
cvWaitKey(0);
return 0;
}
The result:
Dense sampling example:
#include <iostream>
#include <opencv2/opencv.hpp>
#include <opencv2/imgproc/imgproc.hpp>
#include <opencv2/highgui/highgui.hpp>
#include <opencv2/features2d/features2d.hpp>
#include "opencv2/nonfree/nonfree.hpp"
int main(int argc, char* argv[])
{
cv::initModule_nonfree();
cv::namedWindow("result");
cv::Mat bgr_img = cv::imread("D:\\ImagesForTest\\lena.jpg");
if (bgr_img.empty())
{
exit(EXIT_FAILURE);
}
cv::Mat gray_img;
cv::cvtColor(bgr_img, gray_img, cv::COLOR_BGR2GRAY);
cv::normalize(gray_img, gray_img, 0, 255, cv::NORM_MINMAX);
cv::DenseFeatureDetector detector(12.0f, 1, 0.1f, 10);
std::vector<cv::KeyPoint> keypoints;
detector.detect(gray_img, keypoints);
std::vector<cv::KeyPoint>::iterator itk;
for (itk = keypoints.begin(); itk != keypoints.end(); ++itk)
{
std::cout << itk->pt << std::endl;
cv::circle(bgr_img, itk->pt, itk->size, cv::Scalar(0,255,255), 1, CV_AA);
cv::circle(bgr_img, itk->pt, 1, cv::Scalar(0,255,0), -1);
}
cv::Ptr<cv::DescriptorExtractor> descriptorExtractor = cv::DescriptorExtractor::create("SURF");
cv::Mat descriptors;
descriptorExtractor->compute( gray_img, keypoints, descriptors);
// SIFT returns large negative values when it goes off the edge of the image.
descriptors.setTo(0, descriptors<0);
imshow("result",bgr_img);
cv::waitKey();
return 0;
}
The result:

Image edge smoothing with opencv

I am trying to smooth output image edges using opencv framework, I am trying following steps. Steps took from here https://stackoverflow.com/a/17175381/790842
int lowThreshold = 10.0;
int ratio = 3;
int kernel_size = 3;
Mat src_gray,detected_edges,dst,blurred;
/// Convert the image to grayscale
cvtColor( result, src_gray, CV_BGR2GRAY );
/// Reduce noise with a kernel 3x3
cv::blur( src_gray, detected_edges, cv::Size(5,5) );
/// Canny detector
cv::Canny( detected_edges, detected_edges, lowThreshold, lowThreshold*ratio, kernel_size );
//Works fine upto here I am getting perfect edge mask
cv::dilate(detected_edges, blurred, result);
//I get Assertion failed (src.channels() == 1 && func != 0) in countNonZero ERROR while doing dilate
result.copyTo(blurred, blurred);
cv::blur(blurred, blurred, cv::Size(3.0,3.0));
blurred.copyTo(result, detected_edges);
UIImage *image = [UIImageCVMatConverter UIImageFromCVMat:result];
I want help whether if I am going in right way, or what am I missing?
Thanks for any suggestion and help.
Updated:
I have got an image like below got from grabcut algorithm, now I want to apply edge smoothening to the image, as you can see the image is not smooth.
Do you want to get something like this?
If yes, then here is the code:
#include <iostream>
#include <vector>
#include <string>
#include <fstream>
#include <opencv2/opencv.hpp>
using namespace cv;
using namespace std;
int main(int argc, char **argv)
{
cv::namedWindow("result");
Mat img=imread("TestImg.png");
Mat whole_image=imread("D:\\ImagesForTest\\lena.jpg");
whole_image.convertTo(whole_image,CV_32FC3,1.0/255.0);
cv::resize(whole_image,whole_image,img.size());
img.convertTo(img,CV_32FC3,1.0/255.0);
Mat bg=Mat(img.size(),CV_32FC3);
bg=Scalar(1.0,1.0,1.0);
// Prepare mask
Mat mask;
Mat img_gray;
cv::cvtColor(img,img_gray,cv::COLOR_BGR2GRAY);
img_gray.convertTo(mask,CV_32FC1);
threshold(1.0-mask,mask,0.9,1.0,cv::THRESH_BINARY_INV);
cv::GaussianBlur(mask,mask,Size(21,21),11.0);
imshow("result",mask);
cv::waitKey(0);
// Reget the image fragment with smoothed mask
Mat res;
vector<Mat> ch_img(3);
vector<Mat> ch_bg(3);
cv::split(whole_image,ch_img);
cv::split(bg,ch_bg);
ch_img[0]=ch_img[0].mul(mask)+ch_bg[0].mul(1.0-mask);
ch_img[1]=ch_img[1].mul(mask)+ch_bg[1].mul(1.0-mask);
ch_img[2]=ch_img[2].mul(mask)+ch_bg[2].mul(1.0-mask);
cv::merge(ch_img,res);
cv::merge(ch_bg,bg);
imshow("result",res);
cv::waitKey(0);
cv::destroyAllWindows();
}
And I think this link will be interestiong for you too: Poisson Blending
I have followed the following steps to smooth the edges of the Foreground I got from GrabCut.
Create a binary image from the mask I got from GrabCut.
Find the contour of the binary image.
Create an Edge Mask by drawing the contour points. It gives the boundary edges of the Foreground image I got from GrabCut.
Then follow the steps define in https://stackoverflow.com/a/17175381/790842

Image Contour Detection Error: OpenCV, C++

I am trying to write a program to detect contours within an image using OpenCV in the C++ environment.
The problem with it is that I don't get a compile error, but instead a runtime error. I have no idea why; I followed the book and OpenCV documentation sources to build the code below and it should work fine but it doesn't... any ideas on what might be wrong...?
#include "iostream"
#include<opencv\cv.h>
#include<opencv\highgui.h>
#include<opencv\ml.h>
#include<opencv\cxcore.h>
#include <iostream>
#include <string>
#include <opencv2/core/core.hpp> // Basic OpenCV structures (cv::Mat)
#include <opencv2/highgui/highgui.hpp> // Video write
using namespace cv;
using namespace std;
Mat image; Mat image_gray; Mat image_gray2; Mat threshold_output;
int thresh=100, max_thresh=255;
int main(int argc, char** argv) {
//Load Image
image =imread("C:/Users/Tomazi/Pictures/Opencv/ayo.bmp");
//Convert Image to gray & blur it
cvtColor( image,
image_gray,
CV_BGR2GRAY );
blur( image_gray,
image_gray2,
Size(3,3) );
//Threshold Gray&Blur Image
threshold(image_gray2,
threshold_output,
thresh,
max_thresh,
THRESH_BINARY);
//2D Container
vector<vector<Point>> contours;
//Fnd Countours Points, (Imput Image, Storage, Mode1, Mode2, Offset??)
findContours(threshold_output,
contours, // a vector of contours
CV_RETR_EXTERNAL, // retrieve the external contours
CV_CHAIN_APPROX_NONE,
Point(0, 0)); // all pixels of each contours
// Draw black contours on a white image
Mat result(threshold_output.size(),CV_8U,Scalar(255));
drawContours(result,contours,
-1, // draw all contours
Scalar(0), // in black
2); // with a thickness of 2
//Create Window
char* DisplayWindow = "Source";
namedWindow(DisplayWindow, CV_WINDOW_AUTOSIZE);
imshow(DisplayWindow, contours);
waitKey(0);
return 1;
}
I bet that you are using the MSVC IDE. Anyway, your code has a lot of problems and I've covered most of them on Stackoverflow. Here they go:
Escape the slashes
Code safely and check the return of the calls
How Visual Studio loads files at runtime
I suspect that your problem is that imread() is failing because it didn't found the file. The links above will help you fix that.