Are void* pointer and pointer to some structure (layout-) compatible? - c++

In other words, may I reinterpret (not convert!) void* pointer as a pointer to some structure type (assuming that the void* pointer really holds properly converted valid structure address)
Actually I'm interesting in the following scenario:
typedef struct void_struct void_struct_t;
typedef somestruct
{
int member;
// ... other members ...
}somestruct_t;
union
{
void* pv;
void_struct_t* pvs;
somestruct_t* ps;
}u;
somestruct_t s={};
u.pv= &s;
u.ps->member=1; // (Case 1) Ok? unspecified? UB?
u.pvs=(void_struct_t*)&s;
u.ps->member=1; // (Case 2) )Ok?
What I found in the C11 standard is rather dissapointing for the Case 1:
§6.2.5
28 A pointer to void shall have the same representation and alignment requirements as a
pointer to a character type.[footnote: The same representation and alignment requirements
are meant to imply interchangeability as arguments to functions, return values from
functions, and members of unions.] Similarly, pointers to qualified or unqualified
versions of compatible types shall have the same representation and alignment
requirements. All pointers to structure types shall have the same representation and
alignment requirements as each other. All pointers to union types shall have the same
representation and alignment requirements as each other. Pointers to other types need not
have the same representation or alignment requirements.
It seems, though, that Case 2 is valid, but I'm not 100% sure...
The question is mostly C-oriented, but I'm interesting in C++ too (I'd want the code would be valid while compiling by C++ compiler). Honestly, I found even less in C++11 standard, so even Case 2 seems questionable for me... however, may be I'm missing something.
[edit]
What is the real problem behind this question?
I have a (potentially large) set of types defined as structs.
For each type I need to define a companion type:
typedef struct companion_for_sometype
{
sometype* p_object;
// there are also other members
}companion_for_sometype;
Obviously, the companion type would be a template in C++, but I need a solution for C
(more exactly, for "clean C", i.e for intersection of C89 and C++ as I want my code to be also valid C++ code).
Fortunately, it is not a problem even in C, since I can define a macro
DECLARE_COMPANION(type_name) typedef struct companion_for_##type_name
{
type_name* p_object;
// there are also other members
}companion_for_##type_name;
and just invoke it for every type that need a companion.
There is also a set of generic operations on companion types.
These operations are also defined by macros (since there are no overloads in pure C).
One of this operations, say
#define op(companion_type_object) blablabla
should assign a void* pointer to p_object field of the companion object,
i.e. should do something like this:
(companion_type_object).p_object= (type_name*) some_function_returning_pvoid(..)
But the macro doesn't know type_name (only an object of companion type is passed to the macro)
so the macro can't do the appropriate pointer cast.
The question is actually inspired by this problem.
To solve it, I decide to reinterpret target pointer in the assignment as void* and then assign to it.
It may be done by replacing the pointer in the companion declaration with a union of pointers
(the question is about this case), or one may reinterpret target pointer directly, say:
*(void**) &(companion_type_object).p_object= some_function_returning_pvoid(..)
But I can't find any solution without reinterpreting pointers (maybe I'm missing some possibilities though)

void * is a pointer that can hold any object pointer type, that includes all pointers to structure type. So you can assign any pointer to a structure type to a void *.
But void * and pointers to structure types are not guaranteed to have the same representation so your case 1 is undefined behavior.
(C11, 6.2.5p28) "[...] Pointers to other types need not have the same
representation or alignment requirements."

In C, void * automatically casts to any object type, so this will work:
(companion_type_object).p_object = some_function_returning_pvoid(..)
In C++, you need to use static_cast, but you can find out the required type using decltype :
(companion_type_object).p_object =
static_cast<decltype(*(companion_type_object).p_object) *>(
some_function_returning_pvoid(..))
In C++03 you should be able to use some compiler extension equivalent to decltype. Alternatively, you could provide a macro-generated method on companion_type_object to cast a void * to the appropriate type:
static type_name *void_p_to_object_p(void *p) { return static_cast<type_name *>(p); }
...
(companion_type_object).p_object = companion_type_object.void_p_to_object_p(
some_function_returning_pvoid(..))

Related

Does the "cast to first member of standard layout" type punning rule extend to arrays?

Specifically, I am wrapping a C API in a friendly C++ wrapper. The C API has this fairly standard shape:
struct foo {...};
void get_foos(size_t* count, foo* dst);
And what I'd like to do, is save myself an extra copy by passing a typed-punned wrapper array directly to the C api with a bunch of sanity checking static_assert().
class fooWrapper {
foo raw_;
public:
[...]
};
std::vector<fooWrapper> get_foo_vector() {
size_t count = 0;
get_foos(&count, nullptr);
std::vector<fooWrapper> result(count);
// Is this OK?
static_assert(sizeof(foo) == sizeof(fooWrapper), "");
static_assert(std::is_standard_layout<fooWrapper>::value, "");
get_foos(&count, reinterpret_cast<foo*>(result.data()));
return result;
}
My understanding is that it is valid code, since all accessed memory locations individually qualify under the rule, but I'd like confirmation on that.
Edit: Obviously, as long as reinterpret_cast<char*>(result.data() + n) == reinterpret_cast<char*>(result.data()) + n*sizeof(foo) is true, it'll work under all major compilers today. But I'm wondering if the standard agrees.
First, this is not type punning. The reinterpret_cast you're doing is just an over-written way of doing &result.data().foo_. Type punning is accessing an object of one type through a pointer/reference to another type. You're accessing a subobject of the other type.
Second, this doesn't work. Pointer arithmetic is based on having an array (a single object acts as an array of 1 element for the purposes of pointer arithmetic). And vector<T> is defined by fiat to produce an array of Ts. But an array of T is not equivalent to an array of some subobject of T, even if that subobject is the same size as T and T is standard layout.
Therefore, if get_foos performs pointer arithmetic on its given array of foos, that's UB. Oh sure, it will almost certainly work. But the language's answer is UB.

Do C interfaces care about the pointed-to type?

I have two pieces of code: The first, inside a C++ program, is where I load and call a function from an external test_lib.so:
typedef void *(*init_t)(); // init_t is ptr to fcn returning a void*
typedef void (*work_t)(void *); // work_t is ptr to fcn taking a void*
void *lib = dlopen("test_lib.so", RTLD_NOW);
init_t init_fcn = dlsym(lib, "test_fcn");
work_t work_fcn = dlsym(lib, "work_fcn");
void *data = init_fcn();
work_fcn(data);
The second piece of code is the one that compiles to test_lib.so:
struct Data {
// ...
};
extern "C" {
void *init_fcn() {
Data *data = new Data; // generate a new Data*...
return data; // ...and return it as void*
}
void work_fcn(void *data) { // take a void*...
static_cast<Data *>(data)->blabla(); // ...and treat it as Data*
static_cast<Data *>(data)->bleble();
}
}
Now, the first piece of code doesn't need to know what Data is, it just passes the pointer around, so it's a void*. But the library, which works directly with data's methods and members, needs to know, so it must convert the void*s to Data*s.
But the interface between the two pieces of code is just some functions with pointer arguments and/or return types. I could just keep the void* in the client, and change every instance of void* in the library to Data*. I did that, and everything works fine (my system is Linux/GCC 6.2.1).
My question is: was I lucky, or is this guaranteed to work everywhere? If I'm not mistaken, the result of calling some f(Data*) with a void* argument is just as if called reinterpret_cast<Data*> on the void* --- and that couldn't possibly be dangerous. Right?
EDIT: No, simply making the Data type transparent to the client code won't work. The client code calls many libraries through the same API, but each library might have its own implementation. For the client, Data could be anything.
Calling any function through the wrong function type is automatically undefined behavior. From C++ Standard draft n4604 (roughly C++17) [expr.reinterpret.cast]:
A function pointer can be explicitly converted to a function pointer of a different type. The effect of calling a function through a pointer to a function type that is not the same as the type used in the definition of the function is undefined. Except that converting a prvalue of type "pointer to T1" to the type "pointer to T2" (where T1 and T2 are function types) and back to its original type yields the original pointer value, the
result of such a pointer conversion is unspecified.
Calling any function through a function pointer type with the wrong linkage is also undefined behavior. Your typedefs don't use "C" linkage, ergo UB. From draft n4604 section [expr.call]:
Calling a function through an expression whose function type has a language linkage that is different from the language linkage of the function type of the called function’s definition is undefined.
Besides that point, different pointer types are not required to have the same representation. (cv-qualified) void* can hold any object pointer, but its alignment restrictions are the same as char* (that is, no restriction) and as a result, it's not necessarily representation compatible with other object pointer types and may not even be the same size. (And most definitely, object pointers, function pointers, and the variations on pointer-to-member are frequently different sizes on real-world systems.)
While this is likely to work in practice, C doesn't guarantee this behavior.
There are two problems:
Different pointer types can have different sizes and representations. On such an implementation going to void * and back involves an actual conversion at runtime, not just a cast to make the compiler happy. See http://c-faq.com/null/machexamp.html for a list of examples, e.g. "The old HP 3000 series uses a different addressing scheme for byte addresses than for word addresses; like several of the machines above it therefore uses different representations for char * and void * pointers than for other pointers."
Different pointer types can use different calling conventions. For example, an implementation might pass void * on the stack but other pointers in registers. C doesn't define an ABI, so this is legal.
That said, you're using dlsym, which is a POSIX function. I don't know if POSIX imposes additional requirements that make this code portable (to all POSIX systems).
On the other hand, why don't you use Data * everywhere? On the client side you can just do
struct Data;
to leave the type opaque. This fulfills your original requirements (the client can't mess with the internals of Data because it doesn't know what it is, it can only pass pointers around), but also makes the interface a bit safer: You can't accidentally pass the wrong pointer type to it, which would be silently accepted by something taking void *.
You can make it cleaner by using opaque structure definitions. See the second half of the accepted answer here:
Why should we typedef a struct so often in C?
Thus the caller is handling pointers to a defined type, but cannot see inside what is being pointed at. The implementation has the actual struct definition, and can work with it. No more casting is required.

Can Aliasing Problems be Avoided with const Variables

My company uses a messaging server which gets a message into a const char* and then casts it to the message type.
I've become concerned about this after asking this question. I'm not aware of any bad behavior in the messaging server. Is it possible that const variables do not incur aliasing problems?
For example say that foo is defined in MessageServer in one of these ways:
As a parameter: void MessageServer(const char* foo)
Or as const variable at the top of MessageServer: const char* foo = PopMessage();
Now MessageServer is a huge function, but it never assigns anything to foo, however at 1 point in MessageServer's logic foo will be cast to the selected message type.
auto bar = reinterpret_cast<const MessageJ*>(foo);
bar will only be read from subsequently, but will be used extensively for object setup.
Is an aliasing problem possible here, or does the fact that foo is only initialized, and never modified save me?
EDIT:
Jarod42's answer finds no problem with casting from a const char* to a MessageJ*, but I'm not sure this makes sense.
We know this is illegal:
MessageX* foo = new MessageX;
const auto bar = reinterpret_cast<MessageJ*>(foo);
Are we saying this somehow makes it legal?
MessageX* foo = new MessageX;
const auto temp = reinterpret_cast<char*>(foo);
auto bar = reinterpret_cast<const MessageJ*>(temp);
My understanding of Jarod42's answer is that the cast to temp makes it legal.
EDIT:
I've gotten some comments with relation to serialization, alignment, network passing, and so on. That's not what this question is about.
This is a question about strict aliasing.
Strict aliasing is an assumption, made by the C (or C++) compiler, that dereferencing pointers to objects of different types will never refer to the same memory location (i.e. alias eachother.)
What I'm asking is: Will the initialization of a const object, by casting from a char*, ever be optimized below where that object is cast to another type of object, such that I am casting from uninitialized data?
First of all, casting pointers does not cause any aliasing violations (although it might cause alignment violations).
Aliasing refers to the process of reading or writing an object through a glvalue of different type than the object.
If an object has type T, and we read/write it via a X& and a Y& then the questions are:
Can X alias T?
Can Y alias T?
It does not directly matter whether X can alias Y or vice versa, as you seem to focus on in your question. But, the compiler can infer if X and Y are completely incompatible that there is no such type T that can be aliased by both X and Y, therefore it can assume that the two references refer to different objects.
So, to answer your question, it all hinges on what PopMessage does. If the code is something like:
const char *PopMessage()
{
static MessageJ foo = .....;
return reinterpret_cast<const char *>(&foo);
}
then it is fine to write:
const char *ptr = PopMessage();
auto bar = reinterpret_cast<const MessageJ*>(foo);
auto baz = *bar; // OK, accessing a `MessageJ` via glvalue of type `MessageJ`
auto ch = ptr[4]; // OK, accessing a `MessageJ` via glvalue of type `char`
and so on. The const has nothing to do with it. In fact if you did not use const here (or you cast it away) then you could also write through bar and ptr with no problem.
On the other hand, if PopMessage was something like:
const char *PopMessage()
{
static char buf[200];
return buf;
}
then the line auto baz = *bar; would cause UB because char cannot be aliased by MessageJ. Note that you can use placement-new to change the dynamic type of an object (in that case, char buf[200] is said to have stopped existing, and the new object created by placement-new exists and its type is T).
My company uses a messaging server which gets a message into a const char* and then casts it to the message type.
So long as you mean that it does a reinterpret_cast (or a C-style cast that devolves to a reinterpret_cast):
MessageJ *j = new MessageJ();
MessageServer(reinterpret_cast<char*>(j));
// or PushMessage(reinterpret_cast<char*>(j));
and later takes that same pointer and reinterpret_cast's it back to the actual underlying type, then that process is completely legitimate:
MessageServer(char *foo)
{
if (somehow figure out that foo is actually a MessageJ*)
{
MessageJ *bar = reinterpret_cast<MessageJ*>(foo);
// operate on bar
}
}
// or
MessageServer()
{
char *foo = PopMessage();
if (somehow figure out that foo is actually a MessageJ*)
{
MessageJ *bar = reinterpret_cast<MessageJ*>(foo);
// operate on bar
}
}
Note that I specifically dropped the const's from your examples as their presence or absence doesn't matter. The above is legitimate when the underlying object that foo points at actually is a MessageJ, otherwise it is undefined behavior. The reinterpret_cast'ing to char* and back again yields the original typed pointer. Indeed, you could reinterpret_cast to a pointer of any type and back again and get the original typed pointer. From this reference:
Only the following conversions can be done with reinterpret_cast ...
6) An lvalue expression of type T1 can be converted to reference to another type T2. The result is an lvalue or xvalue referring to the same object as the original lvalue, but with a different type. No temporary is created, no copy is made, no constructors or conversion functions are called. The resulting reference can only be accessed safely if allowed by the type aliasing rules (see below) ...
Type aliasing
When a pointer or reference to object of type T1 is reinterpret_cast (or C-style cast) to a pointer or reference to object of a different type T2, the cast always succeeds, but the resulting pointer or reference may only be accessed if both T1 and T2 are standard-layout types and one of the following is true:
T2 is the (possibly cv-qualified) dynamic type of the object ...
Effectively, reinterpret_cast'ing between pointers of different types simply instructs the compiler to reinterpret the pointer as pointing at a different type. More importantly for your example though, round-tripping back to the original type again and then operating on it is safe. That is because all you've done is instructed the compiler to reinterpret a pointer as pointing at a different type and then told the compiler again to reinterpret that same pointer as pointing back at the original, underlying type.
So, the round trip conversion of your pointers is legitimate, but what about potential aliasing problems?
Is an aliasing problem possible here, or does the fact that foo is only initialized, and never modified save me?
The strict aliasing rule allows compilers to assume that references (and pointers) to unrelated types do not refer to the same underlying memory. This assumption allows lots of optimizations because it decouples operations on unrelated reference types as being completely independent.
#include <iostream>
int foo(int *x, long *y)
{
// foo can assume that x and y do not alias the same memory because they have unrelated types
// so it is free to reorder the operations on *x and *y as it sees fit
// and it need not worry that modifying one could affect the other
*x = -1;
*y = 0;
return *x;
}
int main()
{
long a;
int b = foo(reinterpret_cast<int*>(&a), &a); // violates strict aliasing rule
// the above call has UB because it both writes and reads a through an unrelated pointer type
// on return b might be either 0 or -1; a could similarly be arbitrary
// technically, the program could do anything because it's UB
std::cout << b << ' ' << a << std::endl;
return 0;
}
In this example, thanks to the strict aliasing rule, the compiler can assume in foo that setting *y cannot affect the value of *x. So, it can decide to just return -1 as a constant, for example. Without the strict aliasing rule, the compiler would have to assume that altering *y might actually change the value of *x. Therefore, it would have to enforce the given order of operations and reload *x after setting *y. In this example it might seem reasonable enough to enforce such paranoia, but in less trivial code doing so will greatly constrain reordering and elimination of operations and force the compiler to reload values much more often.
Here are the results on my machine when I compile the above program differently (Apple LLVM v6.0 for x86_64-apple-darwin14.1.0):
$ g++ -Wall test58.cc
$ ./a.out
0 0
$ g++ -Wall -O3 test58.cc
$ ./a.out
-1 0
In your first example, foo is a const char * and bar is a const MessageJ * reinterpret_cast'ed from foo. You further stipulate that the object's underlying type actually is a MessageJ and that no reads are done through the const char *. Instead, it is only casted to the const MessageJ * from which only reads are then done. Since you do not read nor write through the const char * alias, then there can be no aliasing optimization problem with your accesses through your second alias in the first place. This is because there are no potentially conflicting operations performed on the underlying memory through your aliases of unrelated types. However, even if you did read through foo, then there could still be no potential problem as such accesses are allowed by the type aliasing rules (see below) and any ordering of reads through foo or bar would yield the same results because there are no writes occurring here.
Let us now drop the const qualifiers from your example and presume that MessageServer does do some write operations on bar and furthermore that the function also reads through foo for some reason (e.g. - prints a hex dump of memory). Normally, there might be an aliasing problem here as we have reads and writes happening through two pointers to the same memory through unrelated types. However, in this specific example, we are saved by the fact that foo is a char*, which gets special treatment by the compiler:
Type aliasing
When a pointer or reference to object of type T1 is reinterpret_cast (or C-style cast) to a pointer or reference to object of a different type T2, the cast always succeeds, but the resulting pointer or reference may only be accessed if both T1 and T2 are standard-layout types and one of the following is true: ...
T2 is char or unsigned char
The strict-aliasing optimizations that are allowed for operations through references (or pointers) of unrelated types are specifically disallowed when a char reference (or pointer) is in play. The compiler instead must be paranoid that operations through the char reference (or pointer) can affect and be affected by operations done through other references (or pointers). In the modified example where reads and writes operate on both foo and bar, you can still have defined behavior because foo is a char*. Therefore, the compiler is not allowed to optimize to reorder or eliminate operations on your two aliases in ways that conflict with the serial execution of the code as written. Similarly, it is forced to be paranoid about reloading values that may have been affected by operations through either alias.
The answer to your question is that, so long as your functions are properly round tripping pointers to a type through a char* back to its original type, then your function is safe, even if you were to interleave reads (and potentially writes, see caveat at end of EDIT) through the char* alias with reads+writes through the underlying type alias.
These two technical references (3.10.10) are useful for answering your question. These other references help give a better understanding of the technical information.
====
EDIT: In the comments below, zmb objects that while char* can legitimately alias a different type, that the converse is not true as several sources seem to say in varying forms: that the char* exception to the strict aliasing rule is an asymmetric, "one-way" rule.
Let us modify my above strict-aliasing code example and ask would this new version similarly result in undefined behavior?
#include <iostream>
char foo(char *x, long *y)
{
// can foo assume that x and y cannot alias the same memory?
*x = -1;
*y = 0;
return *x;
}
int main()
{
long a;
char b = foo(reinterpret_cast<char*>(&a), &a); // explicitly allowed!
// if this is defined behavior then what must the values of b and a be?
std::cout << (int) b << ' ' << a << std::endl;
return 0;
}
I argue that this is defined behavior and that both a and b must be zero after the call to foo. From the C++ standard (3.10.10):
If a program attempts to access the stored value of an object through a glvalue of other than one of the following types the behavior is undefined:^52
the dynamic type of the object ...
a char or unsigned char type ...
^52: The intent of this list is to specify those circumstances in which an object may or may not be aliased.
In the above program, I am accessing the stored value of an object through both its actual type and a char type, so it is defined behavior and the results have to comport with the serial execution of the code as written.
Now, there is no general way for the compiler to always statically know in foo that the pointer x actually aliases y or not (e.g. - imagine if foo was defined in a library). Maybe the program could detect such aliasing at run time by examining the values of the pointers themselves or consulting RTTI, but the overhead this would incur wouldn't be worth it. Instead, the better way to generally compile foo and allow for defined behavior when x and y do happen to alias one another is to always assume that they could (i.e. - disable strict alias optimizations when a char* is in play).
Here's what happens when I compile and run the above program:
$ g++ -Wall test59.cc
$ ./a.out
0 0
$ g++ -O3 -Wall test59.cc
$ ./a.out
0 0
This output is at odds with the earlier, similar strict-aliasing program's. This is not dispositive proof that I'm right about the standard, but the different results from the same compiler provides decent evidence that I may be right (or, at least that one important compiler seems to understand the standard the same way).
Let's examine some of the seemingly conflicting sources:
The converse is not true. Casting a char* to a pointer of any type other than a char* and dereferencing it is usually in volation of the strict aliasing rule. In other words, casting from a pointer of one type to pointer of an unrelated type through a char* is undefined.
The bolded bit is why this quote doesn't apply to the problem addressed by my answer nor the example I just gave. In both my answer and the example, the aliased memory is being accessed both through a char* and the actual type of the object itself, which can be defined behavior.
Both C and C++ allow accessing any object type via char * (or specifically, an lvalue of type char). They do not allow accessing a char object via an arbitrary type. So yes, the rule is a "one way" rule."
Again, the bolded bit is why this statement doesn't apply to my answers. In this and similar counter-examples, an array of characters is being accessed through a pointer of an unrelated type. Even in C, this is UB because the character array might not be aligned according to the aliased type's requirements, for example. In C++, this is UB because such access does not meet any of the type aliasing rules as the underlying type of the object actually is char.
In my examples, we first have a valid pointer to a properly constructed type that is then aliased by a char* and then reads and writes through these two aliased pointers are interleaved, which can be defined behavior. So, there seems to be some confusion and conflation out there between the strict aliasing exception for char and not accessing an underlying object through an incompatible reference.
int value;
int *p = &value;
char *q = reinterpret_cast<char*>(&value);
Both p and p refer to the same address, they are aliasing the same memory. What the language does is provide a set of rules defining the behaviors that are guaranteed: write through p read through q fine, other way around not fine.
The standard and many examples clearly state that "write through q, then read through p (or value)" can be well defined behavior. What is not as abundantly clear, but what I'm arguing for here, is that "write through p (or value), then read through q" is always well defined. I claim even further, that "reads and writes through p (or value) can be arbitrarily interleaved with reads and writes to q" with well defined behavior.
Now there is one caveat to the previous statement and why I kept sprinkling the word "can" throughout the above text. If you have a type T reference and a char reference that alias the same memory, then arbitrarily interleaving reads+writes on the T reference with reads on the char reference is always well defined. For example, you might do this to repeatedly print out a hex dump of the underlying memory as you modify it multiple times through the T reference. The standard guarantees that strict aliasing optimizations will not be applied to these interleaved accesses, which otherwise might give you undefined behavior.
But what about writes through a char reference alias? Well, such writes may or may not be well defined. If a write through the char reference violates an invariant of the underlying T type, then you can get undefined behavior. If such a write improperly modified the value of a T member pointer, then you can get undefined behavior. If such a write modified a T member value to a trap value, then you can get undefined behavior. And so on. However, in other instances, writes through the char reference can be completely well defined. Rearranging the endianness of a uint32_t or uint64_t by reading+writing to them through an aliased char reference is always well defined, for example. So, whether such writes are completely well defined or not depends on the particulars of the writes themselves. Regardless, the standard guarantees that its strict aliasing optimizations will not reorder or eliminate such writes w.r.t. other operations on the aliased memory in a manner that itself could lead to undefined behavior.
So my understanding is that you are doing something like that:
enum MType { J,K };
struct MessageX { MType type; };
struct MessageJ {
MType type{ J };
int id{ 5 };
//some other members
};
const char* popMessage() {
return reinterpret_cast<char*>(new MessageJ());
}
void MessageServer(const char* foo) {
const MessageX* msgx = reinterpret_cast<const MessageX*>(foo);
switch (msgx->type) {
case J: {
const MessageJ* msgJ = reinterpret_cast<const MessageJ*>(foo);
std::cout << msgJ->id << std::endl;
}
}
}
int main() {
const char* foo = popMessage();
MessageServer(foo);
}
If that is correct, then the expression msgJ->id is ok (as would be any access to foo), as msgJ has the correct dynamic type. msgx->type on the other hand does incur UB, because msgx has a unrelated type. The fact that the the pointer to MessageJ was cast to const char* in between is completely irrelevant.
As was cited by others, here is the relevant part in the standard (the "glvalue" is the result of dereferencing the pointer):
If a program attempts to access the stored value of an object through a glvalue of other than one of the following types the behavior is undefined:52
the dynamic type of the object,
a cv-qualified version of the dynamic type of the object,
a type similar (as defined in 4.4) to the dynamic type of the object,
a type that is the signed or unsigned type corresponding to the dynamic type of the object,
a type that is the signed or unsigned type corresponding to a cv-qualified version of the dynamic type of the object,
an aggregate or union type that includes one of the aforementioned types among its elements or nonstatic data members (including, recursively, an element or non-static data member of a subaggregate or contained union),
a type that is a (possibly cv-qualified) base class type of the dynamic type of the object,
a char or unsigned char type.
As far as the discussion "cast to char*" vs "cast from char*" is concerned:
You might know that the standard doesn't talk about strict aliasing as such, it only provides the list above. Strict aliasing is one analysis technique based on that list for compilers to determine which pointers can potentially alias each other. As far as optimizations are concerned, it doesn't make a difference, if a pointer to a MessageJ object was cast to char* or vice versa. The compiler cannot (without further analysis) assume that a char* and MessageX* point to distinct objects and will not perform any optimizations (e.g. reordering) based on that.
Of course that doesn't change the fact that accessing a char array via a pointer to a different type would still be UB in C++ (I assume mostly due to alignment issues) and the compiler might perform other optimizations that could ruin your day.
EDIT:
What I'm asking is: Will the initialization of a const object, by
casting from a char*, ever be optimized below where that object is
cast to another type of object, such that I am casting from
uninitialized data?
No it will not. Aliasing analysis doesn't influence how the pointer itself is handled, but the access through that pointer. The compiler will NOT reorder the write access (store memory address in the pointer variable) with the read access (copy to other variable / load of address in order to access the memory location) to the same variable.
There is no aliasing problem as you use (const)char* type, see the last point of:
If a program attempts to access the stored value of an object through a glvalue of other than one of the following types the behavior is undefined:
the dynamic type of the object,
a cv-qualified version of the dynamic type of the object,
a type similar (as defined in 4.4) to the dynamic type of the object,
a type that is the signed or unsigned type corresponding to the dynamic type of the object,
a type that is the signed or unsigned type corresponding to a cv-qualified version of the dynamic type of the object,
an aggregate or union type that includes one of the aforementioned types among -its elements or non-static data members (including, recursively, an element or non-static data member of a subaggregate or contained union),
a type that is a (possibly cv-qualified) base class type of the dynamic type of the object,
a char or unsigned char type.
The other answer answered the question well enough (it's a direct quotation from the C++ standard in https://isocpp.org/files/papers/N3690.pdf page 75), so I'll just point out other problems in what you're doing.
Note that your code may run into alignment problems. For example, if the alignment of MessageJ is 4 or 8 bytes (typical on 32-bit and 64-bit machines), strictly speaking, it is undefined behaviour to access an arbitrary character array pointer as a MessageJ pointer.
You won't run into any problems on x86/AMD64 architectures as they allow unaligned access. However, someday you may find that the code you're developing is ported to a mobile ARM architecture and the unaligned access would be a problem then.
It therefore seems you're doing something you shouldn't be doing. I would consider using serialization instead of accessing a character array as a MessageJ type. The only problem isn't potential alignment problems, an additional problem is that the data may have a different representation on 32-bit and 64-bit architectures.

Is a struct of one element compatible with the element itself?

If I have the following struct:
struct Foo { int a; };
Is the code bellow conforming with the C++ Standard? I mean, can't it generate an "Undefined Behavior"?
Foo foo;
int ifoo;
foo = *reinterpret_cast<Foo*>(&ifoo);
void bar(int value);
bar(*reinterpret_cast<int*>(&foo));
auto fptr = static_cast<void(*)(...)>(&bar);
fptr(foo);
9.2/20 in N3290 says
A pointer to a standard-layout struct object, suitably converted using a reinterpret_cast, points to its initial member (or if that member is a bit-field, then to the unit in which it resides) and vice versa.
And your Foo is a standard-layout class.
So your second cast is correct.
I see no guarantee that the first one is correct (and I've used architecture where a char had weaker alignment restriction than a struct containing just a char, on such an architecture, it would be problematic). What the standard guarantee is that if you have a pointer to int which really point to the first element of a struct, you can reinterpret_cast it back to pointer to the struct.
Likewise, I see nothing which would make your third one defined if it was a reinterpret_cast (I'm pretty sure that some ABI use different convention to pass structs and basic types, so it is highly suspicious and I'd need a clear mention in the standard to accept it) and I'm quite sure that nothing allow static_cast between pointers to functions.
As long as you access only the first element of a struct, it's considered to be safe, since there's no padding before the first member of a struct. In fact, this trick is used, for example, in the Objecive-C runtime, where a generic pointer type is defined as:
typedef struct objc_object {
Class isa;
} *id;
and in runtime, real objecs (which are still bare struct pointers) have memory layouts like this:
struct {
Class isa;
int x; // random other data as instance variables
} *CustomObject;
and the runtime accesses the class of an actual object using this method.
Foo is a plain-old-data structure, which means it contains nothing but the data you explicitely store in it. In this case: an int.
Thus the memory layout for an int and Foo are the same.
You can typecast from one to the other without problems. Whether it's a clever idea to use this kind of stuff is a different question.
PS:
This usually works, but not necessarily due to different alignment restrictions. See AProgrammer's answer.

Is it legal to cast function pointers? [duplicate]

Let's say I have a function that accepts a void (*)(void*) function pointer for use as a callback:
void do_stuff(void (*callback_fp)(void*), void* callback_arg);
Now, if I have a function like this:
void my_callback_function(struct my_struct* arg);
Can I do this safely?
do_stuff((void (*)(void*)) &my_callback_function, NULL);
I've looked at this question and I've looked at some C standards which say you can cast to 'compatible function pointers', but I cannot find a definition of what 'compatible function pointer' means.
As far as the C standard is concerned, if you cast a function pointer to a function pointer of a different type and then call that, it is undefined behavior. See Annex J.2 (informative):
The behavior is undefined in the following circumstances:
A pointer is used to call a function whose type is not compatible with the pointed-to
type (6.3.2.3).
Section 6.3.2.3, paragraph 8 reads:
A pointer to a function of one type may be converted to a pointer to a function of another
type and back again; the result shall compare equal to the original pointer. If a converted
pointer is used to call a function whose type is not compatible with the pointed-to type,
the behavior is undefined.
So in other words, you can cast a function pointer to a different function pointer type, cast it back again, and call it, and things will work.
The definition of compatible is somewhat complicated. It can be found in section 6.7.5.3, paragraph 15:
For two function types to be compatible, both shall specify compatible return types127.
Moreover, the parameter type lists, if both are present, shall agree in the number of
parameters and in use of the ellipsis terminator; corresponding parameters shall have
compatible types. If one type has a parameter type list and the other type is specified by a
function declarator that is not part of a function definition and that contains an empty
identifier list, the parameter list shall not have an ellipsis terminator and the type of each
parameter shall be compatible with the type that results from the application of the
default argument promotions. If one type has a parameter type list and the other type is
specified by a function definition that contains a (possibly empty) identifier list, both shall
agree in the number of parameters, and the type of each prototype parameter shall be
compatible with the type that results from the application of the default argument
promotions to the type of the corresponding identifier. (In the determination of type
compatibility and of a composite type, each parameter declared with function or array
type is taken as having the adjusted type and each parameter declared with qualified type
is taken as having the unqualified version of its declared type.)
127) If both function types are ‘‘old style’’, parameter types are not compared.
The rules for determining whether two types are compatible are described in section 6.2.7, and I won't quote them here since they're rather lengthy, but you can read them on the draft of the C99 standard (PDF).
The relevant rule here is in section 6.7.5.1, paragraph 2:
For two pointer types to be compatible, both shall be identically qualified and both shall be pointers to compatible types.
Hence, since a void* is not compatible with a struct my_struct*, a function pointer of type void (*)(void*) is not compatible with a function pointer of type void (*)(struct my_struct*), so this casting of function pointers is technically undefined behavior.
In practice, though, you can safely get away with casting function pointers in some cases. In the x86 calling convention, arguments are pushed on the stack, and all pointers are the same size (4 bytes in x86 or 8 bytes in x86_64). Calling a function pointer boils down to pushing the arguments on the stack and doing an indirect jump to the function pointer target, and there's obviously no notion of types at the machine code level.
Things you definitely can't do:
Cast between function pointers of different calling conventions. You will mess up the stack and at best, crash, at worst, succeed silently with a huge gaping security hole. In Windows programming, you often pass function pointers around. Win32 expects all callback functions to use the stdcall calling convention (which the macros CALLBACK, PASCAL, and WINAPI all expand to). If you pass a function pointer that uses the standard C calling convention (cdecl), badness will result.
In C++, cast between class member function pointers and regular function pointers. This often trips up C++ newbies. Class member functions have a hidden this parameter, and if you cast a member function to a regular function, there's no this object to use, and again, much badness will result.
Another bad idea that might sometimes work but is also undefined behavior:
Casting between function pointers and regular pointers (e.g. casting a void (*)(void) to a void*). Function pointers aren't necessarily the same size as regular pointers, since on some architectures they might contain extra contextual information. This will probably work ok on x86, but remember that it's undefined behavior.
I asked about this exact same issue regarding some code in GLib recently. (GLib is a core library for the GNOME project and written in C.) I was told the entire slots'n'signals framework depends upon it.
Throughout the code, there are numerous instances of casting from type (1) to (2):
typedef int (*CompareFunc) (const void *a,
const void *b)
typedef int (*CompareDataFunc) (const void *b,
const void *b,
void *user_data)
It is common to chain-thru with calls like this:
int stuff_equal (GStuff *a,
GStuff *b,
CompareFunc compare_func)
{
return stuff_equal_with_data(a, b, (CompareDataFunc) compare_func, NULL);
}
int stuff_equal_with_data (GStuff *a,
GStuff *b,
CompareDataFunc compare_func,
void *user_data)
{
int result;
/* do some work here */
result = compare_func (data1, data2, user_data);
return result;
}
See for yourself here in g_array_sort(): http://git.gnome.org/browse/glib/tree/glib/garray.c
The answers above are detailed and likely correct -- if you sit on the standards committee. Adam and Johannes deserve credit for their well-researched responses. However, out in the wild, you will find this code works just fine. Controversial? Yes. Consider this: GLib compiles/works/tests on a large number of platforms (Linux/Solaris/Windows/OS X) with a wide variety of compilers/linkers/kernel loaders (GCC/CLang/MSVC). Standards be damned, I guess.
I spent some time thinking about these answers. Here is my conclusion:
If you are writing a callback library, this might be OK. Caveat emptor -- use at your own risk.
Else, don't do it.
Thinking deeper after writing this response, I would not be surprised if the code for C compilers uses this same trick. And since (most/all?) modern C compilers are bootstrapped, this would imply the trick is safe.
A more important question to research: Can someone find a platform/compiler/linker/loader where this trick does not work? Major brownie points for that one. I bet there are some embedded processors/systems that don't like it. However, for desktop computing (and probably mobile/tablet), this trick probably still works.
The point really isn't whether you can. The trivial solution is
void my_callback_function(struct my_struct* arg);
void my_callback_helper(void* pv)
{
my_callback_function((struct my_struct*)pv);
}
do_stuff(&my_callback_helper);
A good compiler will only generate code for my_callback_helper if it's really needed, in which case you'd be glad it did.
You have a compatible function type if the return type and parameter types are compatible - basically (it's more complicated in reality :)). Compatibility is the same as "same type" just more lax to allow to have different types but still have some form of saying "these types are almost the same". In C89, for example, two structs were compatible if they were otherwise identical but just their name was different. C99 seem to have changed that. Quoting from the c rationale document (highly recommended reading, btw!):
Structure, union, or enumeration type declarations in two different translation units do not formally declare the same type, even if the text of these declarations come from the same include file, since the translation units are themselves disjoint. The Standard thus specifies additional compatibility rules for such types, so that if two such declarations are sufficiently similar they are compatible.
That said - yeah strictly this is undefined behavior, because your do_stuff function or someone else will call your function with a function pointer having void* as parameter, but your function has an incompatible parameter. But nevertheless, i expect all compilers to compile and run it without moaning. But you can do cleaner by having another function taking a void* (and registering that as callback function) which will just call your actual function then.
As C code compiles to instruction which do not care at all about pointer types, it's quite fine to use the code you mention. You'd run into problems when you'd run do_stuff with your callback function and pointer to something else then my_struct structure as argument.
I hope I can make it clearer by showing what would not work:
int my_number = 14;
do_stuff((void (*)(void*)) &my_callback_function, &my_number);
// my_callback_function will try to access int as struct my_struct
// and go nuts
or...
void another_callback_function(struct my_struct* arg, int arg2) { something }
do_stuff((void (*)(void*)) &another_callback_function, NULL);
// another_callback_function will look for non-existing second argument
// on the stack and go nuts
Basically, you can cast pointers to whatever you like, as long as the data continue to make sense at run-time.
Well, unless I understood the question wrong, you can just cast a function pointer this way.
void print_data(void *data)
{
// ...
}
((void (*)(char *)) &print_data)("hello");
A cleaner way would be to create a function typedef.
typedef void(*t_print_str)(char *);
((t_print_str) &print_data)("hello");
If you think about the way function calls work in C/C++, they push certain items on the stack, jump to the new code location, execute, then pop the stack on return. If your function pointers describe functions with the same return type and the same number/size of arguments, you should be okay.
Thus, I think you should be able to do so safely.
Void pointers are compatible with other types of pointer. It's the backbone of how malloc and the mem functions (memcpy, memcmp) work. Typically, in C (Rather than C++) NULL is a macro defined as ((void *)0).
Look at 6.3.2.3 (Item 1) in C99:
A pointer to void may be converted to or from a pointer to any incomplete or object type