I need to define inline functions to improve performance of my code. At the moment declaration of functions are in .h file and definitions are in .cpp file. I added inline keyword at the front of each declaration of functions but I am getting link error. Is possible to separate declaration and definition of inline functions ?
You can separate the declaration and definition fine, but that definition must be available in every translation unit that uses the function, e.g.:
#include <iostream>
inline void foo();
int main() {
foo();
}
inline void foo() {
std::cout << "Hi\n";
}
is perfectly legal and correct.
The exact quote from n3290 § 7.1.2.4 is:
An inline function shall be defined in every translation unit in which it is odr-used and shall have exactly
the same definition in every case (3.2). [ Note: A call to the inline function may be encountered before its
definition appears in the translation unit. —end note ]
Where § 3.2 basically says that it has to be identical everywhere, even overload resolutions etc.
Are you absolutely sure that making your functions 'inline' would improve your performance? I am pretty sure it will not.
The compiler is able to inline some function calls if and only if it can see the body of the inlined functions. So you need to include the body of the function as well, but if do it, you do not need to annotate your function with 'inline' because the compiler only needs the body of the function -- not your 'inline' keyword. Compilers nowadays are smart and know without your hints whether and when to inline functions. And inlining does not necessarily increase your program's performance, and it is likely to increase your executable's size.
See this article by Herb Sutter. He argues that keyword "inline" has no meaning in C++. But I disagree with him. Keyword "inline" makes one difference: you can specify the body of the inline function more than once in the program (provided that it is exactly the same definition each time) -- this is useful when putting function bodies in headers (if you need this for any reason).
Yes, but you have to put the implementation in the header file. That is because in order to be inlined, the definition has to be known, when including the header.
If you do so, modern compilers will automatically inline the function even without the inline keyword.
Use a separate "implementation header" that you will still include everywhere?
You are need specify only once prototype or realization. Both is eligible.
By definition, inline functions must be known at compile time.
If you want to define them in a separate .h file, you can use a
#pragma once
trick to only insert their definition once.
I have found that in some embedded toolchains, the #inline keyword is not allowed in the function declaration. You can specify it in the definition, but (as stated above) many compilers ignore the keyword anyway.
Related
I know in advance that, when writing a program in C or C++, even if I declare a function as "inline" the compiler is free to ignore this and decide not to expand it at each (or any) call.
Is the opposite true as well? That is, can a compiler automatically inline a very short function that wasn't defined as inline if the compiler believes doing so will lead to a performance gain?
Two other subquestions: is this behaviour defined somewhere in the ANSI standards? Is C different from C++ in this regard, or do they behave the same?
inline is non-binding with regards to whether or not a function will be inlined by the compiler. This was originally what it was intended to do. But since then, it's been realized that whether or not a function is worth inlining depends as much on the call site as the function itself and is best left to the compiler to decide.
From https://en.cppreference.com/w/cpp/language/inline :
Since this meaning of the keyword inline is non-binding, compilers are free to use inline substitution for any function that's not marked inline, and are free to generate function calls to any function marked inline. Those optimization choices do not change the rules regarding multiple definitions and shared statics listed above.
Edit : Since you asked for C as well, from https://en.cppreference.com/w/c/language/inline :
The intent of the inline specifier is to serve as a hint for the compiler to perform optimizations, such as function inlining, which require the definition of a function to be visible at the call site. The compilers can (and usually do) ignore presence or absence of the inline specifier for the purpose of optimization.
Regarding the relation between C and C++, the inline specifier is treated differently in each language.
In C++: inline functions (and function like entities, and variables (since C++17) ) that have not been previously declared with internal linkage will have external linkage and be visible from other compilation units. Since inline functions (usually) reside in header files, this means that the same function will have repeated definitions across different compilation units (this is would be a violation of the One definition rule but the inline makes it legal). At the end of the build process (when linking an executable or a shared lib), inline definitions of the same entity are merged together. Informally, C++ inline means: "there may be multiple identical definitions of some function across multiple source files, but I want them to end up as a unique definition".
In C: If extern is not explicitly specified, then an inline function definition is not visible from other translation units, different translation units may have different definitions with inline specifier for the same function name. Also, there may exist (at most) one definition for a function name that is both inline and extern and this qualifies that function as the one that is externally visible (ie gets selected when one applies the address of & operator to the function name). The One definition rule from C and its relation with extern and inline is somehow different from C++.
can a compiler automatically inline a very short function that wasn't defined as inline if the compiler believes doing so will lead to a performance gain?
Limitation:
When code uses a pointer to the function, then the function needs to exist non-inlined.
Limitation:
When the function is visible outside the local .c file (not static), this prevents simplistic inlined code.
Not a limitation:
The length of the function is not an absolute limitation, albeit a practical one.
I've worked with embedded processor that commonly inline static functions. (Given code does not use a pointer to them.)
The usefulness of the inline keyword does not affect the ability for a compiler to inline function.
When it comes to the standard, the keyword inline has nothing to do with inlining.
The rules (in c++) are basically:
A function which is not declared inline can by only defined in one translation union. It still needs to be delared in each translation unit where it is used.
A function which is declared inline has to be defined in each translation unit where it is odr-used (ord-use means to call the function or to take the pointer,...).
So, in a standard project setting it is almost always correct to follow the following two rules. Functions that are defined in a header file, are always to be declared inline. Functions defined in a *.cpp-file are never declared inline.
This said, I think the compiler cannot really draw any conclusions about the programmer wanted inlining from using or not using keyword inline. The name of the keyword is an unfortunate legacy from a bad naming.
I defined a class in header file and implemented its function in same header file. I didn't put inline keyword with function definition because I think compiler will regard it as a inline function by default -- but inline is only a hint to compiler, right? What if compiler doesn't regard it as inline function because of its length? I never get error message 'multiple definitions' in reality.
struct tmp {
void print() {
...(very long)
}
};
I didn't put inline keyword with function definition because I think compiler will regard it as a inline function by default
Yes, member functions defined in the body of a class are implicitly inline. The keyword is not necessary.
inline is only a hint to compiler, right? What if compiler doesn't regard it as inline function because of its length?
Yes, sort of. Actually, the inline keyword has two meanings.
The first one is the one you are thinking of, the one that hints to the optimizer to inline the code in the function body at the call site. As you said, this is just a hint—the optimizer is free to ignore this request if it determines that it would be a performance pessimization to do so (or if it is unable to inline for some other technical reason). This meaning of the inline keyword is arguably obsolete. All optimizing compilers nowadays ignore the inline keyword because their authors consider their heuristics to be smarter than the programmer. This is almost always the case, making it rather pointless to try and second-guess the optimizer by marking your functions inline.
The second meaning of the inline keyword is to relax the one-definition rule (ODR), making it legal for there to be multiple definitions of the same function visible to the linker. (Although the behavior of the linker under such circumstances is an implementation detail, most of them will just arbitrarily pick one of the definitions. Which of course only works out well if they are all the same.) This meaning of the inline keyword is still very important, and explains why it is still used today in code.
This is the meaning that your code is benefitting from. Since member functions defined in the body of a class are implicitly marked inline, you do not get multiply-defined symbol errors from the linker.
If you had defined the function in the header file but not within the class definition—in other words, if you had done this:
struct tmp {
void print();
};
void tmp::print()
{ ... }
then you would start getting the multiply-defined symbol errors as soon as that header file was included in two or more compilands (i.e., translation units). This is where you would need to add the inline keyword on the function's definition, not because you want the compiler to "inline" it, but because you want to exempt yourself from the ODR.
EDIT #Leon (below) stated that my answer (reproduced below) was INCORRECT. The correct answer is described here - in short, if the compiler decides to not make a function inline, it still puts it in the object module. But the linker will then pick one of the (potentially many) copies in the different modules and discard all the others.
You are right: you won't get the "multiple definition" error because every time the compiler decides to not put a function inline, it makes the function static within the current module. That means that you could have a large number of copies of your large function littered through your code.
I know that the inline keyword is only a hint for the compiler, and not forced (unless using __forceinline e.g. in MSVC).
Is it also the case when declaring the inlined function in header? In which compilation unit will the compiler put the code?
inline is not just a hint to the compiler.
An inline function may be defined in multiple translation units, and all of these definitions will have the same type, address, and definition.
If a function is defined in a header, then it must be declared inline, or it will violate the One Definition Rule when it is included in multiple translation units.
An inline function is either:
A function at global scope can be declared inline using the keyword inline.
A function defined entirely inside a class/struct/union definition, whether it's a member function or a non-member friend function, is always inline.
A function declared constexpr is always inline.
(source)
Is it also the case [that inline is a hint] when declaring the inlined function in header?
Yes. The inline keyword is always a hint to the compiler to perform "inlining".
However, please note that this is only a hint. The compiler is free to ignore it (and many do).
The real reason compilers are able to perform inlining on inline functions is that the whole definition is available. You will notice the same inlining with static functions and instantiated function templates.
In which compilation unit will the compiler put the code?
Before linkage, the inline function will be fully defined in any compilation unit that defines it. It will be compiled in its entirety into each object file.
During linkage, the linker will determine which definition to use, and discard all the others.
See also this question and its answers.
The code will be present in all compillation units that include this header. The main point of inline is saying to the linker that this function can be found in multiple object files and any of these copies can be chosen by linker.
Inline is not forced, ever. If you define a method inside the class definition, it is implicitly inlined. It's like defining it outside the class definition except with inline implied. This has nothing to do with what file the definition is in.
When a function you requested to inline is not actually inlined, it's up to the compiler to decide where to put it. In early days, you could get a non-exported copy in each file that header file was included in. Now, some strategy is applied like putting it in the same place as the first constructor, the first method, or where the virtual function table is. It's compiler-dependent.
What's the difference between using the inline keyword before a function and just declaring the whole function in the header?
so...
int whatever() { return 4; }
vs
.h:
inline int whatever();
.cpp:
inline int myClass::whatever()
{
return 4;
}
for that matter, what does this do:
inline int whatever() { return 4; }
There are several facets:
Language
When a function is marked with the inline keyword, then its definition should be available in the TU or the program is ill-formed.
Any function defined right in the class definition is implicitly marked inline.
A function marked inline (implicitly or explicitly) may be defined in several TUs (respecting the ODR), whereas it is not the case for regular functions.
Template functions (not fully specialized) get the same treatment as inline ones.
Compiler behavior
A function marked inline will be emitted as a weak symbol in each object file where it is necessary, this may increase their size (look up template bloat).
Whereas the compiler actually inlines the call (ie, copy/paste the code at the point of use instead of performing a regular function call) is entirely at the compiler's discretion. The presence of the keyword may, or not, influence the decision but it is, at best, a hint.
Linker behavior
Weak symbols are merged together to have a single occurrence in the final library. A good linker could check that the multiple definitions concur but this is not required.
without inline, you will likely end up with multiple exported symbols, if the function is declared at the namespace or global scope (results in linker errors).
however, for a class (as seen in your example), most compilers implicitly declare the method as inline (-fno-default-inline will disable that default on GCC).
if you declare a function as inline, the compiler may expect to see its definition in the translation. therefore, you should reserve it for the times the definition is visible.
at a higher level: a definition in the class declaration is frequently visible to more translations. this can result in better optimization, and it can result in increased compile times.
unless hand optimization and fast compiles are both important, it's unusual to use the keyword in a class declaration these days.
The purpose of inline is to allow a function to be defined in more than one translation unit, which is necessary for some compilers to be able to inline it wherever it's used. It should be used whenever you define a function in a header file, although you can omit it when defining a template, or a function inside a class definition.
Defining it in a header without inline is a very bad idea; if you include the header from more than one translation unit, then you break the One Definition Rule; your code probably won't link, and may exhibit undefined behaviour if it does.
Declaring it in a header with inline but defining it in a source file is also a very bad idea; the definition must be available in any translation unit that uses it, but by defining it in a source file it is only available in one translation unit. If another source file includes the header and tries to call the function, then your program is invalid.
This question explains a lot about inline functions What does __inline__ mean ? (even though it was about inline keyword.)
Basically, it has nothing to do with the header. Declaring the whole function in the header just changes which source file has that the source of the function is in. Inline keyword modifies where the resulting compiled function will be put - in it's own place, so that every call will go there, or in place of every call (better for performance). However compilers sometimes choose which functions or methods to make inline for themselves, and keywords are simply suggestions for the compiler. Even functions which were not specified inline can be chosen by the compiler to become inline, if that gives better performance.
If you are linking multiple objects into an executable, there should normally only be one object that contains the definition of the function. For int whatever() { return 4; } - any translation unit that is used to produce an object will contain a definition (i.e. executable code) for the whatever function. The linker won't know which one to direct callers to. If inline is provided, then the executable code may or may not be inlined at the call sites, but if it's not the linker is allowed to assume that all the definitions are the same, and pick one arbitrarily to direct callers to. If somehow the definitions were not the same, then it's considered YOUR fault and you get undefined behaviour. To use inline, the definition must be known when compiler the call, so your idea of putting an inline declaration in a header and the inline definition in a .cpp file will only work if all the callers happen to be later in that same .cpp file - in general it's broken, and you'd expect the (nominally) inline function's definition to appear in the header that declares it (or for there to be a single definition without prior declaration).
I had a discussion with Johannes Schaub regarding the keyword inline.
The code there was this:
namespace ... {
static void someFunction() {
MYCLASS::GetInstance()->someFunction();
}
};
He stated that:
Putting this as an inline function may
save code size in the executable
But according to my findings here and here it wouldn't be needed, since:
[Inline] only occurs if the compiler's cost/benefit analysis show it to be profitable
Mainstream C++ compilers like Microsoft Visual C++ and GCC support an option that lets the compilers automatically inline any suitable function, even those not marked as inline functions.
Johannes however states that there are other benefits of explicitly specifying it. Unfortunately I do not understand them. For instance, he stated that And "inline" allows you to define the function multiple times in the program., which I am having a hard time understanding (and finding references to).
So
Is inline just a recommendation for the compiler?
Should it be explicitly stated when you have a small function (I guess 1-4 instructions?)
What other benefits are there with writing inline?
is it needed to state inline in order to reduce the executable file size, even though the compiler (according to wikipedia [I know, bad reference]) should find such functions itself?
Is there anything else I am missing?
To restate what I said in those little comment boxes. In particular, I was never talking about inlin-ing:
// foo.h:
static void f() {
// code that can't be inlined
}
// TU1 calls f
// TU2 calls f
Now, both TU1 and TU2 have their own copy of f - the code of f is in the executable two times.
// foo.h:
inline void f() {
// code that can't be inlined
}
// TU1 calls f
// TU2 calls f
Both TUs will emit specially marked versions of f that are effectively merged by the linker by discarding all but one of them. The code of f only exists one time in the executable.
Thus we have saved space in the executable.
Is inline just a recommendation for the compiler?
Yes.
7.1.2 Function specifiers
2 A function declaration (8.3.5, 9.3, 11.4) with an inline specifier declares an inline function. The inline
specifier indicates to the implementation that inline substitution of the function body at the point of call
is to be preferred to the usual function call mechanism. An implementation is not required to perform this
inline substitution at the point of call; however, even if this inline substitution is omitted, the other rules
for inline functions defined by 7.1.2 shall still be respected.
For example from MSDN:
The compiler treats the inline expansion options and keywords as suggestions. There is no guarantee that functions will be inlined. You cannot force the compiler to inline a particular function, even with the __forceinline keyword. When compiling with /clr, the compiler will not inline a function if there are security attributes applied to the function.
Note though:
3.2 One definition rule
3 [...]An inline function shall be defined in every translation unit in which it is used.
4 An inline function shall be defined in every translation unit in which it is used and shall have exactly
the same definition in every case (3.2). [ Note: a call to the inline function may be encountered before its
definition appears in the translation unit. —end note ] If the definition of a function appears in a translation
unit before its first declaration as inline, the program is ill-formed. If a function with external linkage is
declared inline in one translation unit, it shall be declared inline in all translation units in which it appears;
no diagnostic is required. An inline function with external linkage shall have the same address in all
translation units. A static local variable in an extern inline function always refers to the same object.
A string literal in the body of an extern inline function is the same object in different translation units.
[ Note: A string literal appearing in a default argument expression is not in the body of an inline function
merely because the expression is used in a function call from that inline function. —end note ] A type
defined within the body of an extern inline function is the same type in every translation unit.
[Note: Emphasis mine]
A TU is basically a set of headers plus an implementation file (.cpp) which leads to an object file.
Should it be explicitly stated when you have a small function (I
guess 1-4 instructions?)
Absolutely. Why not help the compiler help you generate less code? Usually, if the prolog/epilog part incurs more cost than having it inline force the compiler to generate them? But you must, absolutely must go through this GOTW article before getting started with inlining: GotW #33: Inline
What other benefits are there with writing inline?
namespaces can be inline too. Note that member functions defined in the class body itself are inline by default. So are implicitly generated special member functions.
Function templates cannot be defined in an implementation file (see FAQ 35.12) unless of course you provide a explicit instantiations (for all types for which the template is used -- generally a PITA IMO). See the DDJ article on Moving Templates Out of Header Files (If you are feeling weird read on this other article on the export keyword which was dropped from the standard.)
Is it needed to state inline in order to reduce the executable file
size, even though the compiler
(according to wikipedia [I know, bad
reference]) should find such functions
itself?
Again, as I said, as a good programmer, you should, when you can, help the compiler. But here's what the C++ FAQ has to offer about inline. So be wary. Not all compilers do this sort of analysis so you should read the documentation on their optimization switches. E.g: GCC does something similar:
You can also direct GCC to try to integrate all “simple enough” functions into their callers with the option -finline-functions.
Most compilers allow you to override the compiler's cost/benefit ratio analysis to some extent. The MSDN and GCC documentation is worth reading.
Is inline just a recommendation for the compiler?
Yes. But the linker needs it if there are multiple definitions of the function (see below)
Should it be explicitly stated when you have a small function (I guess 1-4 instructions?)
On functions that are defined in header files it is (usually) needed. It does not hurt to add it to small functions (but I don't bother). Note class members defined within the class declaration are automatically declared inline.
What other benefits are there with writing inline?
It will stop linker errors if used correctly.
is it needed to state inline in order to reduce the executable file size, even though the compiler (according to wikipedia [I know, bad reference]) should find such functions itself?
No. The compiler makes a cost/benefit comparison of inlining each function call and makes an appropriate choice. Thus calls to a function may be inlined in curtain situations and not inlined in other (depending on how the compilers algorithm works).
Speed/Space are two competing forces and it depends what the compiler is optimizing for which will determine weather functions are inlined and weather the executable will grow or shrink.
Also note if excessively aggressive inlining is used causing the program to expand too much, then locality of reference is lost and this can actually slow the program down (as more executable pages need to be brought into memory).
Multiple definition:
File: head.h
// Without inline the linker will choke.
/*inline*/ int add(int x, int y) { return x + y; }
extern void test()
File: main.cpp
#include "head.h"
#include <iostream>
int main()
{
std::cout << add(2,3) << std::endl;
test();
}
File: test.cpp
#include "head.h"
#include <iostream>
void test()
{
std::cout << add(2,3) << std::endl;
}
Here we have two definitions of add(). One in main.o and one in test.o
Yes. It's nothing more.
No.
You hint the compiler that it's a function that gets called a lot, where the jump-to-the-function part takes a lot of the execution time.
The compiler might decide to put the function code right where it gets called instead where normal functions are. However, if a function is inlined in x places, you need x times the space of a normal function.
Always trust your compiler to be much smarter than yourself on the subject of premature micro-optimization.
Actually, inline function may increase executable size, because inline function code is duplicated in every place where this function is called. With modern C++ compilers, inline mostly allows to programmer to believe, that he writes high-performance code. Compiler decides itself whether to make function inline or not. So, writing inline just allows us to feel better...
With regards to this:
And "inline" allows you to define the function multiple times in the program.
I can think of one instance where this is useful: Making copy protection code harder to crack. If you have a program that takes user information and verifies it against a registration key, inlining the function that does the verification will make it harder for a cracker to find all duplicates of that function.
As to other points:
inline is just a recommendation to compiler, but there are #pragma directives that can force inlining of any function.
Since it's just a recommendation, it's probably safe to explicitly ask for it and let the compiler override your recommendation. But it's probably better to omit it altogether and let the compiler decide.
The obfuscation mentioned above is one possible benefit of inlining.
As others have mentioned, inline would actually increase the size of the compiled code.
Yes, it will readily ignore it when it thinks the function is too large or uses incompatible features (exception handling perhaps). Furthermore, there is usually a compiler setting to let it automatically inline functions that it deems worthy (/Ob2 in MSVC).
It should be explicitly stated if you put the definition of the function in the header file. Which is usually necessary to ensure that multiple translation units can take advantage of it. And to avoid multiple definition errors. Furthermore, inline functions are put in the COMDAT section. Which tells the linker that it can pick just one of the multiple definitions. Equivalent to __declspec(selectany) in MSVC.
Inlined functions don't usually make the executable smaller. Since the call opcode is typically smaller than the inlined machined code, except for very small property accessor style functions. It depends but bigger is not an uncommon outcome.
Another benefit of in-lining (note that actual inlining is sometimes orthogonal to use of the "inline" directive) occurs when a function uses reference parameters. Passing two variables to a non-inline function to add its first operand to the second would require pushing the value of the first operand and the address of the second and then calling a function which would have to pop the first operand and address of the second, and then add the former value indirectly to the popped address. If the function were expanded inline, the compiler could simply add one variable to the other directly.
Actually inlining leads to bigger executables, not smaller ones.
It's to reduce one level of indirection, by pasting the function code.
http://www.parashift.com/c++-faq-lite/inline-functions.html