C++ How to store element in deque without copying - c++

I want to store pointers in a deque that looks like this:
deque<ofImage *> pointerDeque;
void testApp::iTakeAPointer(ofImage * &pointer) {
cout << "iTakeAPointer " << &pointer << endl;
pointerDeque.push_back(pointer);
cout << "pointerDeque.back() " << pointerDeque.back() << endl;
}
When I run it I get (function is called on keypress):
keyPressed 0xbffff240
iTakeAPointer 0xbffff240
pointerDeque.back() 0x9f2e08
Because deque.push_back() creates a copy. My question is: how do I get the reference, in this case 0xbffff240, in the deque?
EDIT:
Thanks. Sometimes you don't see the wood for the trees.

Your diagnostics are incorrect. This is printing the address of the pointer, not the address the pointer holds (which is what you want):
cout << "iTakeAPointer " << &pointer << endl;
&pointer is of type ofImage**. Just use pointer:
cout << "iTakeAPointer " << pointer << endl;
Note, it must be the case that the ofImage instances contained in pointerDeque exist for its lifetime. If pointerDeque now owns the ofImage instances then consider using std::unique_ptr. If it does not own it, consider using std::shared_ptr (or boost::shared_ptr).

cout << "iTakeAPointer " << pointer << endl;
Print the pointer itself, and not its address!

void testApp::iTakeAPointer(ofImage * &pointer) {
change to
void testApp::iTakeAPointer(ofImage * pointer) { // remove ref

Related

What is the relationship between an array and its address?

The following code:
#include<iostream>
int main (void) {
int lista[5] = {0,1,2,3,4};
std::cout << lista << std::endl;
std::cout << &lista << std::endl;
std::cout << lista+1 << std::endl;
std::cout << &lista+1 << std::endl;
std::cout << lista+2 << std::endl;
std::cout << &lista+2 << std::endl;
std::cout << lista+3 << std::endl;
std::cout << &lista+3 << std::endl;
return (0);
}
Outputs:
0x22ff20
0x22ff20
0x22ff24
0x22ff34
0x22ff28
0x22ff48
0x22ff2c
0x22ff5c
I understood that an array is another form to express a pointer, but we cannot change its address to point anywhere else after declaration. I also understood that an array has its value as the first position in memory. Therefore, 0x22ff20 in this example is the location of the array's starting position and the first variable is stored there.
What I did not understand is: why the other variables are not stored in sequence with the array address? I mean, why lista+1 is different from &lista+1. Should not they be the same?
In pointer arithmetic, types matter.
It's true that the value is the same for both lista and &lista, their types are different: lista (in the expression used in cout call) has type int* whereas &lista has type int (*)[5].
So when you add 1 to lista, it points to the "next" int. But &lista + 1 points to the location after 5 int's (which may not be a valid).
Answering the question as asked:
std::cout << &lista+1 << std::endl;
In this code you take the address of array lista and add 1 to obtained answer. Given the sizeof of the array is sizeof(int) * 5, which means when you increment a pointer to it by 1 you add sizeof(int) * 5 to the pointer address, you end up with a number you see.

understanding the logic behind the new and delete operators in c++

Im trying to understand the delete operator in c++.
I could understand the logic behind using pointers and new operator, yet I understood that "The delete operator eliminates a dynamic variable and returns the memory that the dynamic variable occupied to the freestone." p517, Problem solving with C++ 9th edition.
which, I think doesn't align with the third cout statement. and I expected that the third cout statement to be sth similar to the first one.
int main() {
int *p1;
cout << "p1 address: " << &p1 << " and points to the address "<< p1 << " which has the value: " << *p1<< endl;
p1 = new int;
cout << "p1 address: " << &p1 << " and points to the address "<< p1 << " which has the value: " << *p1<< endl;
delete p1;
cout << "p1 address: " << &p1 << " and points to the address "<< p1 << " which has the value: " << *p1<< endl;
cout << endl;
return 0;
}
I would appreciate any explanation :))
delete doesn't have to change the memory your pointer points to. What it actually does is implementation specific.
What delete needs to do is to deconstruct any object at the given address and return the associated memory to the allocation pool. Some debugger might overwrite the value of a variable when freed, but for trivial types no special deconstruction needs to take place - the memory can be returned to the pool as-is. The pointer isn't changed either: after delete p we call p a dangling pointer that holds an address to freed memory. All access through that pointer is undefined behaviour.
Since handling raw pointers and especially dangling pointers is error prone, it's good to know the C++ smartpointers, e.g. unique_ptr:
std::unique_ptr<int> p; // initialised to nullptr
p = std::make_unique<int>(13); // new int with value 13
p = std::make_unique<int>(37); // deleted previous int, assigned new int with value 37
// optional (when p goes out of scope its pointee is deleted automatically)
p.reset(); // deleted the int and reset p to nullptr

Passing around an object in C++ by reference [duplicate]

This question already has answers here:
What are the differences between a pointer variable and a reference variable?
(44 answers)
Closed 9 years ago.
I have objects that I put into a std::vector. Later on I need to iterate through the vector and change some member variables in the objects in each position.
I think I want to pass the object once I have it by reference to a function to operate on it, but I seem to be getting an error:
Non-const lvalue reference to type 'Object' cannot bind to a value of unrelated type 'Object *'
Here is the general gist with code between omitted:
Object* o1 = Object::createWithLocation(p.x, p.y);
v.push_back(o1);
// later on
for (int f=0; f < v.size(); f++)
{
Object* obj1 = v.at(f);
addChild(h->createLayer(obj1), 3); // add the HUD
}
createLayer is defined at:
static PlantingHUD* createLayer(Object &o);
Can anyone explain my confusion between pointers and passing by reference? Do I have to do a cast of some sort?
static PlantingHUD* createLayer(Object &o);
this method need a reference to Object as the parameter,
but your input is a pointer.
Object* obj1 = v.at(f);
addChild(h->createLayer(obj1), 3); // add the HUD
That's the problem.
void foo(Object o)
Declares a function, foo, which will begin execution with a fresh, new, instance of class 'Object' called 'o'.
This is called "passing by value", but it's more accurately 'copying' because what foo receives is it's own, personal copy of the Object instances we call foo with. When "foo" ends, the "Object o" it knew, fed and put through school, will cease to be.
void foo(Object& o)
Declares a function, foo, which will begin executing with a reference to an existing instance of an 'Object', this reference will be called 'o'. If you poke or prod it, you will be changing the original.
This is called "pass by reference".
void foo(Object* o)
Declares a function, foo, which will begin executing with a variable, called "o", containing the address of what is supposed to be an instance of "Object". If you change this variable, by doing something like "o = nullptr", it will only affect the way things look inside foo. But if you send Samuel L Jackson to the address, he can deliver furious vengance that lasts beyond the lifetime of foo.
void foo(Object*& o)
Declares a function, foo, which will begin executing with a variable called "o", which is a reference to a pointer to an instance of object o - it's like an alias, except that without compiler optimization, it's actually implemented by the compiler using a sort of pointer.
Lets try these separately.
#include <iostream>
#include <cstdint>
struct Object
{
int m_i;
void event(const char* what, const char* where)
{
std::cout <<
what<< " " << (void*)this <<
" value " << m_i <<
" via " << where <<
std::endl;
}
// Construct an object with a specific value.
Object(int i) : m_i(i)
{
event("Constructed", "Operator(int i)");
}
// This is called the copy constructor, create one object from another.
Object(const Object& rhs) : m_i(rhs.m_i)
{
event("Constructed", "Operator(const Object&)");
}
// This is how to handle Object o1, o2; o1 = o2;
Object& operator=(const Object& rhs)
{
m_i = rhs.m_i;
event("Assigned", "operator=");
return *this;
}
// Handle destruction of an instance.
~Object() { event("Destructed", "~Object"); }
};
void foo1(Object o)
{
std::cout << "Entered foo1, my o has value " << o.m_i << std::endl;
// poke our local o
o.m_i += 42;
std::cout << "I changed o.m_i, it is " << o.m_i << std::endl;
}
void foo2(Object* o)
{
std::cout << "Foo2 starts with a pointer, it's value is " << (uintptr_t)o << std::endl;
std::cout << "That's an address: " << (void*)o << std::endl;
std::cout << "m_i of o has the value " << o->m_i << std::endl;
o->m_i += 42;
std::cout << "I've changed it tho, now it's " << o->m_i << std::endl;
}
void foo3(Object& o)
{
std::cout << "foo3 begins with a reference called o, " << std::endl <<
"which is sort of like a pointer but the compiler does some magic " << std::endl <<
"and we can use it like a local concrete object. " <<
std::endl <<
"Right now o.m_i is " << o.m_i <<
std::endl;
o.m_i += 42;
std::cout << "Only now, it is " << o.m_i << std::endl;
}
void foo4(Object*& o)
{
std::cout << "foo4 begins with a reference to a pointer, " << std::endl <<
"the pointer has the value " << (uintptr_t)o << " which is " <<
(void*)o <<
std::endl <<
"But the pointer points to an Object with m_i of " << o->m_i << std::endl <<
"which we accessed with '->' because the reference is to a pointer, " <<
"not to an Object." <<
std::endl;
o->m_i += 42;
std::cout << "I poked o's m_i and now it is " << o->m_i << std::endl;
// Now for something really dastardly.
o = new Object(999);
std::cout << "I just changed the local o to point to a new object, " <<
(uintptr_t)o << " or " << (void*)o << " with m_i " << o->m_i <<
std::endl;
}
int main()
{
std::cout << "Creating our first objects." << std::endl;
Object o1(100), o2(200);
std::cout << "Calling foo1 with o1" << std::endl;
foo1(o1);
std::cout << "back in main, o1.m_i is " << o1.m_i << std::endl;
std::cout << "Calling foo2 with &o1" << std::endl;
foo2(&o1);
std::cout << "back in main, o1.m_i is " << o1.m_i << std::endl;
std::cout << "Calling foo3(o2), which looks like the way we called foo1." << std::endl;
foo3(o2);
std::cout << "back in main, o2.m_i is " << o2.m_i << std::endl;
std::cout << "Creating our pointer." << std::endl;
Object* optr;
std::cout << "Setting it to point to 'o2'" << std::endl;
optr = &o2;
std::cout << "optr now has the value " << (uintptr_t)optr <<
" which is the address " << (void*)optr <<
" which points to an Object with m_i = " << optr->m_i <<
std::endl;
foo4(optr);
std::cout << "back in main, o2 has the value " << o2.m_i << std::endl <<
"and now optr has the value " << (uintptr_t)optr << std::endl <<
"and optr->m_i is now " << optr->m_i <<
std::endl;
if (optr != &o2)
delete optr; // otherwise we'd technically be leaking memory.
return 0;
}
Live demo on ideone.com.
Passing by Value
This term confuses people early in their C++ development because, in lay terms, it sounds like this is what "Object& foo" would do.
The term "pass by value" actually arises from what the language has to do to call such a function, to value-wise copy the whole of the original object/struct onto the stack or, in the case where a copy ctor is available, forward them to a value-wise constructor and recreate a copy of the original, value-by-value.
Pass-by-value should be used for most simple cases where you do not want side-effects on the values in your current scope from the function you are calling.
bool checkWidthdrawl(Dollars balance, Dollars amountToWithdraw)
{
// it's safe for me to change "balance" here because balance is mine
}
vs
bool checkWidthdrawl(Dollars& balance, Dollars amountToWithdraw)
{
balance -= amountToWithdraw;
if (balance < 0)
std::complaint << "My account seems to be missing $" << amountToWithdraw;
}
However, passing by reference can become expensive.
struct FourK { char a[1024], b[1024], c[1024], d[1024]; }
If you pass this around by value all day, you risk blowing up your stack at some point, as well as spending daft amounts of time copying all those bytes.
void foo(int i); // Unless you need to see the changes to i, this is perfectly fine.
void foo(FourK f); // Someone should hunt you down and yell "PEANUT" in your ear.
Passing by reference
References are really a contract over the pointer system that allow the language to ensure you're really talking about a concrete instance of an object, and thus allow you to refer to a pre-existing instance of a value outside of a function.
Of course, there are ways to break this, but the language tries very, very hard to make them difficult to do. For example, try adding this to the above code:
Object& makeObjectNotWar(int i)
{
Object thisObjectGoesAway(i);
return thisObjectGoesAway /*right about now*/;
}
You can also provide callers with an assurance that the function won't have any side effects on a variable with the "const" modifier.
void fooc(const Object& o)
{
o.m_i += 42; // Error
}
You can even use that within a function as a hint to yourself (and the compiler) that you don't want to accidentally change a value, here's a case where it can provide an optimization hint to the compiler:
std::vector<int> foo;
add1000valuesTo(foo);
const size_t fooSize = foo.size();
for (size_t i = 0; i < fooSize; ++i) {
// ... stuff you're sure won't decrease foo.size()
}
Without the const fooSize
for (size_t i = 0; i < foo.size(); ++i) {
The compiler has to start by assuming that "foo.size()" could be changed at any given iteration of the loop. It can probably figure out that it doesn't, but by giving it the hint, you've saved a little compile time, possibly improved your performance, and made it easier for a human to tell exactly what behavior you expected. Downside: If your loop does actually change the size of foo, you'll find out by bug reports :(
One last thing to know about pass-by-reference is that C++ references aren't protected or "ref counted". The language only promises that a reference will be valid for the duration of its scope, so long as you don't do anything stupid like, say, call something that deletes the object.
// Author intended this function to be called
// by the owner of a Dog.
void doneWithFoo(Dog& dog)
{
Dog* deadDog = &dog;
delete deadDog;
}
Rover& Babysitter::babysitDog(Dog& rover, int hours)
{
rover.feed(FeedType::Donut);
if (rover.pooped())
doneWithDog(rover);
// ...
return rover; // I have a bad feeling about this.
}
Obviously, you're not expecting "babysitDog" to result in the dog being disposed of. But bear in mind that because we passed in a reference, it to "babysitDog" that it's also gone from the caller too, and if that was using a reference... rover's dead, Dave, dead.
As with pointers, if you're going to store references beyond the scope in which you have access to them, then you become responsible for making sure the objects being referenced stick around or that the references are removed from the container before the objects do go away.

Resize array function does not change memory location

I found a function to resize an array and am having trouble understanding how it works (or if it's working properly). For testing I set the "temp" array to a new value and "startCounter" does get assigned to that value, however the memory location for startCounter doesn't change. Here is my code:
int * startCounter;
void resizeArray(int *&arraySent,int origSize,int newSize) {
output << "&arraySent " << &arraySent << endl;
output << "arraySent[0] " << arraySent[0] << endl;
int* temp = new int[newSize];
output << "&temp " << &temp << endl;
for (int i=0; i<origSize; i++) {
temp[i] = arraySent[i];
}
temp[0]=744;
delete [] arraySent;
arraySent = temp;
output << "&arraySent " << &arraySent << endl;
}
//....
startCounter = new int [3];
startCounter[0]=345;
output << &startCounter << endl;
resizeArray(startCounter,3,10);
output << "startCounter[0]" << startCounter[0] << endl;
output << "&startCounter" << &startCounter << endl;
Here is the output I get from this:
&startCounter 0x60fab8
&arraySent 0x60fab8
arraySent[0] 345
&temp 0x82cfe54
&arraySent 0x60fab8
startCounter[0] 744
&startCounter 0x60fab8
My question is, why does the memory location of startCounter not change from 0x60fab8 after deleting it and assigning it to the new "temp" array? Shouldn't it now become 0x82cfe54?
P.S. I understand about vectors and such but am mainly concerned with understanding how this particular function works.
void resizeArray(int *&arraySent,int origSize,int newSize) {
output << "&arraySent " << &arraySent << endl;
outputs the address of the pointer variable, not the address that it holds.
simply omit the address operator to get the (probably) intended effect
&startCounter is the address of the pointer, not the address it points to. it's value won't change. simply use startCounter.

push_back(this) pushes wrong pointer onto vector

I have a vector of UnderlyingClass pointers stored in another object, and inside a method in UnderlyingClass I want to add the "this" pointer to the end of that vector. When I look at the contents of the vector immediately after the push_back call, the wrong pointer is in there. What could be going wrong?
cout << "this: " << this << endl;
aTextBox.callbacks.push_back(this);
cout << "size is " << aTextBox.callbacks.size() << endl;
cout << "size-1: " << aTextBox.callbacks[aTextBox.callbacks.size()-1] << endl;
cout << "back: " << aTextBox.callbacks.back() << endl;
cout << "0: " << aTextBox.callbacks[0] << endl;
cout << "this: " << this << endl;
cout << "text box ptr: " << &aTextBox << endl;
cout << "text box callbacks ptr: " << &(aTextBox.callbacks) << endl;
Here's the output:
this: 0x11038f70
size is 1
size-1: 0x11038fa8
back: 0x11038fa8
0: 0x11038fa8
this: 0x11038f70
text box ptr: 0x11039070
text box callbacks ptr: 0x11039098
By the way, callbacks is a vector of WebCallback pointers, and UnderlyingClass implements WebCallback:
std::vector<WebCallback*> callbacks;
class UnderlyingClass
:public WebCallback
Copied from comments: (see Answer below)
output:
this: 0x6359f70
size is 1
size-1: 0x6359fa8
back: 0x6359fa8
0: 0x6359fa8
this: 0x6359f70
WebCallback This: 0x6359fa8
text box ptr: 0x635a070
text box callbacks ptr: 0x635a098
okay, so that explains why the pointers don't match up.
My real question, then, is this:
how do I get the correct version of a method to be called? Specifically, WebCallback stipulates that a function onWebCommand() be implemented, and right now callbacks[0]->onWebCommand() is not causing the onWebCommand() that I wrote in UnderlyingClass to be executed.
This can happen with multiple inheritance, if your layout looks like this:
class UnderlyingBase {
char d[56];
};
class UnderlyingClass
:public UnderlyingBase,
public WebCallback {
};
Then the layout can be like this, for each object involved. The last one is the complete object containing the first two ones as base-class sub-objects, and that you take the pointer of, and which will be converted to WebCallback*.
[UnderlyingBase]
> char[56]: 56 bytes, offset 0x0
[WebCallback]
> unknown: x bytes, offset 0x0
[UnderlyingClass]
> [UnderlyingBase]: 56 bytes (0x38 hex), offset 0x0
> [WebCallback]: x bytes, offset 0x38
Now since your vector contains WebCallback*, the compiler adjusts the pointer to point to the WebCallback sub-object, while when it would point to UnderlyingClass or UnderlyingBase, it would start 0x38 (56) bytes earlier.
Add this to your print out:
cout << "this: " << this << endl;
cout << "WebCallback This: " << dynamic_cast<WebCallback*>(this) << endl;
I bet this is what you are looking for.